// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2020 Google LLC * Author: Quentin Perret */ #include #include #include #include #include #include #include #include #include #include #include #define KVM_HOST_S2_FLAGS (KVM_PGTABLE_S2_NOFWB | KVM_PGTABLE_S2_IDMAP) extern unsigned long hyp_nr_cpus; struct host_kvm host_kvm; static struct hyp_pool host_s2_pool; const u8 pkvm_hyp_id = 1; static void *host_s2_zalloc_pages_exact(size_t size) { void *addr = hyp_alloc_pages(&host_s2_pool, get_order(size)); hyp_split_page(hyp_virt_to_page(addr)); /* * The size of concatenated PGDs is always a power of two of PAGE_SIZE, * so there should be no need to free any of the tail pages to make the * allocation exact. */ WARN_ON(size != (PAGE_SIZE << get_order(size))); return addr; } static void *host_s2_zalloc_page(void *pool) { return hyp_alloc_pages(pool, 0); } static void host_s2_get_page(void *addr) { hyp_get_page(&host_s2_pool, addr); } static void host_s2_put_page(void *addr) { hyp_put_page(&host_s2_pool, addr); } static int prepare_s2_pool(void *pgt_pool_base) { unsigned long nr_pages, pfn; int ret; pfn = hyp_virt_to_pfn(pgt_pool_base); nr_pages = host_s2_pgtable_pages(); ret = hyp_pool_init(&host_s2_pool, pfn, nr_pages, 0); if (ret) return ret; host_kvm.mm_ops = (struct kvm_pgtable_mm_ops) { .zalloc_pages_exact = host_s2_zalloc_pages_exact, .zalloc_page = host_s2_zalloc_page, .phys_to_virt = hyp_phys_to_virt, .virt_to_phys = hyp_virt_to_phys, .page_count = hyp_page_count, .get_page = host_s2_get_page, .put_page = host_s2_put_page, }; return 0; } static void prepare_host_vtcr(void) { u32 parange, phys_shift; /* The host stage 2 is id-mapped, so use parange for T0SZ */ parange = kvm_get_parange(id_aa64mmfr0_el1_sys_val); phys_shift = id_aa64mmfr0_parange_to_phys_shift(parange); host_kvm.arch.vtcr = kvm_get_vtcr(id_aa64mmfr0_el1_sys_val, id_aa64mmfr1_el1_sys_val, phys_shift); } static bool host_stage2_force_pte_cb(u64 addr, u64 end, enum kvm_pgtable_prot prot); int kvm_host_prepare_stage2(void *pgt_pool_base) { struct kvm_s2_mmu *mmu = &host_kvm.arch.mmu; int ret; prepare_host_vtcr(); hyp_spin_lock_init(&host_kvm.lock); ret = prepare_s2_pool(pgt_pool_base); if (ret) return ret; ret = __kvm_pgtable_stage2_init(&host_kvm.pgt, &host_kvm.arch, &host_kvm.mm_ops, KVM_HOST_S2_FLAGS, host_stage2_force_pte_cb); if (ret) return ret; mmu->pgd_phys = __hyp_pa(host_kvm.pgt.pgd); mmu->arch = &host_kvm.arch; mmu->pgt = &host_kvm.pgt; WRITE_ONCE(mmu->vmid.vmid_gen, 0); WRITE_ONCE(mmu->vmid.vmid, 0); return 0; } int __pkvm_prot_finalize(void) { struct kvm_s2_mmu *mmu = &host_kvm.arch.mmu; struct kvm_nvhe_init_params *params = this_cpu_ptr(&kvm_init_params); if (params->hcr_el2 & HCR_VM) return -EPERM; params->vttbr = kvm_get_vttbr(mmu); params->vtcr = host_kvm.arch.vtcr; params->hcr_el2 |= HCR_VM; kvm_flush_dcache_to_poc(params, sizeof(*params)); write_sysreg(params->hcr_el2, hcr_el2); __load_stage2(&host_kvm.arch.mmu, &host_kvm.arch); /* * Make sure to have an ISB before the TLB maintenance below but only * when __load_stage2() doesn't include one already. */ asm(ALTERNATIVE("isb", "nop", ARM64_WORKAROUND_SPECULATIVE_AT)); /* Invalidate stale HCR bits that may be cached in TLBs */ __tlbi(vmalls12e1); dsb(nsh); isb(); return 0; } static int host_stage2_unmap_dev_all(void) { struct kvm_pgtable *pgt = &host_kvm.pgt; struct memblock_region *reg; u64 addr = 0; int i, ret; /* Unmap all non-memory regions to recycle