// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2020 Google LLC * Author: Quentin Perret */ #include #include #include #include #include #include #include #include #include #include #include #include #define KVM_HOST_S2_FLAGS (KVM_PGTABLE_S2_NOFWB | KVM_PGTABLE_S2_IDMAP) struct host_mmu host_mmu; static struct hyp_pool host_s2_pool; static DEFINE_PER_CPU(struct pkvm_hyp_vm *, __current_vm); #define current_vm (*this_cpu_ptr(&__current_vm)) static void guest_lock_component(struct pkvm_hyp_vm *vm) { hyp_spin_lock(&vm->lock); current_vm = vm; } static void guest_unlock_component(struct pkvm_hyp_vm *vm) { current_vm = NULL; hyp_spin_unlock(&vm->lock); } static void host_lock_component(void) { hyp_spin_lock(&host_mmu.lock); } static void host_unlock_component(void) { hyp_spin_unlock(&host_mmu.lock); } static void hyp_lock_component(void) { hyp_spin_lock(&pkvm_pgd_lock); } static void hyp_unlock_component(void) { hyp_spin_unlock(&pkvm_pgd_lock); } static void *host_s2_zalloc_pages_exact(size_t size) { void *addr = hyp_alloc_pages(&host_s2_pool, get_order(size)); hyp_split_page(hyp_virt_to_page(addr)); /* * The size of concatenated PGDs is always a power of two of PAGE_SIZE, * so there should be no need to free any of the tail pages to make the * allocation exact. */ WARN_ON(size != (PAGE_SIZE << get_order(size))); return addr; } static void *host_s2_zalloc_page(void *pool) { return hyp_alloc_pages(pool, 0); } static void host_s2_get_page(void *addr) { hyp_get_page(&host_s2_pool, addr); } static void host_s2_put_page(void *addr) { hyp_put_page(&host_s2_pool, addr); } static void host_s2_free_unlinked_table(void *addr, s8 level) { kvm_pgtable_stage2_free_unlinked(&host_mmu.mm_ops, addr, level); } static int prepare_s2_pool(void *pgt_pool_base) { unsigned long nr_pages, pfn; int ret; pfn = hyp_virt_to_pfn(pgt_pool_base); nr_pages = host_s2_pgtable_pages(); ret = hyp_pool_init(&host_s2_pool, pfn, nr_pages, 0); if (ret) return ret; host_mmu.mm_ops = (struct kvm_pgtable_mm_ops) { .zalloc_pages_exact = host_s2_zalloc_pages_exact, .zalloc_page = host_s2_zalloc_page, .free_unlinked_table = host_s2_free_unlinked_table, .phys_to_virt = hyp_phys_to_virt, .virt_to_phys = hyp_virt_to_phys, .page_count = hyp_page_count, .get_page = host_s2_get_page, .put_page = host_s2_put_page, }; return 0; } static void prepare_host_vtcr(void) { u32 parange, phys_shift; /* The host stage 2 is id-mapped, so use parange for T0SZ */ parange = kvm_get_parange(id_aa64mmfr0_el1_sys_val); phys_shift = id_aa64mmfr0_parange_to_phys_shift(parange); host_mmu.arch.mmu.vtcr = kvm_get_vtcr(id_aa64mmfr0_el1_sys_val, id_aa64mmfr1_el1_sys_val, phys_shift); } static bool host_stage2_force_pte_cb(u64 addr, u64 end, enum kvm_pgtable_prot prot); int kvm_host_prepare_stage2(void *pgt_pool_base) { struct kvm_s2_mmu *mmu = &host_mmu.arch.mmu; int ret; prepare_host_vtcr(); hyp_spin_lock_init(&host_mmu.lock); mmu->arch = &host_mmu.arch; ret = prepare_s2_pool(pgt_pool_base); if (ret) return ret; ret = __kvm_pgtable_stage2_init(&host_mmu.pgt, mmu, &host_mmu.mm_ops, KVM_HOST_S2_FLAGS, host_stage2_force_pte_cb); if (ret) return ret; mmu->pgd_phys = __hyp_pa(host_mmu.pgt.pgd); mmu->pgt = &host_mmu.pgt; atomic64_set(&mmu->vmid.id, 0); return 0; } static bool guest_stage2_force_pte_cb(u64 addr, u64 end, enum kvm_pgtable_prot prot) { return true; } static void *guest_s2_zalloc_pages_exact(size_t size) { void *addr = hyp_alloc_pages(¤t_vm->pool, get_order(size)); WARN_ON(size != (PAGE_SIZE << get_order(size))); hyp_split_page(hyp_virt_to_page(addr)); return addr; } static void guest_s2_free_pages_exact(void *addr, unsigned long size) { u8 order = get_order(size); unsigned int i; for (i = 0; i < (1 << order); i++) hyp_put_page(¤t_vm->pool, addr + (i * PAGE_SIZE)); } static void *guest_s2_zalloc_page(void *mc) { struct hyp_page *p; void *addr; addr = hyp_alloc_pages(¤t_vm->pool, 0); if (addr) return addr; addr = pop_hyp_memcache(mc, hyp_phys_to_virt); if (!addr) return addr; memset(addr, 0, PAGE_SIZE); p = hyp_virt_to_page(addr); memset(p, 0, sizeof(*p)); p->refcount = 1; return addr; } static void guest_s2_get_page(void *addr) { hyp_get_page(¤t_vm->pool, addr); } static void guest_s2_put_page(void *addr) { hyp_put_page(¤t_vm->pool, addr); } static void clean_dcache_guest_page(void *va, size_t size) { __clean_dcache_guest_page(hyp_fixmap_map(__hyp_pa(va)), size); hyp_fixmap_unmap(); } static void invalidate_icache_guest_page(void *va, size_t size) { __invalidate_icache_guest_page(hyp_fixmap_map(__hyp_pa(va)), size); hyp_fixmap_unmap(); } int kvm_guest_prepare_stage2(struct pkvm_hyp_vm *vm, void *pgd) { struct kvm_s2_mmu *mmu = &vm->kvm.arch.mmu; unsigned long nr_pages; int ret; nr_pages = kvm_pgtable_stage2_pgd_size(mmu->vtcr) >> PAGE_SHIFT; ret = hyp_pool_init(&vm->pool, hyp_virt_to_pfn(pgd), nr_pages, 0); if (ret) return ret; hyp_spin_lock_init(&vm->lock); vm->mm_ops = (struct kvm_pgtable_mm_ops) { .zalloc_pages_exact = guest_s2_zalloc_pages_exact, .free_pages_exact = guest_s2_free_pages_exact, .zalloc_page = guest_s2_zalloc_page, .phys_to_virt = hyp_phys_to_virt, .virt_to_phys = hyp_virt_to_phys, .page_count = hyp_page_count, .get_page = guest_s2_get_page, .put_page = guest_s2_put_page, .dcache_clean_inval_poc = clean_dcache_guest_page, .icache_inval_pou = invalidate_icache_guest_page, }; guest_lock_component(vm); ret = __kvm_pgtable_stage2_init(mmu->pgt, mmu, &vm->mm_ops, 0, guest_stage2_force_pte_cb); guest_unlock_component(vm); if (ret) return ret; vm->kvm.arch.mmu.pgd_phys = __hyp_pa(vm->pgt.pgd); return 0; } void reclaim_guest_pages(struct pkvm_hyp_vm *vm, struct kvm_hyp_memcache *mc) { void *addr; /* Dump all pgtable pages in the hyp_pool */ guest_lock_component(vm); kvm_pgtable_stage2_destroy(&vm->pgt); vm->kvm.arch.mmu.pgd_phys = 0ULL; guest_unlock_component(vm); /* Drain the hyp_pool into the memcache */ addr = hyp_alloc_pages(&vm->pool, 0); while (addr) { memset(hyp_virt_to_page(addr), 0, sizeof(struct hyp_page)); push_hyp_memcache(mc, addr, hyp_virt_to_phys); WARN_ON(__pkvm_hyp_donate_host(hyp_virt_to_pfn(addr), 1)); addr = hyp_alloc_pages(&vm->pool, 0); } } int __pkvm_prot_finalize(void) { struct kvm_s2_mmu *mmu = &host_mmu.arch.mmu; struct kvm_nvhe_init_params *params = this_cpu_ptr(&kvm_init_params); if (params->hcr_el2 & HCR_VM) return -EPERM; params->vttbr = kvm_get_vttbr(mmu); params->vtcr = mmu->vtcr; params->hcr_el2 |= HCR_VM; /* * The CMO below not only cleans the updated params to the * PoC, but also provides the DSB that ensures ongoing * page-table walks that have started before we trapped to EL2 * have completed. */ kvm_flush_dcache_to_poc(params, sizeof(*params)); write_sysreg(params->hcr_el2, hcr_el2); __load_stage2(&host_mmu.arch.mmu, &host_mmu.arch); /* * Make