/* * Copyright (C) 2014-2017 Linaro Ltd. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include struct plt_entry { /* * A program that conforms to the AArch64 Procedure Call Standard * (AAPCS64) must assume that a veneer that alters IP0 (x16) and/or * IP1 (x17) may be inserted at any branch instruction that is * exposed to a relocation that supports long branches. Since that * is exactly what we are dealing with here, we are free to use x16 * as a scratch register in the PLT veneers. */ __le32 mov0; /* movn x16, #0x.... */ __le32 mov1; /* movk x16, #0x...., lsl #16 */ __le32 mov2; /* movk x16, #0x...., lsl #32 */ __le32 br; /* br x16 */ }; static bool in_init(const struct module *mod, void *loc) { return (u64)loc - (u64)mod->init_layout.base < mod->init_layout.size; } u64 module_emit_plt_entry(struct module *mod, void *loc, const Elf64_Rela *rela, Elf64_Sym *sym) { struct mod_plt_sec *pltsec = !in_init(mod, loc) ? &mod->arch.core : &mod->arch.init; struct plt_entry *plt = (struct plt_entry *)pltsec->plt->sh_addr; int i = pltsec->plt_num_entries; u64 val = sym->st_value + rela->r_addend; /* * MOVK/MOVN/MOVZ opcode: * +--------+------------+--------+-----------+-------------+---------+ * | sf[31] | opc[30:29] | 100101 | hw[22:21] | imm16[20:5] | Rd[4:0] | * +--------+------------+--------+-----------+-------------+---------+ * * Rd := 0x10 (x16) * hw := 0b00 (no shift), 0b01 (lsl #16), 0b10 (lsl #32) * opc := 0b11 (MOVK), 0b00 (MOVN), 0b10 (MOVZ) * sf := 1 (64-bit variant) */ plt[i] = (struct plt_entry){ cpu_to_le32(0x92800010 | (((~val ) & 0xffff)) << 5), cpu_to_le32(0xf2a00010 | ((( val >> 16) & 0xffff)) << 5), cpu_to_le32(0xf2c00010 | ((( val >> 32) & 0xffff)) << 5), cpu_to_le32(0xd61f0200) }; /* * Check if the entry we just created is a duplicate. Given that the * relocations are sorted, this will be the last entry we allocated. * (if one exists). */ if (i > 0 && plt[i].mov0 == plt[i - 1].mov0 && plt[i].mov1 == plt[i - 1].mov1 && plt[i].mov2 == plt[i - 1].mov2) return (u64)&plt[i - 1]; pltsec->plt_num_entries++; BUG_ON(pltsec->plt_num_entries > pltsec->plt_max_entries); return (u64)&plt[i]; } #define cmp_3way(a,b) ((a) < (b) ? -1 : (a) > (b)) static int cmp_rela(const void *a, const void *b) { const Elf64_Rela *x = a, *y = b; int i; /* sort by type, symbol index and addend */ i = cmp_3way(ELF64_R_TYPE(x->r_info), ELF64_R_TYPE(y->r_info)); if (i == 0) i = cmp_3way(ELF64_R_SYM(x->r_info), ELF64_R_SYM(y->r_info)); if (i == 0) i = cmp_3way(x->r_addend, y->r_addend); return i; } static bool duplicate_rel(const Elf64_Rela *rela, int num) { /* * Entries are sorted by type, symbol index and addend. That means * that, if a duplicate entry exists, it must be in the preceding * slot. */ return num > 0 && cmp_rela(rela + num, rela + num - 1) == 0; } static unsigned int count_plts(Elf64_Sym *syms, Elf64_Rela *rela, int num, Elf64_Word dstidx) { unsigned int ret = 0; Elf64_Sym *s; int i; for (i = 0; i < num; i++) { switch (ELF64_R_TYPE(rela[i].r_info)) { case R_AARCH64_JUMP26: case R_AARCH64_CALL26: /* * We only have to consider branch targets that resolve * to symbols that are defined in a different section. * This