// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2015 - ARM Ltd * Author: Marc Zyngier */ #ifndef __ARM64_KVM_HYP_SWITCH_H__ #define __ARM64_KVM_HYP_SWITCH_H__ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct kvm_exception_table_entry { int insn, fixup; }; extern struct kvm_exception_table_entry __start___kvm_ex_table; extern struct kvm_exception_table_entry __stop___kvm_ex_table; /* Check whether the FP regs were dirtied while in the host-side run loop: */ static inline bool update_fp_enabled(struct kvm_vcpu *vcpu) { /* * When the system doesn't support FP/SIMD, we cannot rely on * the _TIF_FOREIGN_FPSTATE flag. However, we always inject an * abort on the very first access to FP and thus we should never * see KVM_ARM64_FP_ENABLED. For added safety, make sure we always * trap the accesses. */ if (!system_supports_fpsimd() || vcpu->arch.host_thread_info->flags & _TIF_FOREIGN_FPSTATE) vcpu->arch.flags &= ~(KVM_ARM64_FP_ENABLED | KVM_ARM64_FP_HOST); return !!(vcpu->arch.flags & KVM_ARM64_FP_ENABLED); } /* Save the 32-bit only FPSIMD system register state */ static inline void __fpsimd_save_fpexc32(struct kvm_vcpu *vcpu) { if (!vcpu_el1_is_32bit(vcpu)) return; __vcpu_sys_reg(vcpu, FPEXC32_EL2) = read_sysreg(fpexc32_el2); } static inline void __activate_traps_fpsimd32(struct kvm_vcpu *vcpu) { /* * We are about to set CPTR_EL2.TFP to trap all floating point * register accesses to EL2, however, the ARM ARM clearly states that * traps are only taken to EL2 if the operation would not otherwise * trap to EL1. Therefore, always make sure that for 32-bit guests, * we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit. * If FP/ASIMD is not implemented, FPEXC is UNDEFINED and any access to * it will cause an exception. */ if (vcpu_el1_is_32bit(vcpu) && system_supports_fpsimd()) { write_sysreg(1 << 30, fpexc32_el2); isb(); } } static inline void __activate_traps_common(struct kvm_vcpu *vcpu) { /* Trap on AArch32 cp15 c15 (impdef sysregs) accesses (EL1 or EL0) */ write_sysreg(1 << 15, hstr_el2); /* * Make sure we trap PMU access from EL0 to EL2. Also sanitize * PMSELR_EL0 to make sure it never contains the cycle * counter, which could make a PMXEVCNTR_EL0 access UNDEF at * EL1 instead of being trapped to EL2. */ if (kvm_arm_support_pmu_v3()) { write_sysreg(0, pmselr_el0); write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0); } vcpu->arch.mdcr_el2_host = read_sysreg(mdcr_el2); write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2); } static inline void __deactivate_traps_common(struct kvm_vcpu *vcpu) { write_sysreg(vcpu->arch.mdcr_el2_host, mdcr_el2); write_sysreg(0, hstr_el2); if (kvm_arm_support_pmu_v3()) write_sysreg(0, pmuserenr_el0); } static inline void ___activate_traps(struct kvm_vcpu *vcpu) { u64 hcr = vcpu->arch.hcr_el2; if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM)) hcr |= HCR_TVM; write_sysreg(hcr, hcr_el2); if (cpus_have_final_cap(ARM64_HAS_RAS_EXTN) && (hcr & HCR_VSE)) write_sysreg_s(vcpu->arch.vsesr_el2, SYS_VSESR_EL2); } static