/* SPDX-License-Identifier: GPL-2.0-only */ /* * Copyright (C) 2012,2013 - ARM Ltd * Author: Marc Zyngier * * Derived from arch/arm/include/kvm_emulate.h * Copyright (C) 2012 - Virtual Open Systems and Columbia University * Author: Christoffer Dall */ #ifndef __ARM64_KVM_EMULATE_H__ #define __ARM64_KVM_EMULATE_H__ #include #include #include #include #include #include #include #include #include #define CURRENT_EL_SP_EL0_VECTOR 0x0 #define CURRENT_EL_SP_ELx_VECTOR 0x200 #define LOWER_EL_AArch64_VECTOR 0x400 #define LOWER_EL_AArch32_VECTOR 0x600 enum exception_type { except_type_sync = 0, except_type_irq = 0x80, except_type_fiq = 0x100, except_type_serror = 0x180, }; #define kvm_exception_type_names \ { except_type_sync, "SYNC" }, \ { except_type_irq, "IRQ" }, \ { except_type_fiq, "FIQ" }, \ { except_type_serror, "SERROR" } bool kvm_condition_valid32(const struct kvm_vcpu *vcpu); void kvm_skip_instr32(struct kvm_vcpu *vcpu); void kvm_inject_undefined(struct kvm_vcpu *vcpu); void kvm_inject_vabt(struct kvm_vcpu *vcpu); void kvm_inject_dabt(struct kvm_vcpu *vcpu, unsigned long addr); void kvm_inject_pabt(struct kvm_vcpu *vcpu, unsigned long addr); void kvm_inject_size_fault(struct kvm_vcpu *vcpu); void kvm_vcpu_wfi(struct kvm_vcpu *vcpu); void kvm_emulate_nested_eret(struct kvm_vcpu *vcpu); int kvm_inject_nested_sync(struct kvm_vcpu *vcpu, u64 esr_el2); int kvm_inject_nested_irq(struct kvm_vcpu *vcpu); #if defined(__KVM_VHE_HYPERVISOR__) || defined(__KVM_NVHE_HYPERVISOR__) static __always_inline bool vcpu_el1_is_32bit(struct kvm_vcpu *vcpu) { return !(vcpu->arch.hcr_el2 & HCR_RW); } #else static __always_inline bool vcpu_el1_is_32bit(struct kvm_vcpu *vcpu) { return vcpu_has_feature(vcpu, KVM_ARM_VCPU_EL1_32BIT); } #endif static inline void vcpu_reset_hcr(struct kvm_vcpu *vcpu) { vcpu->arch.hcr_el2 = HCR_GUEST_FLAGS; if (has_vhe() || has_hvhe()) vcpu->arch.hcr_el2 |= HCR_E2H; if (cpus_have_final_cap(ARM64_HAS_RAS_EXTN)) { /* route synchronous external abort exceptions to EL2 */ vcpu->arch.hcr_el2 |= HCR_TEA; /* trap error record accesses */ vcpu->arch.hcr_el2 |= HCR_TERR; } if (cpus_have_final_cap(ARM64_HAS_STAGE2_FWB)) { vcpu->arch.hcr_el2 |= HCR_FWB; } else { /* * For non-FWB CPUs, we trap VM ops (HCR_EL2.TVM) until M+C * get set in SCTLR_EL1 such that we can detect when the guest * MMU gets turned on and do the necessary cache maintenance * then. */ vcpu->arch.hcr_el2 |= HCR_TVM; } if (cpus_have_final_cap(ARM64_HAS_EVT) && !cpus_have_final_cap(ARM64_MISMATCHED_CACHE_TYPE)) vcpu->arch.hcr_el2 |= HCR_TID4; else vcpu->arch.hcr_el2 |= HCR_TID2; if (vcpu_el1_is_32bit(vcpu)) vcpu->arch.hcr_el2 &= ~HCR_RW; if (kvm_has_mte(vcpu->kvm)) vcpu->arch.hcr_el2 |= HCR_ATA; } static inline unsigned long *vcpu_hcr(struct kvm_vcpu *vcpu) { return (unsigned long *)&vcpu->arch.hcr_el2; } static inline void vcpu_clear_wfx_traps(struct kvm_vcpu *vcpu) { vcpu->arch.hcr_el2 &= ~HCR_TWE; if (atomic_read(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe.vlpi_count) || vcpu->kvm->arch.vgic.nassgireq) vcpu->arch.hcr_el2 &= ~HCR_TWI; else vcpu->arch.hcr_el2 |= HCR_TWI; } static inline void vcpu_set_wfx_traps(struct kvm_vcpu *vcpu) { vcpu->arch.hcr_el2 |= HCR_TWE; vcpu->arch.hcr_el2 |= HCR_TWI; } static inline void vcpu_ptrauth_enable(struct kvm_vcpu *vcpu) { vcpu->arch.hcr_el2 |= (HCR_API | HCR_APK); } static inline void vcpu_ptrauth_disable(struct kvm_vcpu *vcpu) { vcpu->arch.hcr_el2 &= ~(HCR_API | HCR_APK); } static inline unsigned long vcpu_get_vsesr(struct kvm_vcpu *vcpu) { return vcpu->arch.vsesr_el2; } static inline void vcpu_set_vsesr(struct kvm_vcpu *vcpu, u64 vsesr) { vcpu->arch.vsesr_el2 = vsesr; } static __always_inline unsigned long *vcpu_pc(const struct kvm_vcpu *vcpu) { return (unsigned long *)&vcpu_gp_regs(vcpu)->pc; } static __always_inline unsigned long *vcpu_cpsr(const struct kvm_vcpu *vcpu) { return (unsigned long *)&vcpu_gp_regs(vcpu)->pstate; } static __always_inline bool vcpu_mode_is_32bit(const struct kvm_vcpu *vcpu) { return !!(*vcpu_cpsr(vcpu) & PSR_MODE32_BIT); } static __always_inline bool kvm_condition_valid(const struct kvm_vcpu *vcpu) { if (vcpu_mode_is_32bit(vcpu)) return kvm_condition_valid32(vcpu); return true; } static inline void vcpu_set_thumb(struct kvm_vcpu *vcpu) { *vcpu_cpsr(vcpu) |= PSR_AA32_T_BIT; } /* * vcpu_get_reg and vcpu_set_reg should always be passed a register number * coming from a read of ESR_EL2. Otherwise, it may give the wrong result on * AArch32 with banked registers. */ static __always_inline unsigned long vcpu_get_reg(const struct kvm_vcpu *vcpu, u8 reg_num) { return (reg_num == 31) ? 0 : vcpu_gp_regs(vcpu)->regs[reg_num]; } static __always_inline void vcpu_set_reg(struct kvm_vcpu *vcpu, u8 reg_num, unsigned long val) { if (reg_num != 31) vcpu_gp_regs(vcpu)->regs[reg_num] = val; } static inline bool vcpu_is_el2_ctxt(const struct kvm_cpu_context *ctxt) { switch (ctxt->regs.pstate & (PSR_MODE32_BIT | PSR_MODE_MASK)) { case PSR_MODE_EL2h: case PSR_MODE_EL2t: return true; default: return false; } } static inline bool vcpu_is_el2(const struct kvm_vcpu *vcpu) { return vcpu_is_el2_ctxt(&vcpu->arch.ctxt); } static inline bool __vcpu_el2_e2h_is_set(const struct kvm_cpu_context *ctxt) { return ctxt_sys_reg(ctxt, HCR_EL2) & HCR_E2H; } static inline bool vcpu_el2_e2h_is_set(const struct kvm_vcpu *vcpu) { return __vcpu_el2_e2h_is_set(&vcpu->arch.ctxt); } static inline bool __vcpu_el2_tge_is_set(const struct kvm_cpu_context *ctxt) { return ctxt_sys_reg(ctxt, HCR_EL2) & HCR_TGE; } static inline bool vcpu_el2_tge_is_set(const struct kvm_vcpu *vcpu) { return __vcpu_el2_tge_is_set(&vcpu->arch.ctxt); } static inline bool __is_hyp_ctxt(const struct kvm_cpu_context *ctxt) { /* * We are in a hypervisor context if the vcpu mode is EL2 or * E2H and TGE bits are set. The latter means we are in the user space * of the VHE kernel. ARMv8.1 ARM describes this as 'InHost' * * Note that the HCR_EL2.