/* SPDX-License-Identifier: GPL-2.0-only */ /* * Based on arch/arm/include/asm/uaccess.h * * Copyright (C) 2012 ARM Ltd. */ #ifndef __ASM_UACCESS_H #define __ASM_UACCESS_H #include #include #include /* * User space memory access functions */ #include #include #include #include #include #include #include #include #include #include #define HAVE_GET_KERNEL_NOFAULT /* * Test whether a block of memory is a valid user space address. * Returns 1 if the range is valid, 0 otherwise. * * This is equivalent to the following test: * (u65)addr + (u65)size <= (u65)TASK_SIZE_MAX */ static inline unsigned long __range_ok(const void __user *addr, unsigned long size) { unsigned long ret, limit = TASK_SIZE_MAX - 1; /* * Asynchronous I/O running in a kernel thread does not have the * TIF_TAGGED_ADDR flag of the process owning the mm, so always untag * the user address before checking. */ if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI) && (current->flags & PF_KTHREAD || test_thread_flag(TIF_TAGGED_ADDR))) addr = untagged_addr(addr); __chk_user_ptr(addr); asm volatile( // A + B <= C + 1 for all A,B,C, in four easy steps: // 1: X = A + B; X' = X % 2^64 " adds %0, %3, %2\n" // 2: Set C = 0 if X > 2^64, to guarantee X' > C in step 4 " csel %1, xzr, %1, hi\n" // 3: Set X' = ~0 if X >= 2^64. For X == 2^64, this decrements X' // to compensate for the carry flag being set in step 4. For // X > 2^64, X' merely has to remain nonzero, which it does. " csinv %0, %0, xzr, cc\n" // 4: For X < 2^64, this gives us X' - C - 1 <= 0, where the -1 // comes from the carry in being clear. Otherwise, we are // testing X' - C == 0, subject to the previous adjustments. " sbcs xzr, %0, %1\n" " cset %0, ls\n" : "=&r" (ret), "+r" (limit) : "Ir" (size), "0" (addr) : "cc"); return ret; } #define access_ok(addr, size) __range_ok(addr, size) /* * User access enabling/disabling. */ #ifdef CONFIG_ARM64_SW_TTBR0_PAN static inline void __uaccess_ttbr0_disable(void) { unsigned long flags, ttbr; local_irq_save(flags); ttbr = read_sysreg(ttbr1_el1); ttbr &= ~TTBR_ASID_MASK; /* reserved_pg_dir placed before swapper_pg_dir */ write_sysreg(ttbr - RESERVED_SWAPPER_OFFSET, ttbr0_el1); isb(); /* Set reserved ASID */ write_sysreg(ttbr, ttbr1_el1); isb(); local_irq_restore(flags); } static inline void __uaccess_ttbr0_enable(void) { unsigned long flags, ttbr0, ttbr1; /* * Disable interrupts to avoid preemption between reading the 'ttbr0' * variable and the MSR. A context switch could trigger an ASID * roll-over and an update of 'ttbr0'. */ local_irq_save(flags); ttbr0 = READ_ONCE(current_thread_info()->ttbr0); /* Restore active ASID */ ttbr1 = read_sysreg(ttbr1_el1); ttbr1 &= ~TTBR_ASID_MASK; /* safety measure */ ttbr1 |= ttbr0 & TTBR_ASID_MASK; write_sysreg(ttbr1, ttbr1_el1); isb(); /* Restore user page table */ write_sysreg(ttbr0, ttbr0_el1); isb(); local_irq_restore(flags); } static inline bool uaccess_ttbr0_disable(void) { if (!system_uses_ttbr0_pan()) return false; __uaccess_ttbr0_disable(); return true; } static inline bool uaccess_ttbr0_enable(void) { if (!system_uses_ttbr0_pan()) return false; __uaccess_ttbr0_enable(); return true; } #else static inline bool uaccess_ttbr0_disable(void) { return false; } static inline bool uaccess_ttbr0_enable(void) { return false; } #endif static inline void __uaccess_disable_hw_pan(void) { asm(ALTERNATIVE("nop", SET_PSTATE_PAN(0), ARM64_HAS_PAN, CONFIG_ARM64_PAN)); } static inline void __uaccess_enable_hw_pan(void) { asm(ALTERNATIVE("nop", SET_PSTATE_PAN(1), ARM64_HAS_PAN, CONFIG_ARM64_PAN)); } /* * The Tag Check Flag (TCF) mode for MTE is per EL, hence TCF0 * affects EL0 and TCF affects EL1 irrespective of which TTBR is * used. * The kernel accesses TTBR0 usually with LDTR/STTR instructions * when UAO is available, so these would act as EL0 accesses using * TCF0. * However futex.h code uses exclusives which would be executed as * EL1, this can potentially cause a tag check fault even if the * user disables TCF0. * * To address the problem we set the PSTATE.TCO