inline void ___deactivate_traps(struct kvm_vcpu *vcpu) { /* * If we pended a virtual abort, preserve it until it gets * cleared. See D1.14.3 (Virtual Interrupts) for details, but * the crucial bit is "On taking a vSError interrupt, * HCR_EL2.VSE is cleared to 0." */ if (vcpu->arch.hcr_el2 & HCR_VSE) { vcpu->arch.hcr_el2 &= ~HCR_VSE; vcpu->arch.hcr_el2 |= read_sysreg(hcr_el2) & HCR_VSE; } } static inline bool __populate_fault_info(struct kvm_vcpu *vcpu) { return __get_fault_info(vcpu->arch.fault.esr_el2, &vcpu->arch.fault); } static inline void __hyp_sve_save_host(struct kvm_vcpu *vcpu) { struct thread_struct *thread; thread = container_of(vcpu->arch.host_fpsimd_state, struct thread_struct, uw.fpsimd_state); __sve_save_state(sve_pffr(thread), &vcpu->arch.host_fpsimd_state->fpsr); } static inline void __hyp_sve_restore_guest(struct kvm_vcpu *vcpu) { sve_cond_update_zcr_vq(vcpu_sve_max_vq(vcpu) - 1, SYS_ZCR_EL2); __sve_restore_state(vcpu_sve_pffr(vcpu), &vcpu->arch.ctxt.fp_regs.fpsr); write_sysreg_el1(__vcpu_sys_reg(vcpu, ZCR_EL1), SYS_ZCR); } /* * We trap the first access to the FP/SIMD to save the host context and * restore the guest context lazily. * If FP/SIMD is not implemented, handle the trap and inject an undefined * instruction exception to the guest. Similarly for trapped SVE accesses. */ static bool kvm_hyp_handle_fpsimd(struct kvm_vcpu *vcpu, u64 *exit_code) { bool sve_guest, sve_host; u8 esr_ec; u64 reg; if (!system_supports_fpsimd()) return false; if (system_supports_sve()) { sve_guest = vcpu_has_sve(vcpu); sve_host = vcpu->arch.flags & KVM_ARM64_HOST_SVE_IN_USE; } else { sve_guest = false; sve_host = false; } esr_ec = kvm_vcpu_trap_get_class(vcpu); /* Don't handle SVE traps for non-SVE vcpus here: */ if (!sve_guest && esr_ec != ESR_ELx_EC_FP_ASIMD) return false; /* Valid trap. Switch the context: */ if (has_vhe()) { reg = CPACR_EL1_FPEN; if (sve_guest) reg |= CPACR_EL1_ZEN; sysreg_clear_set(cpacr_el1, 0, reg); } else { reg = CPTR_EL2_TFP; if (sve_guest) reg |= CPTR_EL2_TZ; sysreg_clear_set(cptr_el2, reg, 0); } isb(); if (vcpu->arch.flags & KVM_ARM64_FP_HOST) { if (sve_host) __hyp_sve_save_host(vcpu); else __fpsimd_save_state(vcpu->arch.host_fpsimd_state); vcpu->arch.flags &= ~KVM_ARM64_FP_HOST; } if (sve_guest) __hyp_sve_restore_guest(vcpu); else __fpsimd_restore_state(&vcpu->arch.ctxt.fp_regs); /* Skip restoring fpexc32 for AArch64 guests */ if (!(read_sysreg(hcr_el2) & HCR_RW)) write_sysreg(__vcpu_sys_reg(vcpu, FPEXC32_EL2), fpexc32_el2); vcpu->arch.flags |= KVM_ARM64_FP_ENABLED; return true; } static inline bool handle_tx2_tvm(struct kvm_vcpu *vcpu) { u32 sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu)); int rt = kvm_vcpu_sys_get_rt(vcpu); u64 val = vcpu_get_reg(vcpu, rt); /* * The normal sysreg handling code expects to see the traps, * let's not do anything here. */ if (vcpu->arch.hcr_el2 & HCR_TVM) return false; switch (sysreg) { case SYS_SCTLR_EL1: write_sysreg_el1(val, SYS_SCTLR); break; case