{E2H,TGE}={0,1} isn't really handled in the * rest of the KVM code, and will result in a misbehaving guest. */ return vcpu_is_el2_ctxt(ctxt) || (__vcpu_el2_e2h_is_set(ctxt) && __vcpu_el2_tge_is_set(ctxt)) || __vcpu_el2_tge_is_set(ctxt); } static inline bool is_hyp_ctxt(const struct kvm_vcpu *vcpu) { return vcpu_has_nv(vcpu) && __is_hyp_ctxt(&vcpu->arch.ctxt); } /* * The layout of SPSR for an AArch32 state is different when observed from an * AArch64 SPSR_ELx or an AArch32 SPSR_*. This function generates the AArch32 * view given an AArch64 view. * * In ARM DDI 0487E.a see: * * - The AArch64 view (SPSR_EL2) in section C5.2.18, page C5-426 * - The AArch32 view (SPSR_abt) in section G8.2.126, page G8-6256 * - The AArch32 view (SPSR_und) in section G8.2.132, page G8-6280 * * Which show the following differences: * * | Bit | AA64 | AA32 | Notes | * +-----+------+------+-----------------------------| * | 24 | DIT | J | J is RES0 in ARMv8 | * | 21 | SS | DIT | SS doesn't exist in AArch32 | * * ... and all other bits are (currently) common. */ static inline unsigned long host_spsr_to_spsr32(unsigned long spsr) { const unsigned long overlap = BIT(24) | BIT(21); unsigned long dit = !!(spsr & PSR_AA32_DIT_BIT); spsr &= ~overlap; spsr |= dit << 21; return spsr; } static inline bool vcpu_mode_priv(const struct kvm_vcpu *vcpu) { u32 mode; if (vcpu_mode_is_32bit(vcpu)) { mode = *vcpu_cpsr(vcpu) & PSR_AA32_MODE_MASK; return mode > PSR_AA32_MODE_USR; } mode = *vcpu_cpsr(vcpu) & PSR_MODE_MASK; return mode != PSR_MODE_EL0t; } static __always_inline u64 kvm_vcpu_get_esr(const struct kvm_vcpu *vcpu) { return vcpu->arch.fault.esr_el2; } static __always_inline int kvm_vcpu_get_condition(const struct kvm_vcpu *vcpu) { u64 esr = kvm_vcpu_get_esr(vcpu); if (esr & ESR_ELx_CV) return (esr & ESR_ELx_COND_MASK) >> ESR_ELx_COND_SHIFT; return -1; } static __always_inline unsigned long kvm_vcpu_get_hfar(const struct kvm_vcpu *vcpu) { return vcpu->arch.fault.far_el2; } static __always_inline phys_addr_t kvm_vcpu_get_fault_ipa(const struct kvm_vcpu *vcpu) { return ((phys_addr_t)vcpu->arch.fault.hpfar_el2 & HPFAR_MASK) << 8; } static inline u64 kvm_vcpu_get_disr(const struct kvm_vcpu *vcpu) { return vcpu->arch.fault.disr_el1; } static inline u32 kvm_vcpu_hvc_get_imm(const struct kvm_vcpu *vcpu) { return kvm_vcpu_get_esr(vcpu) & ESR_ELx_xVC_IMM_MASK; } static __always_inline bool kvm_vcpu_dabt_isvalid(const struct kvm_vcpu *vcpu) { return !!(kvm_vcpu_get_esr(vcpu) & ESR_ELx_ISV); } static inline unsigned long kvm_vcpu_dabt_iss_nisv_sanitized(const struct kvm_vcpu *vcpu) { return kvm_vcpu_get_esr(vcpu) & (ESR_ELx_CM | ESR_ELx_WNR | ESR_ELx_FSC); } static inline bool kvm_vcpu_dabt_issext(const struct kvm_vcpu *vcpu) { return !!(kvm_vcpu_get_esr(vcpu) & ESR_ELx_SSE); } static inline bool kvm_vcpu_dabt_issf(const struct kvm_vcpu *vcpu) { return !!(kvm_vcpu_get_esr(vcpu) & ESR_ELx_SF); } static __always_inline int kvm_vcpu_dabt_get_rd(const struct kvm_vcpu *vcpu) { return (kvm_vcpu_get_esr(vcpu) & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT; } static __always_inline bool kvm_vcpu_abt_iss1tw(const struct kvm_vcpu *vcpu) { return !!