sure to have an ISB before the TLB maintenance below but only * when __load_stage2() doesn't include one already. */ asm(ALTERNATIVE("isb", "nop", ARM64_WORKAROUND_SPECULATIVE_AT)); /* Invalidate stale HCR bits that may be cached in TLBs */ __tlbi(vmalls12e1); dsb(nsh); isb(); return 0; } static int host_stage2_unmap_dev_all(void) { struct kvm_pgtable *pgt = &host_mmu.pgt; struct memblock_region *reg; u64 addr = 0; int i, ret; /* Unmap all non-memory regions to recycle the pages */ for (i = 0; i < hyp_memblock_nr; i++, addr = reg->base + reg->size) { reg = &hyp_memory[i]; ret = kvm_pgtable_stage2_unmap(pgt, addr, reg->base - addr); if (ret) return ret; } return kvm_pgtable_stage2_unmap(pgt, addr, BIT(pgt->ia_bits) - addr); } struct kvm_mem_range { u64 start; u64 end; }; static struct memblock_region *find_mem_range(phys_addr_t addr, struct kvm_mem_range *range) { int cur, left = 0, right = hyp_memblock_nr; struct memblock_region *reg; phys_addr_t end; range->start = 0; range->end = ULONG_MAX; /* The list of memblock regions is sorted, binary search it */ while (left < right) { cur = (left + right) >> 1; reg = &hyp_memory[cur]; end = reg->base + reg->size; if (addr < reg->base) { right = cur; range->end = reg->base; } else if (addr >= end) { left = cur + 1; range->start = end; } else { range->start = reg->base; range->end = end; return reg; } } return NULL; } bool addr_is_memory(phys_addr_t phys) { struct kvm_mem_range range; return !!find_mem_range(phys, &range); } static bool addr_is_allowed_memory(phys_addr_t phys) { struct memblock_region *reg; struct kvm_mem_range range; reg = find_mem_range(phys, &range); return reg && !(reg->flags & MEMBLOCK_NOMAP); } static bool is_in_mem_range(u64 addr, struct kvm_mem_range *range) { return range->start <= addr && addr < range->end; } static bool range_is_memory(u64 start, u64 end) { struct kvm_mem_range r; if (!find_mem_range(start, &r)) return false; return is_in_mem_range(end - 1, &r); } static inline int __host_stage2_idmap(u64 start, u64 end, enum kvm_pgtable_prot prot) { return kvm_pgtable_stage2_map(&host_mmu.pgt, start, end - start, start, prot, &host_s2_pool, 0); } /* * The pool has been provided with enough pages to cover all of memory with * page granularity, but it is difficult to know how much of the MMIO range * we will need to cover upfront, so we may need to 'recycle' the pages if we * run out. */ #define host_stage2_try(fn, ...) \ ({ \ int __ret; \ hyp_assert_lock_held(&host_mmu.lock); \ __ret = fn(__VA_ARGS__); \ if (__ret == -ENOMEM) { \ __ret = host_stage2_unmap_dev_all(); \ if (!__ret) \ __ret = fn(__VA_ARGS__); \ } \ __ret; \ }) static inline bool range_included(struct kvm_mem_range *child, struct kvm_mem_range *parent) { return parent->start <= child->start && child->end <= parent->end; } static int host_stage2_adjust_range(u64 addr, struct kvm_mem_range *range) { struct kvm_mem_range cur; kvm_pte_t pte; s8 level; int ret; hyp_assert_lock_held(&host_mmu.lock); ret = kvm_pgtable_get_leaf(&host_mmu.pgt, addr, &pte, &level); if (ret) return ret; if (kvm_pte_valid(pte)) return -EAGAIN; if (pte) return -EPERM; do { u64 granule = kvm_granule_size(level); cur.start = ALIGN_DOWN(addr, granule); cur.end = cur.start + granule; level++; } while ((level <= KVM_PGTABLE_LAST_LEVEL) && !