SYS_TTBR0_EL1: write_sysreg_el1(val, SYS_TTBR0); break; case SYS_TTBR1_EL1: write_sysreg_el1(val, SYS_TTBR1); break; case SYS_TCR_EL1: write_sysreg_el1(val, SYS_TCR); break; case SYS_ESR_EL1: write_sysreg_el1(val, SYS_ESR); break; case SYS_FAR_EL1: write_sysreg_el1(val, SYS_FAR); break; case SYS_AFSR0_EL1: write_sysreg_el1(val, SYS_AFSR0); break; case SYS_AFSR1_EL1: write_sysreg_el1(val, SYS_AFSR1); break; case SYS_MAIR_EL1: write_sysreg_el1(val, SYS_MAIR); break; case SYS_AMAIR_EL1: write_sysreg_el1(val, SYS_AMAIR); break; case SYS_CONTEXTIDR_EL1: write_sysreg_el1(val, SYS_CONTEXTIDR); break; default: return false; } __kvm_skip_instr(vcpu); return true; } static inline bool esr_is_ptrauth_trap(u32 esr) { switch (esr_sys64_to_sysreg(esr)) { case SYS_APIAKEYLO_EL1: case SYS_APIAKEYHI_EL1: case SYS_APIBKEYLO_EL1: case SYS_APIBKEYHI_EL1: case SYS_APDAKEYLO_EL1: case SYS_APDAKEYHI_EL1: case SYS_APDBKEYLO_EL1: case SYS_APDBKEYHI_EL1: case SYS_APGAKEYLO_EL1: case SYS_APGAKEYHI_EL1: return true; } return false; } #define __ptrauth_save_key(ctxt, key) \ do { \ u64 __val; \ __val = read_sysreg_s(SYS_ ## key ## KEYLO_EL1); \ ctxt_sys_reg(ctxt, key ## KEYLO_EL1) = __val; \ __val = read_sysreg_s(SYS_ ## key ## KEYHI_EL1); \ ctxt_sys_reg(ctxt, key ## KEYHI_EL1) = __val; \ } while(0) DECLARE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt); static bool kvm_hyp_handle_ptrauth(struct kvm_vcpu *vcpu, u64 *exit_code) { struct kvm_cpu_context *ctxt; u64 val; if (!vcpu_has_ptrauth(vcpu)) return false; ctxt = this_cpu_ptr(&kvm_hyp_ctxt); __ptrauth_save_key(ctxt, APIA); __ptrauth_save_key(ctxt, APIB); __ptrauth_save_key(ctxt, APDA); __ptrauth_save_key(ctxt, APDB); __ptrauth_save_key(ctxt, APGA); vcpu_ptrauth_enable(vcpu); val = read_sysreg(hcr_el2); val |= (HCR_API | HCR_APK); write_sysreg(val, hcr_el2); return true; } static bool kvm_hyp_handle_sysreg(struct kvm_vcpu *vcpu, u64 *exit_code) { if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM) && handle_tx2_tvm(vcpu)) return true; if (static_branch_unlikely(&vgic_v3_cpuif_trap) && __vgic_v3_perform_cpuif_access(vcpu) == 1) return true; if (esr_is_ptrauth_trap(kvm_vcpu_get_esr(vcpu))) return kvm_hyp_handle_ptrauth(vcpu, exit_code); return false; } static bool kvm_hyp_handle_cp15_32(struct kvm_vcpu *vcpu, u64 *exit_code) { if (static_branch_unlikely(&vgic_v3_cpuif_trap) && __vgic_v3_perform_cpuif_access(vcpu) == 1) return true; return false; } static bool kvm_hyp_handle_iabt_low(struct kvm_vcpu *vcpu, u64 *exit_code) { if (!__populate_fault_info(vcpu)) return true; return false; } static bool kvm_hyp_handle_dabt_low(struct kvm_vcpu *vcpu, u64 *exit_code) { if (!__populate_fault_info(vcpu)) return true; if (static_branch_unlikely(&vgic_v2_cpuif_trap)) { bool valid; valid = kvm_vcpu_trap_get_fault_type(vcpu) == FSC_FAULT && kvm_vcpu_dabt_isvalid(vcpu) && !kvm_vcpu_abt_issea(vcpu) && !kvm_vcpu_abt_iss1tw(vcpu); if (valid) { int ret = __vgic_v2_perform_cpuif_access(vcpu); if (ret == 1) return true; /* Promote an illegal access to an SError.