bit in uaccess_enable() * and reset it in uaccess_disable(). * * The Tag check override (TCO) bit disables temporarily the tag checking * preventing the issue. */ static inline void __uaccess_disable_tco(void) { asm volatile(ALTERNATIVE("nop", SET_PSTATE_TCO(0), ARM64_MTE, CONFIG_KASAN_HW_TAGS)); } static inline void __uaccess_enable_tco(void) { asm volatile(ALTERNATIVE("nop", SET_PSTATE_TCO(1), ARM64_MTE, CONFIG_KASAN_HW_TAGS)); } /* * These functions disable tag checking only if in MTE async mode * since the sync mode generates exceptions synchronously and the * nofault or load_unaligned_zeropad can handle them. */ static inline void __uaccess_disable_tco_async(void) { if (system_uses_mte_async_or_asymm_mode()) __uaccess_disable_tco(); } static inline void __uaccess_enable_tco_async(void) { if (system_uses_mte_async_or_asymm_mode()) __uaccess_enable_tco(); } static inline void uaccess_disable_privileged(void) { __uaccess_disable_tco(); if (uaccess_ttbr0_disable()) return; __uaccess_enable_hw_pan(); } static inline void uaccess_enable_privileged(void) { __uaccess_enable_tco(); if (uaccess_ttbr0_enable()) return; __uaccess_disable_hw_pan(); } /* * Sanitise a uaccess pointer such that it becomes NULL if above the maximum * user address. In case the pointer is tagged (has the top byte set), untag * the pointer before checking. */ #define uaccess_mask_ptr(ptr) (__typeof__(ptr))__uaccess_mask_ptr(ptr) static inline void __user *__uaccess_mask_ptr(const void __user *ptr) { void __user *safe_ptr; asm volatile( " bics xzr, %3, %2\n" " csel %0, %1, xzr, eq\n" : "=&r" (safe_ptr) : "r" (ptr), "r" (TASK_SIZE_MAX - 1), "r" (untagged_addr(ptr)) : "cc"); csdb(); return safe_ptr; } /* * The "__xxx" versions of the user access functions do not verify the address * space - it must have been done previously with a separate "access_ok()" * call. * * The "__xxx_error" versions set the third argument to -EFAULT if an error * occurs, and leave it unchanged on success. */ #define __get_mem_asm(load, reg, x, addr, err) \ asm volatile( \ "1: " load " " reg "1, [%2]\n" \ "2:\n" \ _ASM_EXTABLE_UACCESS_ERR_ZERO(1b, 2b, %w0, %w1) \ : "+r" (err), "=&r" (x) \ : "r" (addr)) #define __raw_get_mem(ldr, x, ptr, err) \ do { \ unsigned long __gu_val; \ switch (sizeof(*(ptr))) { \ case 1: \ __get_mem_asm(ldr "b", "%w", __gu_val, (ptr), (err)); \ break; \ case 2: \ __get_mem_asm(ldr "h", "%w", __gu_val, (ptr), (err)); \ break; \ case 4: \ __get_mem_asm(ldr, "%w", __gu_val, (ptr), (err)); \ break; \ case 8: \ __get_mem_asm(ldr, "%x", __gu_val, (ptr), (err)); \ break; \ default: \ BUILD_BUG(); \ } \ (x) = (__force __typeof__(*(ptr)))__gu_val; \ } while (0) /* * We must not call into the scheduler between uaccess_ttbr0_enable() and * uaccess_ttbr0_disable(). As `x` and `ptr` could contain blocking functions, * we must evaluate these outside of the critical section. */ #define __raw_get_user(x, ptr, err) \ do { \ __typeof__(*(ptr)) __user *__rgu_ptr = (ptr); \ __typeof__(x) __rgu_val; \ __chk_user_ptr(ptr); \ \ uaccess_ttbr0_enable(); \ __raw_get_mem("ldtr", __rgu_val, __rgu_ptr, err); \ uaccess_ttbr0_disable(); \ \ (x) = __rgu_val; \ } while (0) #define __get_user_error(x, ptr, err) \ do { \ __typeof__(*(ptr)) __user *__p = (ptr); \ might_fault(); \ if (access_ok(__p, sizeof(*__p))) { \ __p = uaccess_mask_ptr(__p); \ __raw_get_user((x), __p, (err)); \ } else { \ (x) = (__force __typeof__(x))0; (err) = -EFAULT; \ } \ } while (0) #define __get_user(x, ptr) \ ({ \ int __gu_err = 0; \ __get_user_error((x), (ptr), __gu_err); \ __gu_err; \ }) #define get_user __get_user /* * We must not call into the scheduler between __uaccess_enable_tco_async() and * __uaccess_disable_tco_async(). As `dst` and `src` may contain blocking * functions, we must evaluate these outside of the critical section. */ #define __get_kernel_nofault(dst, src, type, err_label) \ do { \ __typeof__(dst) __gkn_dst = (dst); \ __typeof__(src) __gkn_src = (src); \ int __gkn_err = 0; \ \ __uaccess_enable_tco_async(); \ __raw_get_mem("ldr", *((type *)(__gkn_dst)), \ (__force type *)(__gkn_src), __gkn_err); \ __uaccess_disable_tco_async(); \ \ if (unlikely(__gkn_err)) \ goto err_label; \ } while (0) #define __put_mem_asm(store, reg, x, addr, err) \ asm volatile( \ "1: " store " " reg "1, [%2]\n" \ "2:\n" \ _ASM_EXTABLE_UACCESS_ERR(1b, 2b, %w0) \ : "+r" (err) \ : "r" (x), "r" (addr)) #define __raw_put_mem(str, x, ptr, err) \ do { \ __typeof__(*(ptr)) __pu_val = (x); \ switch (sizeof(*(ptr))) { \ case 1: \ __put_mem_asm(str "b", "%w", __pu_val, (ptr), (err)); \ break; \ case 2: \ __put_mem_asm(str "h", "%w", __pu_val, (ptr), (err)); \ break; \ case 4: \ __put_mem_asm(str, "%w", __pu_val, (ptr), (err)); \ break; \ case 8: \ __put_mem_asm(str, "%x", __pu_val, (ptr), (err)); \ break; \ default: \ BUILD_BUG(); \ } \ } while (0) /* * We must not call into the scheduler between uaccess_ttbr0_enable() and * uaccess_ttbr0_disable(). As `x` and `ptr` could contain blocking functions, * we must evaluate these outside of the critical section. */ #define __raw_put_user(x, ptr, err) \ do { \ __typeof__(*(ptr)) __user *__rpu_ptr = (ptr); \ __typeof__(*(ptr)) __rpu_val = (x); \ __chk_user_ptr(__rpu_ptr); \ \ uaccess_ttbr0_enable(); \ __raw_put_mem("sttr", __rpu_val, __rpu_ptr, err); \ uaccess_ttbr0_disable(); \ } while (0) #define __put_user_error(x, ptr, err) \ do { \ __typeof__(*(ptr)) __user *__p = (ptr); \ might_fault(); \ if (access_ok(__p, sizeof(*__p))) { \ __p = uaccess_mask_ptr(__p); \ __raw_put_user((x), __p, (err)); \ } else { \ (err) = -EFAULT; \ } \ } while (0) #define __put_user(x, ptr) \ ({ \ int __pu_err = 0; \ __put_user_error((x), (ptr), __pu_err); \ __pu_err; \ }) #define put_user __put_user /* * We must not call into the scheduler between __uaccess_enable_tco_async() and * __uaccess_disable_tco_async(). As `dst` and `src` may contain blocking * functions, we must evaluate these outside of the critical section. */ #define __put_kernel_nofault(dst, src, type, err_label) \ do { \ __typeof__(dst) __pkn_dst = (dst); \ __typeof__(src) __pkn_src = (src); \ int __pkn_err = 0; \ \ __uaccess_enable_tco_async(); \ __raw_put_mem("str", *((type *)(__pkn_src)), \ (__force type *)(__pkn_dst), __pkn_err); \ __uaccess_disable_tco_async(); \ \ if (unlikely(__pkn_err)) \ goto err_label; \ } while(0) extern unsigned long __must_check __arch_copy_from_user(void *to, const void __user *from, unsigned long n); #define raw_copy_from_user(to, from, n) \ ({ \ unsigned long __acfu_ret; \ uaccess_ttbr0_enable(); \ __acfu_ret = __arch_copy_from_user((to), \ __uaccess_mask_ptr(from), (n)); \ uaccess_ttbr0_disable(); \ __acfu_ret; \ }) extern unsigned long __must_check __arch_copy_to_user(void __user *to, const void *from, unsigned long n); #define raw_copy_to_user(to, from, n) \ ({ \ unsigned long __actu_ret; \ uaccess_ttbr0_enable(); \ __actu_ret = __arch_copy_to_user(__uaccess_mask_ptr(to), \ (from), (n)); \ uaccess_ttbr0_disable(); \ __actu_ret; \ }) #define INLINE_COPY_TO_USER #define INLINE_COPY_FROM_USER extern unsigned long __must_check __arch_clear_user(void __user *to, unsigned long n); static inline unsigned long __must_check __clear_user(void __user *to, unsigned long n) { if (access_ok(to, n)) { uaccess_ttbr0_enable(); n = __arch_clear_user(__uaccess_mask_ptr(to), n); uaccess_ttbr0_disable(); } return n; } #define clear_user __clear_user extern long strncpy_from_user(char *dest, const char __user *src, long count); extern __must_check long strnlen_user(const char __user *str, long n); #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE struct page; void memcpy_page_flushcache(char *to, struct page *page, size_t offset, size_t len); extern unsigned long __must_check __copy_user_flushcache(void *to, const void __user *from, unsigned long n); static inline int __copy_from_user_flushcache(void *dst, const void __user *src, unsigned size) { kasan_check_write(dst, size); return __copy_user_flushcache(dst, __uaccess_mask_ptr(src), size); } #endif #endif /* __ASM_UACCESS_H */