the pages */ for (i = 0; i < hyp_memblock_nr; i++, addr = reg->base + reg->size) { reg = &hyp_memory[i]; ret = kvm_pgtable_stage2_unmap(pgt, addr, reg->base - addr); if (ret) return ret; } return kvm_pgtable_stage2_unmap(pgt, addr, BIT(pgt->ia_bits) - addr); } struct kvm_mem_range { u64 start; u64 end; }; static bool find_mem_range(phys_addr_t addr, struct kvm_mem_range *range) { int cur, left = 0, right = hyp_memblock_nr; struct memblock_region *reg; phys_addr_t end; range->start = 0; range->end = ULONG_MAX; /* The list of memblock regions is sorted, binary search it */ while (left < right) { cur = (left + right) >> 1; reg = &hyp_memory[cur]; end = reg->base + reg->size; if (addr < reg->base) { right = cur; range->end = reg->base; } else if (addr >= end) { left = cur + 1; range->start = end; } else { range->start = reg->base; range->end = end; return true; } } return false; } bool addr_is_memory(phys_addr_t phys) { struct kvm_mem_range range; return find_mem_range(phys, &range); } static bool is_in_mem_range(u64 addr, struct kvm_mem_range *range) { return range->start <= addr && addr < range->end; } static bool range_is_memory(u64 start, u64 end) { struct kvm_mem_range r; if (!find_mem_range(start, &r)) return false; return is_in_mem_range(end - 1, &r); } static inline int __host_stage2_idmap(u64 start, u64 end, enum kvm_pgtable_prot prot) { return kvm_pgtable_stage2_map(&host_kvm.pgt, start, end - start, start, prot, &host_s2_pool); } /* * The pool has been provided with enough pages to cover all of memory with * page granularity, but it is difficult to know how much of the MMIO range * we will need to cover upfront, so we may need to 'recycle' the pages if we * run out. */ #define host_stage2_try(fn, ...) \ ({ \ int __ret; \ hyp_assert_lock_held(&host_kvm.lock); \ __ret = fn(__VA_ARGS__); \ if (__ret == -ENOMEM) { \ __ret = host_stage2_unmap_dev_all(); \ if (!__ret) \ __ret = fn(__VA_ARGS__); \ } \ __ret; \ }) static inline bool range_included(struct kvm_mem_range *child, struct kvm_mem_range *parent) { return parent->start <= child->start && child->end <= parent->end; } static int host_stage2_adjust_range(u64 addr, struct kvm_mem_range *range) { struct kvm_mem_range cur; kvm_pte_t pte; u32 level; int ret; hyp_assert_lock_held(&host_kvm.lock); ret = kvm_pgtable_get_leaf(&host_kvm.pgt, addr, &pte, &level); if (ret) return ret; if (kvm_pte_valid(pte)) return -EAGAIN; if (pte) return -EPERM; do { u64 granule = kvm_granule_size(level); cur.start = ALIGN_DOWN(addr, granule); cur.end = cur.start + granule; level++; } while ((level < KVM_PGTABLE_MAX_LEVELS) && !(kvm_level_supports_block_mapping(level) && range_included(&cur, range))); *range = cur; return 0; } int host_stage2_idmap_locked(phys_addr_t addr, u64 size, enum kvm_pgtable_prot prot) { hyp_assert_lock_held(&host_kvm.lock); return host_stage2_try(__host_stage2_idmap, addr, addr + size, prot); } int host_stage2_set_owner_locked(phys_addr_t addr, u64 size, u8 owner_id) { hyp_assert_lock_held(&host_kvm.lock); return host_stage2_try(kvm_pgtable_stage2_set_owner, &host_kvm.pgt, addr, size, &host_s2_pool, owner_id); } static bool host_stage2_force_pte_cb(u64 addr, u64 end, enum kvm_pgtable_prot prot) { /* * Block mappings must be used with care in the host stage-2 as a * kvm_pgtable_stage2_map() operation targeting a page in the range of * an existing block will delete the block under the assumption that * mappings in the rest of the block