(kvm_level_supports_block_mapping(level) && range_included(&cur, range))); *range = cur; return 0; } int host_stage2_idmap_locked(phys_addr_t addr, u64 size, enum kvm_pgtable_prot prot) { return host_stage2_try(__host_stage2_idmap, addr, addr + size, prot); } int host_stage2_set_owner_locked(phys_addr_t addr, u64 size, u8 owner_id) { return host_stage2_try(kvm_pgtable_stage2_set_owner, &host_mmu.pgt, addr, size, &host_s2_pool, owner_id); } static bool host_stage2_force_pte_cb(u64 addr, u64 end, enum kvm_pgtable_prot prot) { /* * Block mappings must be used with care in the host stage-2 as a * kvm_pgtable_stage2_map() operation targeting a page in the range of * an existing block will delete the block under the assumption that * mappings in the rest of the block range can always be rebuilt lazily. * That assumption is correct for the host stage-2 with RWX mappings * targeting memory or RW mappings targeting MMIO ranges (see * host_stage2_idmap() below which implements some of the host memory * abort logic). However, this is not safe for any other mappings where * the host stage-2 page-table is in fact the only place where this * state is stored. In all those cases, it is safer to use page-level * mappings, hence avoiding to lose the state because of side-effects in * kvm_pgtable_stage2_map(). */ if (range_is_memory(addr, end)) return prot != PKVM_HOST_MEM_PROT; else return prot != PKVM_HOST_MMIO_PROT; } static int host_stage2_idmap(u64 addr) { struct kvm_mem_range range; bool is_memory = !!find_mem_range(addr, &range); enum kvm_pgtable_prot prot; int ret; prot = is_memory ? PKVM_HOST_MEM_PROT : PKVM_HOST_MMIO_PROT; host_lock_component(); ret = host_stage2_adjust_range(addr, &range); if (ret) goto unlock; ret = host_stage2_idmap_locked(range.start, range.end - range.start, prot); unlock: host_unlock_component(); return ret; } void handle_host_mem_abort(struct kvm_cpu_context *host_ctxt) { struct kvm_vcpu_fault_info fault; u64 esr, addr; int ret = 0; esr = read_sysreg_el2(SYS_ESR); BUG_ON(!__get_fault_info(esr, &fault)); addr = (fault.hpfar_el2 & HPFAR_MASK) << 8; ret = host_stage2_idmap(addr); BUG_ON(ret && ret != -EAGAIN); } struct pkvm_mem_transition { u64 nr_pages; struct { enum pkvm_component_id id; /* Address in the initiator's address space */ u64 addr; union { struct { /* Address in the completer's address space */ u64 completer_addr; } host; struct { u64 completer_addr; } hyp; }; } initiator; struct { enum pkvm_component_id id; } completer; }; struct pkvm_mem_share { const struct pkvm_mem_transition tx; const enum kvm_pgtable_prot completer_prot; }; struct pkvm_mem_donation { const struct pkvm_mem_transition tx; }; struct check_walk_data { enum pkvm_page_state desired; enum pkvm_page_state (*get_page_state)(kvm_pte_t pte, u64 addr); }; static int __check_page_state_visitor(const struct kvm_pgtable_visit_ctx *ctx, enum kvm_pgtable_walk_flags visit) { struct check_walk_data *d = ctx->arg; return d->get_page_state(ctx->old, ctx->addr) == d->desired ? 