is not simply a heuristic, it is a fundamental * limitation, since there is no guaranteed way to emit * PLT entries sufficiently close to the branch if the * section size exceeds the range of a branch * instruction. So ignore relocations against defined * symbols if they live in the same section as the * relocation target. */ s = syms + ELF64_R_SYM(rela[i].r_info); if (s->st_shndx == dstidx) break; /* * Jump relocations with non-zero addends against * undefined symbols are supported by the ELF spec, but * do not occur in practice (e.g., 'jump n bytes past * the entry point of undefined function symbol f'). * So we need to support them, but there is no need to * take them into consideration when trying to optimize * this code. So let's only check for duplicates when * the addend is zero: this allows us to record the PLT * entry address in the symbol table itself, rather than * having to search the list for duplicates each time we * emit one. */ if (rela[i].r_addend != 0 || !duplicate_rel(rela, i)) ret++; break; } } return ret; } int module_frob_arch_sections(Elf_Ehdr *ehdr, Elf_Shdr *sechdrs, char *secstrings, struct module *mod) { unsigned long core_plts = 0; unsigned long init_plts = 0; Elf64_Sym *syms = NULL; int i; /* * Find the empty .plt section so we can expand it to store the PLT * entries. Record the symtab address as well. */ for (i = 0; i < ehdr->e_shnum; i++) { if (!strcmp(secstrings + sechdrs[i].sh_name, ".plt")) mod->arch.core.plt = sechdrs + i; else if (!strcmp(secstrings + sechdrs[i].sh_name, ".init.plt")) mod->arch.init.plt = sechdrs + i; else if (sechdrs[i].sh_type == SHT_SYMTAB) syms = (Elf64_Sym *)sechdrs[i].sh_addr; } if (!mod->arch.core.plt || !mod->arch.init.plt) { pr_err("%s: module PLT section(s) missing\n", mod->name); return -ENOEXEC; } if (!syms) { pr_err("%s: module symtab section missing\n", mod->name); return -ENOEXEC; } for (i = 0; i < ehdr->e_shnum; i++) { Elf64_Rela *rels = (void *)ehdr + sechdrs[i].sh_offset; int numrels = sechdrs[i].sh_size / sizeof(Elf64_Rela); Elf64_Shdr *dstsec = sechdrs + sechdrs[i].sh_info; if (sechdrs[i].sh_type != SHT_RELA) continue; /* ignore relocations that operate on non-exec sections */ if (!(dstsec->sh_flags & SHF_EXECINSTR)) continue; /* sort by type, symbol index and addend */ sort(rels, numrels, sizeof(Elf64_Rela), cmp_rela, NULL); if (strncmp(secstrings + dstsec->sh_name, ".init", 5) != 0) core_plts += count_plts(syms, rels, numrels, sechdrs[i].sh_info); else init_plts += count_plts(syms, rels, numrels, sechdrs[i].sh_info); } mod->arch.core.plt->sh_type = SHT_NOBITS; mod->arch.core.plt->sh_flags = SHF_EXECINSTR | SHF_ALLOC; mod->arch.core.plt->sh_addralign = L1_CACHE_BYTES; mod->arch.core.plt->sh_size = (core_plts + 1) * sizeof(struct plt_entry); mod->arch.core.plt_num_entries = 0; mod->arch.core.plt_max_entries = core_plts; mod->arch.init.plt->sh_type = SHT_NOBITS; mod->arch.init.plt->sh_flags = SHF_EXECINSTR | SHF_ALLOC; mod->arch.init.plt->sh_addralign = L1_CACHE_BYTES; mod->arch.init.plt->sh_size = (init_plts + 1) * sizeof(struct plt_entry); mod->arch.init.plt_num_entries = 0; mod->arch.init.plt_max_entries = init_plts; return 0; }