// SPDX-License-Identifier: GPL-2.0-only /* * alternative runtime patching * inspired by the x86 version * * Copyright (C) 2014 ARM Ltd. */ #define pr_fmt(fmt) "alternatives: " fmt #include #include #include #include #include #include #include #include #include #include #include #define __ALT_PTR(a, f) ((void *)&(a)->f + (a)->f) #define ALT_ORIG_PTR(a) __ALT_PTR(a, orig_offset) #define ALT_REPL_PTR(a) __ALT_PTR(a, alt_offset) #define ALT_CAP(a) ((a)->cpucap & ~ARM64_CB_BIT) #define ALT_HAS_CB(a) ((a)->cpucap & ARM64_CB_BIT) /* Volatile, as we may be patching the guts of READ_ONCE() */ static volatile int all_alternatives_applied; static DECLARE_BITMAP(applied_alternatives, ARM64_NCAPS); struct alt_region { struct alt_instr *begin; struct alt_instr *end; }; bool alternative_is_applied(u16 cpucap) { if (WARN_ON(cpucap >= ARM64_NCAPS)) return false; return test_bit(cpucap, applied_alternatives); } /* * Check if the target PC is within an alternative block. */ static __always_inline bool branch_insn_requires_update(struct alt_instr *alt, unsigned long pc) { unsigned long replptr = (unsigned long)ALT_REPL_PTR(alt); return !(pc >= replptr && pc <= (replptr + alt->alt_len)); } #define align_down(x, a) ((unsigned long)(x) & ~(((unsigned long)(a)) - 1)) static __always_inline u32 get_alt_insn(struct alt_instr *alt, __le32 *insnptr, __le32 *altinsnptr) { u32 insn; insn = le32_to_cpu(*altinsnptr); if (aarch64_insn_is_branch_imm(insn)) { s32 offset = aarch64_get_branch_offset(insn); unsigned long target; target = (unsigned long)altinsnptr + offset; /* * If we're branching inside the alternate sequence, * do not rewrite the instruction, as it is already * correct. Otherwise, generate the new instruction. */ if (branch_insn_requires_update(alt, target)) { offset = target - (unsigned long)insnptr; insn = aarch64_set_branch_offset(insn, offset); } } else if (aarch64_insn_is_adrp(insn)) { s32 orig_offset, new_offset; unsigned long target; /* * If we're replacing an adrp instruction, which uses PC-relative * immediate addressing, adjust the offset to reflect the new * PC. adrp operates on 4K aligned addresses. */ orig_offset = aarch64_insn_adrp_get_offset(insn); target = align_down(altinsnptr, SZ_4K) + orig_offset; new_offset = target - align_down(insnptr, SZ_4K); insn = aarch64_insn_adrp_set_offset(insn, new_offset); } else if (aarch64_insn_uses_literal(insn)) { /* * Disallow patching unhandled instructions using PC relative * literal addresses */ BUG(); } return insn; } static noinstr void patch_alternative(struct alt_instr *alt, __le32 *origptr, __le32 *updptr, int nr_inst) { __le32 *replptr; int i; replptr = ALT_REPL_PTR(alt); for (i = 0; i < nr_inst; i++) { u32 insn; insn = get_alt_insn(alt, origptr + i, replptr + i); updptr[i] = cpu_to_le32(insn); } } /* * We provide our own, private D-cache cleaning function so that we don't * accidentally call into the cache.S code, which is patched by us at * runtime. */ static noinstr void clean_dcache_range_nopatch(u64 start, u64 end) { u64 cur, d_size, ctr_el0; ctr_el0 = arm64_ftr_reg_ctrel0.sys_val; d_size = 4 << cpuid_feature_extract_unsigned_field(ctr_el0, CTR_EL0_DminLine_SHIFT); cur = start & ~(d_size - 1); do { /* * We must clean+invalidate to the PoC in order to avoid * Cortex-A53 errata 826319, 827319, 824069 and 819472 * (this corresponds to ARM64_WORKAROUND_CLEAN_CACHE) */ asm volatile("dc civac, %0" : : "r" (cur) : "memory"); } while (cur += d_size, cur < end); } static void __apply_alternatives(const struct alt_region *region, bool is_module, unsigned long *cpucap_mask) { struct alt_instr *alt; __le32 *origptr, *updptr; alternative_cb_t alt_cb; for (alt = region->begin; alt < region->end; alt++) { int nr_inst; int cap = ALT_CAP(alt); if (!test_bit(cap, cpucap_mask)) continue; if (!cpus_have_cap(cap)) continue; if (ALT_HAS_CB(alt)) BUG_ON(alt->alt_len != 0); else BUG_ON(alt->alt_len != alt->orig_len); origptr = ALT_ORIG_PTR(alt); updptr = is_module ? origptr : lm_alias(origptr); nr_inst = alt->orig_len / AARCH64_INSN_SIZE; if (ALT_HAS_CB(alt)) alt_cb = ALT_REPL_PTR(alt); else alt_cb = patch_alternative; alt_cb(alt, origptr, updptr, nr_inst); if (!is_module) { clean_dcache_range_nopatch((u64)origptr, (u64)(origptr + nr_inst)); } } /* * The core module code takes care of cache maintenance in * flush_module_icache(). */ if (!is_module) { dsb(ish); icache_inval_all_pou(); isb(); bitmap_or(applied_alternatives, applied_alternatives, cpucap_mask, ARM64_NCAPS); bitmap_and(applied_alternatives, applied_alternatives, system_cpucaps, ARM64_NCAPS); } } static void __init apply_alternatives_vdso(void) { struct alt_region region; const struct elf64_hdr *hdr; const struct elf64_shdr *shdr; const struct elf64_shdr *alt; DECLARE_BITMAP(all_capabilities, ARM64_NCAPS); bitmap_fill(all_capabilities, ARM64_NCAPS); hdr = (struct elf64_hdr *)vdso_start; shdr = (void *)hdr + hdr->e_shoff; alt = find_section(hdr, shdr, ".altinstructions"); if (!alt) return; region = (struct alt_region){ .begin = (void *)hdr + alt->sh_offset, .end = (void *)hdr + alt->sh_offset + alt->sh_size, }; __apply_alternatives(®ion, false, &all_capabilities[0]); } static const struct alt_region kernel_alternatives __initconst = { .begin = (struct alt_instr *)__alt_instructions, .end = (struct alt_instr *)__alt_instructions_end, }; /* * We might be patching the stop_machine state machine, so implement a * really simple polling protocol here. */ static int __init __apply_alternatives_multi_stop(void *unused) { /* We always have a CPU 0 at this point (__init) */ if (smp_processor_id()) { while (!all_alternatives_applied) cpu_relax(); isb(); } else { DECLARE_BITMAP(remaining_capabilities, ARM64_NCAPS); bitmap_complement(remaining_capabilities, boot_cpucaps, ARM64_NCAPS); BUG_ON(all_alternatives_applied); __apply_alternatives(&kernel_alternatives, false, remaining_capabilities); /* Barriers provided by the cache flushing */ all_alternatives_applied = 1; } return 0; } void __init apply_alternatives_all(void) { pr_info("applying system-wide alternatives\n"); apply_alternatives_vdso(); /* better not try code patching on a live SMP system */ stop_machine(__apply_alternatives_multi_stop, NULL, cpu_online_mask); } /* * This is called very early in the boot process (directly after we run * a feature detect on the boot CPU). No need to worry about other CPUs * here. */ void __init apply_boot_alternatives(void) { /* If called on non-boot cpu things could go wrong */ WARN_ON(smp_processor_id() != 0); pr_info("applying boot alternatives\n"); __apply_alternatives(&kernel_alternatives, false, &boot_cpucaps[0]); } #ifdef CONFIG_MODULES void apply_alternatives_module(void *start, size_t length) { struct alt_region region = { .begin = start, .end = start + length, }; DECLARE_BITMAP(all_capabilities, ARM64_NCAPS); bitmap_fill(all_capabilities, ARM64_NCAPS); __apply_alternatives(®ion, true, &all_capabilities[0]); } #endif noinstr void alt_cb_patch_nops(struct alt_instr *alt, __le32 *origptr, __le32 *updptr, int nr_inst) { for (int i = 0; i < nr_inst; i++) updptr[i] = cpu_to_le32(aarch64_insn_gen_nop()); } EXPORT_SYMBOL(alt_cb_patch_nops);