0 : -EPERM; } static int check_page_state_range(struct kvm_pgtable *pgt, u64 addr, u64 size, struct check_walk_data *data) { struct kvm_pgtable_walker walker = { .cb = __check_page_state_visitor, .arg = data, .flags = KVM_PGTABLE_WALK_LEAF, }; return kvm_pgtable_walk(pgt, addr, size, &walker); } static enum pkvm_page_state host_get_page_state(kvm_pte_t pte, u64 addr) { if (!addr_is_allowed_memory(addr)) return PKVM_NOPAGE; if (!kvm_pte_valid(pte) && pte) return PKVM_NOPAGE; return pkvm_getstate(kvm_pgtable_stage2_pte_prot(pte)); } static int __host_check_page_state_range(u64 addr, u64 size, enum pkvm_page_state state) { struct check_walk_data d = { .desired = state, .get_page_state = host_get_page_state, }; hyp_assert_lock_held(&host_mmu.lock); return check_page_state_range(&host_mmu.pgt, addr, size, &d); } static int __host_set_page_state_range(u64 addr, u64 size, enum pkvm_page_state state) { enum kvm_pgtable_prot prot = pkvm_mkstate(PKVM_HOST_MEM_PROT, state); return host_stage2_idmap_locked(addr, size, prot); } static int host_request_owned_transition(u64 *completer_addr, const struct pkvm_mem_transition *tx) { u64 size = tx->nr_pages * PAGE_SIZE; u64 addr = tx->initiator.addr; *completer_addr = tx->initiator.host.completer_addr; return __host_check_page_state_range(addr, size, PKVM_PAGE_OWNED); } static int host_request_unshare(u64 *completer_addr, const struct pkvm_mem_transition *tx) { u64 size = tx->nr_pages * PAGE_SIZE; u64 addr = tx->initiator.addr; *completer_addr = tx->initiator.host.completer_addr; return __host_check_page_state_range(addr, size, PKVM_PAGE_SHARED_OWNED); } static int host_initiate_share(u64 *completer_addr, const struct pkvm_mem_transition *tx) { u64 size = tx->nr_pages * PAGE_SIZE; u64 addr = tx->initiator.addr; *completer_addr = tx->initiator.host.completer_addr; return __host_set_page_state_range(addr, size, PKVM_PAGE_SHARED_OWNED); } static int host_initiate_unshare(u64 *completer_addr, const struct pkvm_mem_transition *tx) { u64 size = tx->nr_pages * PAGE_SIZE; u64 addr = tx->initiator.addr; *completer_addr = tx->initiator.host.completer_addr; return __host_set_page_state_range(addr, size, PKVM_PAGE_OWNED); } static int host_initiate_donation(u64 *completer_addr, const struct pkvm_mem_transition *tx) { u8 owner_id = tx->completer.id; u64 size = tx->nr_pages * PAGE_SIZE; *completer_addr = tx->initiator.host.completer_addr; return host_stage2_set_owner_locked(tx->initiator.addr, size, owner_id); } static bool __host_ack_skip_pgtable_check(const struct pkvm_mem_transition *tx) { return !(IS_ENABLED(CONFIG_NVHE_EL2_DEBUG) || tx->initiator.id != PKVM_ID_HYP); } static int __host_ack_transition(u64 addr, const struct pkvm_mem_transition *tx, enum pkvm_page_state state) { u64 size = tx->nr_pages * PAGE_SIZE; if (__host_ack_skip_pgtable_check(tx)) return 0; return __host_check_page_state_range(addr, size, state); } static int host_ack_donation(u64 addr, const struct pkvm_mem_transition *tx) { return __host_ack_transition(addr, tx, PKVM_NOPAGE); } static int host_complete_donation(u64 addr, const struct pkvm_mem_transition *tx) { u64 size = tx->nr_pages * PAGE_SIZE; u8 host_id = tx->completer.id; return host_stage2_set_owner_locked(addr, size, host_id); } static enum pkvm_page_state hyp_get_page_state(kvm_pte_t pte, u64 addr) { if (!kvm_pte_valid(pte)) return PKVM_NOPAGE; return pkvm_getstate(kvm_pgtable_hyp_pte_prot(pte)); } static int __hyp_check_page_state_range(u64 addr, u64 size, enum pkvm_page_state state) { struct check_walk_data d = { .desired = state, .get_page_state = hyp_get_page_state, }; hyp_assert_lock_held(&pkvm_pgd_lock); return check_page_state_range(&pkvm_pgtable, addr, size, &d); } static int hyp_request_donation(u64 *completer_addr, const struct pkvm_mem_transition *tx) { u64 size = tx->nr_pages * PAGE_SIZE; u64 addr = tx->initiator.addr; *completer_addr = tx->initiator.hyp.completer_addr; return __hyp_check_page_state_range(addr, size, PKVM_PAGE_OWNED); } static int hyp_initiate_donation(u64 *completer_addr, const struct pkvm_mem_transition *tx) { u64 size = tx->nr_pages * PAGE_SIZE; int ret; *completer_addr = tx->initiator.hyp.completer_addr; ret = kvm_pgtable_hyp_unmap(&pkvm_pgtable, tx->initiator.addr, size); return (ret != size) ? -EFAULT : 0; } static bool __hyp_ack_skip_pgtable_check(const struct pkvm_mem_transition *tx) { return !(IS_ENABLED(CONFIG_NVHE_EL2_DEBUG) || tx->initiator.id != PKVM_ID_HOST); } static int hyp_ack_share(u64 addr, const struct pkvm_mem_transition *tx, enum kvm_pgtable_prot perms) { u64 size = tx->nr_pages * PAGE_SIZE; if (perms != PAGE_HYP) return -EPERM; if (__hyp_ack_skip_pgtable_check(tx)) return 0; return __hyp_check_page_state_range(addr, size, PKVM_NOPAGE); } static int hyp_ack_unshare(u64 addr, const struct pkvm_mem_transition *tx) { u64 size = tx->nr_pages * PAGE_SIZE; if (tx->initiator.id == PKVM_ID_HOST && hyp_page_count((void *)addr)) return -EBUSY; if (__hyp_ack_skip_pgtable_check(tx)) return 0; return __hyp_check_page_state_range(addr, size, PKVM_PAGE_SHARED_BORROWED); } static int hyp_ack_donation(u64 addr, const struct pkvm_mem_transition *tx) { u64 size = tx->nr_pages * PAGE_SIZE; if (__hyp_ack_skip_pgtable_check(tx)) return 0; return __hyp_check_page_state_range(addr, size, PKVM_NOPAGE); } static int hyp_complete_share(u64 addr, const struct pkvm_mem_transition *tx, enum kvm_pgtable_prot perms) { void *start = (void *)addr, *end = start + (tx->nr_pages * PAGE_SIZE); enum kvm_pgtable_prot prot; prot = pkvm_mkstate(perms, PKVM_PAGE_SHARED_BORROWED); return pkvm_create_mappings_locked(start, end, prot); } static int hyp_complete_unshare(u64 addr, const struct pkvm_mem_transition *tx) { u64 size = tx->nr_pages * PAGE_SIZE; int ret = kvm_pgtable_hyp_unmap(&pkvm_pgtable, addr, size); return (ret != size) ? -EFAULT : 0; } static int hyp_complete_donation(u64 addr, const struct pkvm_mem_transition *tx) { void *start = (void *)addr, *end = start + (tx->nr_pages * PAGE_SIZE); enum kvm_pgtable_prot prot = pkvm_mkstate(PAGE_HYP, PKVM_PAGE_OWNED); return pkvm_create_mappings_locked(start, end, prot); } static int check_share(struct pkvm_mem_share *share) { const struct pkvm_mem_transition *tx = &share->tx; u64 completer_addr; int ret; switch (tx->initiator.id) { case PKVM_ID_HOST: ret = host_request_owned_transition(&completer_addr, tx); break; default: ret = -EINVAL; } if (ret) return ret; switch (tx->completer.id) { case PKVM_ID_HYP: ret = hyp_ack_share(completer_addr, tx, share->completer_prot); break; case PKVM_ID_FFA: /* * We only check the host; the secure side will check the other * end when we forward the FFA call. */ ret = 0; break; default: ret = -EINVAL; } return ret; } static int __do_share(struct pkvm_mem_share *share) { const struct pkvm_mem_transition *tx = &share->tx; u64 completer_addr; int ret; switch (tx->initiator.id) { case PKVM_ID_HOST: ret = host_initiate_share(&completer_addr, tx); break; default: ret = -EINVAL; } if (ret) return ret; switch (tx->completer.id) { case PKVM_ID_HYP: ret = hyp_complete_share(completer_addr, tx, share->completer_prot); break; case PKVM_ID_FFA: /* * We're not responsible for any secure page-tables, so