*/ if (ret == -1) *exit_code = ARM_EXCEPTION_EL1_SERROR; } } return false; } typedef bool (*exit_handler_fn)(struct kvm_vcpu *, u64 *); static const exit_handler_fn *kvm_get_exit_handler_array(struct kvm_vcpu *vcpu); static void early_exit_filter(struct kvm_vcpu *vcpu, u64 *exit_code); /* * Allow the hypervisor to handle the exit with an exit handler if it has one. * * Returns true if the hypervisor handled the exit, and control should go back * to the guest, or false if it hasn't. */ static inline bool kvm_hyp_handle_exit(struct kvm_vcpu *vcpu, u64 *exit_code) { const exit_handler_fn *handlers = kvm_get_exit_handler_array(vcpu); exit_handler_fn fn; fn = handlers[kvm_vcpu_trap_get_class(vcpu)]; if (fn) return fn(vcpu, exit_code); return false; } /* * Return true when we were able to fixup the guest exit and should return to * the guest, false when we should restore the host state and return to the * main run loop. */ static inline bool fixup_guest_exit(struct kvm_vcpu *vcpu, u64 *exit_code) { /* * Save PSTATE early so that we can evaluate the vcpu mode * early on. */ vcpu->arch.ctxt.regs.pstate = read_sysreg_el2(SYS_SPSR); /* * Check whether we want to repaint the state one way or * another. */ early_exit_filter(vcpu, exit_code); if (ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ) vcpu->arch.fault.esr_el2 = read_sysreg_el2(SYS_ESR); if (ARM_SERROR_PENDING(*exit_code)) { u8 esr_ec = kvm_vcpu_trap_get_class(vcpu); /* * HVC already have an adjusted PC, which we need to * correct in order to return to after having injected * the SError. * * SMC, on the other hand, is *trapped*, meaning its * preferred return address is the SMC itself. */ if (esr_ec == ESR_ELx_EC_HVC32 || esr_ec == ESR_ELx_EC_HVC64) write_sysreg_el2(read_sysreg_el2(SYS_ELR) - 4, SYS_ELR); } /* * We're using the raw exception code in order to only process * the trap if no SError is pending. We will come back to the * same PC once the SError has been injected, and replay the * trapping instruction. */ if (*exit_code != ARM_EXCEPTION_TRAP) goto exit; /* Check if there's an exit handler and allow it to handle the exit. */ if (kvm_hyp_handle_exit(vcpu, exit_code)) goto guest; exit: /* Return to the host kernel and handle the exit */ return false; guest: /* Re-enter the guest */ asm(ALTERNATIVE("nop", "dmb sy", ARM64_WORKAROUND_1508412)); return true; } static inline void __kvm_unexpected_el2_exception(void) { extern char __guest_exit_panic[]; unsigned long addr, fixup; struct kvm_exception_table_entry *entry, *end; unsigned long elr_el2 = read_sysreg(elr_el2); entry = &__start___kvm_ex_table; end = &__stop___kvm_ex_table; while (entry < end) { addr = (unsigned long)&entry->insn + entry->insn; fixup = (unsigned long)&entry->fixup + entry->fixup; if (addr != elr_el2) { entry++; continue; } write_sysreg(fixup, elr_el2); return; } /* Trigger a panic after restoring the hyp context. */ write_sysreg(__guest_exit_panic, elr_el2); } #endif /* __ARM64_KVM_HYP_SWITCH_H__ */