(kvm_vcpu_get_esr(vcpu) & ESR_ELx_S1PTW); } /* Always check for S1PTW *before* using this. */ static __always_inline bool kvm_vcpu_dabt_iswrite(const struct kvm_vcpu *vcpu) { return kvm_vcpu_get_esr(vcpu) & ESR_ELx_WNR; } static inline bool kvm_vcpu_dabt_is_cm(const struct kvm_vcpu *vcpu) { return !!(kvm_vcpu_get_esr(vcpu) & ESR_ELx_CM); } static __always_inline unsigned int kvm_vcpu_dabt_get_as(const struct kvm_vcpu *vcpu) { return 1 << ((kvm_vcpu_get_esr(vcpu) & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT); } /* This one is not specific to Data Abort */ static __always_inline bool kvm_vcpu_trap_il_is32bit(const struct kvm_vcpu *vcpu) { return !!(kvm_vcpu_get_esr(vcpu) & ESR_ELx_IL); } static __always_inline u8 kvm_vcpu_trap_get_class(const struct kvm_vcpu *vcpu) { return ESR_ELx_EC(kvm_vcpu_get_esr(vcpu)); } static inline bool kvm_vcpu_trap_is_iabt(const struct kvm_vcpu *vcpu) { return kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_IABT_LOW; } static inline bool kvm_vcpu_trap_is_exec_fault(const struct kvm_vcpu *vcpu) { return kvm_vcpu_trap_is_iabt(vcpu) && !kvm_vcpu_abt_iss1tw(vcpu); } static __always_inline u8 kvm_vcpu_trap_get_fault(const struct kvm_vcpu *vcpu) { return kvm_vcpu_get_esr(vcpu) & ESR_ELx_FSC; } static inline bool kvm_vcpu_trap_is_permission_fault(const struct kvm_vcpu *vcpu) { return esr_fsc_is_permission_fault(kvm_vcpu_get_esr(vcpu)); } static inline bool kvm_vcpu_trap_is_translation_fault(const struct kvm_vcpu *vcpu) { return esr_fsc_is_translation_fault(kvm_vcpu_get_esr(vcpu)); } static inline u64 kvm_vcpu_trap_get_perm_fault_granule(const struct kvm_vcpu *vcpu) { unsigned long esr = kvm_vcpu_get_esr(vcpu); BUG_ON(!esr_fsc_is_permission_fault(esr)); return BIT(ARM64_HW_PGTABLE_LEVEL_SHIFT(esr & ESR_ELx_FSC_LEVEL)); } static __always_inline bool kvm_vcpu_abt_issea(const struct kvm_vcpu *vcpu) { switch (kvm_vcpu_trap_get_fault(vcpu)) { case ESR_ELx_FSC_EXTABT: case ESR_ELx_FSC_SEA_TTW0: case ESR_ELx_FSC_SEA_TTW1: case ESR_ELx_FSC_SEA_TTW2: case ESR_ELx_FSC_SEA_TTW3: case ESR_ELx_FSC_SECC: case ESR_ELx_FSC_SECC_TTW0: case ESR_ELx_FSC_SECC_TTW1: case ESR_ELx_FSC_SECC_TTW2: case ESR_ELx_FSC_SECC_TTW3: return true; default: return false; } } static __always_inline int kvm_vcpu_sys_get_rt(struct kvm_vcpu *vcpu) { u64 esr = kvm_vcpu_get_esr(vcpu); return ESR_ELx_SYS64_ISS_RT(esr); } static inline bool kvm_is_write_fault(struct kvm_vcpu *vcpu) { if (kvm_vcpu_abt_iss1tw(vcpu)) { /* * Only a permission fault on a S1PTW should be * considered as a write. Otherwise, page tables baked * in a read-only memslot will result in an exception * being delivered in the guest. * * The drawback is that we end-up faulting twice if the * guest is using any of HW AF/DB: a translation fault * to map the page containing the PT (read only at * first), then a permission fault to allow the flags * to be set. */ return kvm_vcpu_trap_is_permission_fault(vcpu); } if (kvm_vcpu_trap_is_iabt(vcpu)) return false; return kvm_vcpu_dabt_iswrite(vcpu); } static inline unsigned long kvm_vcpu_get_mpidr_aff(struct kvm_vcpu *vcpu) { return __vcpu_sys_reg(vcpu, MPIDR_EL1) & MPIDR_HWID_BITMASK; } static inline void kvm_vcpu_set_be(struct kvm_vcpu *vcpu) { if (vcpu_mode_is_32bit(vcpu)) { *vcpu_cpsr(vcpu) |= PSR_AA32_E_BIT; } else { u64 sctlr = vcpu_read_sys_reg(vcpu, SCTLR_EL1); sctlr |= SCTLR_ELx_EE; vcpu_write_sys_reg(vcpu, sctlr, SCTLR_EL1); } } static inline bool kvm_vcpu_is_be(struct kvm_vcpu *vcpu) { if (vcpu_mode_is_32bit(vcpu)) return !!