there's * nothing to do here. */ ret = 0; break; default: ret = -EINVAL; } return ret; } /* * do_share(): * * The page owner grants access to another component with a given set * of permissions. * * Initiator: OWNED => SHARED_OWNED * Completer: NOPAGE => SHARED_BORROWED */ static int do_share(struct pkvm_mem_share *share) { int ret; ret = check_share(share); if (ret) return ret; return WARN_ON(__do_share(share)); } static int check_unshare(struct pkvm_mem_share *share) { const struct pkvm_mem_transition *tx = &share->tx; u64 completer_addr; int ret; switch (tx->initiator.id) { case PKVM_ID_HOST: ret = host_request_unshare(&completer_addr, tx); break; default: ret = -EINVAL; } if (ret) return ret; switch (tx->completer.id) { case PKVM_ID_HYP: ret = hyp_ack_unshare(completer_addr, tx); break; case PKVM_ID_FFA: /* See check_share() */ ret = 0; break; default: ret = -EINVAL; } return ret; } static int __do_unshare(struct pkvm_mem_share *share) { const struct pkvm_mem_transition *tx = &share->tx; u64 completer_addr; int ret; switch (tx->initiator.id) { case PKVM_ID_HOST: ret = host_initiate_unshare(&completer_addr, tx); break; default: ret = -EINVAL; } if (ret) return ret; switch (tx->completer.id) { case PKVM_ID_HYP: ret = hyp_complete_unshare(completer_addr, tx); break; case PKVM_ID_FFA: /* See __do_share() */ ret = 0; break; default: ret = -EINVAL; } return ret; } /* * do_unshare(): * * The page owner revokes access from another component for a range of * pages which were previously shared using do_share(). * * Initiator: SHARED_OWNED => OWNED * Completer: SHARED_BORROWED => NOPAGE */ static int do_unshare(struct pkvm_mem_share *share) { int ret; ret = check_unshare(share); if (ret) return ret; return WARN_ON(__do_unshare(share)); } static int check_donation(struct pkvm_mem_donation *donation) { const struct pkvm_mem_transition *tx = &donation->tx; u64 completer_addr; int ret; switch (tx->initiator.id) { case PKVM_ID_HOST: ret = host_request_owned_transition(&completer_addr, tx); break; case PKVM_ID_HYP: ret = hyp_request_donation(&completer_addr, tx); break; default: ret = -EINVAL; } if (ret) return ret; switch (tx->completer.id) { case PKVM_ID_HOST: ret = host_ack_donation(completer_addr, tx); break; case PKVM_ID_HYP: ret = hyp_ack_donation(completer_addr, tx); break; default: ret = -EINVAL; } return ret; } static int __do_donate(struct pkvm_mem_donation *donation) { const struct pkvm_mem_transition *tx = &donation->tx; u64 completer_addr; int ret; switch (tx->initiator.id) { case PKVM_ID_HOST: ret = host_initiate_donation(&completer_addr, tx); break; case PKVM_ID_HYP: ret = hyp_initiate_donation(&completer_addr, tx); break; default: ret = -EINVAL; } if (ret) return ret; switch (tx->completer.id) { case PKVM_ID_HOST: ret = host_complete_donation(completer_addr, tx); break; case PKVM_ID_HYP: ret = hyp_complete_donation(completer_addr, tx); break; default: ret = -EINVAL; } return ret; } /* * do_donate(): * * The page owner transfers ownership to another component, losing access * as a consequence. * * Initiator: OWNED => NOPAGE * Completer: NOPAGE => OWNED */ static int do_donate(struct pkvm_mem_donation *donation) { int ret; ret = check_donation(donation); if (ret) return ret; return WARN_ON(__do_donate(donation)); } int __pkvm_host_share_hyp(u64 pfn) { int ret; u64 host_addr = hyp_pfn_to_phys(pfn); u64 