range can always be rebuilt lazily. * That assumption is correct for the host stage-2 with RWX mappings * targeting memory or RW mappings targeting MMIO ranges (see * host_stage2_idmap() below which implements some of the host memory * abort logic). However, this is not safe for any other mappings where * the host stage-2 page-table is in fact the only place where this * state is stored. In all those cases, it is safer to use page-level * mappings, hence avoiding to lose the state because of side-effects in * kvm_pgtable_stage2_map(). */ if (range_is_memory(addr, end)) return prot != PKVM_HOST_MEM_PROT; else return prot != PKVM_HOST_MMIO_PROT; } static int host_stage2_idmap(u64 addr) { struct kvm_mem_range range; bool is_memory = find_mem_range(addr, &range); enum kvm_pgtable_prot prot; int ret; prot = is_memory ? PKVM_HOST_MEM_PROT : PKVM_HOST_MMIO_PROT; hyp_spin_lock(&host_kvm.lock); ret = host_stage2_adjust_range(addr, &range); if (ret) goto unlock; ret = host_stage2_idmap_locked(range.start, range.end - range.start, prot); unlock: hyp_spin_unlock(&host_kvm.lock); return ret; } static inline bool check_prot(enum kvm_pgtable_prot prot, enum kvm_pgtable_prot required, enum kvm_pgtable_prot denied) { return (prot & (required | denied)) == required; } int __pkvm_host_share_hyp(u64 pfn) { phys_addr_t addr = hyp_pfn_to_phys(pfn); enum kvm_pgtable_prot prot, cur; void *virt = __hyp_va(addr); enum pkvm_page_state state; kvm_pte_t pte; int ret; if (!addr_is_memory(addr)) return -EINVAL; hyp_spin_lock(&host_kvm.lock); hyp_spin_lock(&pkvm_pgd_lock); ret = kvm_pgtable_get_leaf(&host_kvm.pgt, addr, &pte, NULL); if (ret) goto unlock; if (!pte) goto map_shared; /* * Check attributes in the host stage-2 PTE. We need the page to be: * - mapped RWX as we're sharing memory; * - not borrowed, as that implies absence of ownership. * Otherwise, we can't let it got through */ cur = kvm_pgtable_stage2_pte_prot(pte); prot = pkvm_mkstate(0, PKVM_PAGE_SHARED_BORROWED); if (!check_prot(cur, PKVM_HOST_MEM_PROT, prot)) { ret = -EPERM; goto unlock; } state = pkvm_getstate(cur); if (state == PKVM_PAGE_OWNED) goto map_shared; /* * Tolerate double-sharing the same page, but this requires * cross-checking the hypervisor stage-1. */ if (state != PKVM_PAGE_SHARED_OWNED) { ret = -EPERM; goto unlock; } ret = kvm_pgtable_get_leaf(&pkvm_pgtable, (u64)virt, &pte, NULL); if (ret) goto unlock; /* * If the page has been shared with the hypervisor, it must be * already mapped as SHARED_BORROWED in its stage-1. */ cur = kvm_pgtable_hyp_pte_prot(pte); prot = pkvm_mkstate(PAGE_HYP, PKVM_PAGE_SHARED_BORROWED); if (!check_prot(cur, prot, ~prot)) ret = -EPERM; goto unlock; map_shared: /* * If the page is not yet shared, adjust mappings in both page-tables * while both locks are held. */ prot = pkvm_mkstate(PAGE_HYP, PKVM_PAGE_SHARED_BORROWED); ret = pkvm_create_mappings_locked(virt, virt + PAGE_SIZE, prot); BUG_ON(ret); prot = pkvm_mkstate(PKVM_HOST_MEM_PROT, PKVM_PAGE_SHARED_OWNED); ret = host_stage2_idmap_locked(addr, PAGE_SIZE, prot); BUG_ON(ret); unlock: hyp_spin_unlock(&pkvm_pgd_lock); hyp_spin_unlock(&host_kvm.lock); return ret; } void handle_host_mem_abort(struct kvm_cpu_context *host_ctxt) { struct kvm_vcpu_fault_info fault; u64 esr, addr; int ret = 0; esr = read_sysreg_el2(SYS_ESR); BUG_ON(!__get_fault_info(esr, &fault)); addr = (fault.hpfar_el2 & HPFAR_MASK) << 8; ret = host_stage2_idmap(addr); BUG_ON(ret && ret != -EAGAIN); }