(*vcpu_cpsr(vcpu) & PSR_AA32_E_BIT); if (vcpu_mode_priv(vcpu)) return !!(vcpu_read_sys_reg(vcpu, SCTLR_EL1) & SCTLR_ELx_EE); else return !!(vcpu_read_sys_reg(vcpu, SCTLR_EL1) & SCTLR_EL1_E0E); } static inline unsigned long vcpu_data_guest_to_host(struct kvm_vcpu *vcpu, unsigned long data, unsigned int len) { if (kvm_vcpu_is_be(vcpu)) { switch (len) { case 1: return data & 0xff; case 2: return be16_to_cpu(data & 0xffff); case 4: return be32_to_cpu(data & 0xffffffff); default: return be64_to_cpu(data); } } else { switch (len) { case 1: return data & 0xff; case 2: return le16_to_cpu(data & 0xffff); case 4: return le32_to_cpu(data & 0xffffffff); default: return le64_to_cpu(data); } } return data; /* Leave LE untouched */ } static inline unsigned long vcpu_data_host_to_guest(struct kvm_vcpu *vcpu, unsigned long data, unsigned int len) { if (kvm_vcpu_is_be(vcpu)) { switch (len) { case 1: return data & 0xff; case 2: return cpu_to_be16(data & 0xffff); case 4: return cpu_to_be32(data & 0xffffffff); default: return cpu_to_be64(data); } } else { switch (len) { case 1: return data & 0xff; case 2: return cpu_to_le16(data & 0xffff); case 4: return cpu_to_le32(data & 0xffffffff); default: return cpu_to_le64(data); } } return data; /* Leave LE untouched */ } static __always_inline void kvm_incr_pc(struct kvm_vcpu *vcpu) { WARN_ON(vcpu_get_flag(vcpu, PENDING_EXCEPTION)); vcpu_set_flag(vcpu, INCREMENT_PC); } #define kvm_pend_exception(v, e) \ do { \ WARN_ON(vcpu_get_flag((v), INCREMENT_PC)); \ vcpu_set_flag((v), PENDING_EXCEPTION); \ vcpu_set_flag((v), e); \ } while (0) static __always_inline void kvm_write_cptr_el2(u64 val) { if (has_vhe() || has_hvhe()) write_sysreg(val, cpacr_el1); else write_sysreg(val, cptr_el2); } static __always_inline u64 kvm_get_reset_cptr_el2(struct kvm_vcpu *vcpu) { u64 val; if (has_vhe()) { val = (CPACR_EL1_FPEN_EL0EN | CPACR_EL1_FPEN_EL1EN | CPACR_EL1_ZEN_EL1EN); if (cpus_have_final_cap(ARM64_SME)) val |= CPACR_EL1_SMEN_EL1EN; } else if (has_hvhe()) { val = (CPACR_EL1_FPEN_EL0EN | CPACR_EL1_FPEN_EL1EN); if (!vcpu_has_sve(vcpu) || (vcpu->arch.fp_state != FP_STATE_GUEST_OWNED)) val |= CPACR_EL1_ZEN_EL1EN | CPACR_EL1_ZEN_EL0EN; if (cpus_have_final_cap(ARM64_SME)) val |= CPACR_EL1_SMEN_EL1EN | CPACR_EL1_SMEN_EL0EN; } else { val = CPTR_NVHE_EL2_RES1; if (vcpu_has_sve(vcpu) && (vcpu->arch.fp_state == FP_STATE_GUEST_OWNED)) val |= CPTR_EL2_TZ; if (cpus_have_final_cap(ARM64_SME)) val &= ~CPTR_EL2_TSM; } return val; } static __always_inline void kvm_reset_cptr_el2(struct kvm_vcpu *vcpu) { u64 val = kvm_get_reset_cptr_el2(vcpu); kvm_write_cptr_el2(val); } #endif /* __ARM64_KVM_EMULATE_H__ */