hyp_addr = (u64)__hyp_va(host_addr); struct pkvm_mem_share share = { .tx = { .nr_pages = 1, .initiator = { .id = PKVM_ID_HOST, .addr = host_addr, .host = { .completer_addr = hyp_addr, }, }, .completer = { .id = PKVM_ID_HYP, }, }, .completer_prot = PAGE_HYP, }; host_lock_component(); hyp_lock_component(); ret = do_share(&share); hyp_unlock_component(); host_unlock_component(); return ret; } int __pkvm_host_unshare_hyp(u64 pfn) { int ret; u64 host_addr = hyp_pfn_to_phys(pfn); u64 hyp_addr = (u64)__hyp_va(host_addr); struct pkvm_mem_share share = { .tx = { .nr_pages = 1, .initiator = { .id = PKVM_ID_HOST, .addr = host_addr, .host = { .completer_addr = hyp_addr, }, }, .completer = { .id = PKVM_ID_HYP, }, }, .completer_prot = PAGE_HYP, }; host_lock_component(); hyp_lock_component(); ret = do_unshare(&share); hyp_unlock_component(); host_unlock_component(); return ret; } int __pkvm_host_donate_hyp(u64 pfn, u64 nr_pages) { int ret; u64 host_addr = hyp_pfn_to_phys(pfn); u64 hyp_addr = (u64)__hyp_va(host_addr); struct pkvm_mem_donation donation = { .tx = { .nr_pages = nr_pages, .initiator = { .id = PKVM_ID_HOST, .addr = host_addr, .host = { .completer_addr = hyp_addr, }, }, .completer = { .id = PKVM_ID_HYP, }, }, }; host_lock_component(); hyp_lock_component(); ret = do_donate(&donation); hyp_unlock_component(); host_unlock_component(); return ret; } int __pkvm_hyp_donate_host(u64 pfn, u64 nr_pages) { int ret; u64 host_addr = hyp_pfn_to_phys(pfn); u64 hyp_addr = (u64)__hyp_va(host_addr); struct pkvm_mem_donation donation = { .tx = { .nr_pages = nr_pages, .initiator = { .id = PKVM_ID_HYP, .addr = hyp_addr, .hyp = { .completer_addr = host_addr, }, }, .completer = { .id = PKVM_ID_HOST, }, }, }; host_lock_component(); hyp_lock_component(); ret = do_donate(&donation); hyp_unlock_component(); host_unlock_component(); return ret; } int hyp_pin_shared_mem(void *from, void *to) { u64 cur, start = ALIGN_DOWN((u64)from, PAGE_SIZE); u64 end = PAGE_ALIGN((u64)to); u64 size = end - start; int ret; host_lock_component(); hyp_lock_component(); ret = __host_check_page_state_range(__hyp_pa(start), size, PKVM_PAGE_SHARED_OWNED); if (ret) goto unlock; ret = __hyp_check_page_state_range(start, size, PKVM_PAGE_SHARED_BORROWED); if (ret) goto unlock; for (cur = start; cur < end; cur += PAGE_SIZE) hyp_page_ref_inc(hyp_virt_to_page(cur)); unlock: hyp_unlock_component(); host_unlock_component(); return ret; } void hyp_unpin_shared_mem(void *from, void *to) { u64 cur, start = ALIGN_DOWN((u64)from, PAGE_SIZE); u64 end = PAGE_ALIGN((u64)to); host_lock_component(); hyp_lock_component(); for (cur = start; cur < end; cur += PAGE_SIZE) hyp_page_ref_dec(hyp_virt_to_page(cur)); hyp_unlock_component(); host_unlock_component(); } int __pkvm_host_share_ffa(u64 pfn, u64 nr_pages) { int ret; struct pkvm_mem_share share = { .tx = { .nr_pages = nr_pages, .initiator = { .id = PKVM_ID_HOST, .addr = hyp_pfn_to_phys(pfn), }, .completer = { .id = PKVM_ID_FFA, }, }, }; host_lock_component(); ret = do_share(&share); host_unlock_component(); return ret; } int __pkvm_host_unshare_ffa(u64 pfn, u64 nr_pages) { int ret; struct pkvm_mem_share share = { .tx = { .nr_pages = nr_pages, .initiator = { .id = PKVM_ID_HOST, .addr = hyp_pfn_to_phys(pfn), }, .completer = { .id = PKVM_ID_FFA, }, }, }; host_lock_component(); ret = do_unshare(&share); host_unlock_component(); return ret; }