// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2020 - Google LLC * Author: David Brazdil */ #include #include #include #include #include #include #include #include void kvm_hyp_cpu_entry(unsigned long r0); void kvm_hyp_cpu_resume(unsigned long r0); void __noreturn __host_enter(struct kvm_cpu_context *host_ctxt); /* Config options set by the host. */ struct kvm_host_psci_config __ro_after_init kvm_host_psci_config; #define INVALID_CPU_ID UINT_MAX struct psci_boot_args { atomic_t lock; unsigned long pc; unsigned long r0; }; #define PSCI_BOOT_ARGS_UNLOCKED 0 #define PSCI_BOOT_ARGS_LOCKED 1 #define PSCI_BOOT_ARGS_INIT \ ((struct psci_boot_args){ \ .lock = ATOMIC_INIT(PSCI_BOOT_ARGS_UNLOCKED), \ }) static DEFINE_PER_CPU(struct psci_boot_args, cpu_on_args) = PSCI_BOOT_ARGS_INIT; static DEFINE_PER_CPU(struct psci_boot_args, suspend_args) = PSCI_BOOT_ARGS_INIT; #define is_psci_0_1(what, func_id) \ (kvm_host_psci_config.psci_0_1_ ## what ## _implemented && \ (func_id) == kvm_host_psci_config.function_ids_0_1.what) static bool is_psci_0_1_call(u64 func_id) { return (is_psci_0_1(cpu_suspend, func_id) || is_psci_0_1(cpu_on, func_id) || is_psci_0_1(cpu_off, func_id) || is_psci_0_1(migrate, func_id)); } static bool is_psci_0_2_call(u64 func_id) { /* SMCCC reserves IDs 0x00-1F with the given 32/64-bit base for PSCI. */ return (PSCI_0_2_FN(0) <= func_id && func_id <= PSCI_0_2_FN(31)) || (PSCI_0_2_FN64(0) <= func_id && func_id <= PSCI_0_2_FN64(31)); } static unsigned long psci_call(unsigned long fn, unsigned long arg0, unsigned long arg1, unsigned long arg2) { struct arm_smccc_res res; arm_smccc_1_1_smc(fn, arg0, arg1, arg2, &res); return res.a0; } static unsigned long psci_forward(struct kvm_cpu_context *host_ctxt) { return psci_call(cpu_reg(host_ctxt, 0), cpu_reg(host_ctxt, 1), cpu_reg(host_ctxt, 2), cpu_reg(host_ctxt, 3)); } static unsigned int find_cpu_id(u64 mpidr) { unsigned int i; /* Reject invalid MPIDRs */ if (mpidr & ~MPIDR_HWID_BITMASK) return INVALID_CPU_ID; for (i = 0; i < NR_CPUS; i++) { if (cpu_logical_map(i) == mpidr) return i; } return INVALID_CPU_ID; } static __always_inline bool try_acquire_boot_args(struct psci_boot_args *args) { return atomic_cmpxchg_acquire(&args->lock, PSCI_BOOT_ARGS_UNLOCKED, PSCI_BOOT_ARGS_LOCKED) == PSCI_BOOT_ARGS_UNLOCKED; } static __always_inline void release_boot_args(struct psci_boot_args *args) { atomic_set_release(&args->lock, PSCI_BOOT_ARGS_UNLOCKED); } static int psci_cpu_on(u64 func_id, struct kvm_cpu_context *host_ctxt) { DECLARE_REG(u64, mpidr, host_ctxt, 1); DECLARE_REG(unsigned long, pc, host_ctxt, 2); DECLARE_REG(unsigned long, r0, host_ctxt, 3); unsigned int cpu_id; struct psci_boot_args *boot_args; struct kvm_nvhe_init_params *init_params; int ret; /* * Find the logical CPU ID for the given MPIDR. The search set is * the set of CPUs that were online at the point of KVM initialization. * Booting other CPUs is rejected because their cpufeatures were not * checked against the finalized capabilities. This could be relaxed * by doing the feature checks in hyp. */ cpu_id = find_cpu_id(mpidr); if (cpu_id == INVALID_CPU_ID) return PSCI_RET_INVALID_PARAMS; boot_args = per_cpu_ptr(&cpu_on_args, cpu_id); init_params = per_cpu_ptr(&kvm_init_params, cpu_id); /* Check if the target CPU is already being booted. */ if (!try_acquire_boot_args(boot_args)) return PSCI_RET_ALREADY_ON; boot_args->pc = pc; boot_args->r0 = r0; wmb(); ret = psci_call(func_id, mpidr, __hyp_pa(&kvm_hyp_cpu_entry), __hyp_pa(init_params)); /* If successful, the lock will be released by the target CPU. */ if (ret != PSCI_RET_SUCCESS) release_boot_args(boot_args); return ret; } static int psci_cpu_suspend(u64 func_id, struct kvm_cpu_context *host_ctxt) { DECLARE_REG(u64, power_state, host_ctxt, 1); DECLARE_REG(unsigned long, pc, host_ctxt, 2); DECLARE_REG(unsigned long, r0, host_ctxt, 3); struct psci_boot_args *boot_args; struct kvm_nvhe_init_params *init_params; boot_args = this_cpu_ptr(&suspend_args); init_params = this_cpu_ptr(&kvm_init_params); /* * No need to acquire a lock before writing to boot_args because a core * can only suspend itself. Racy CPU_ON calls use a separate struct. */ boot_args->pc = pc; boot_args->r0 = r0; /* * Will either return if shallow sleep state, or wake up into the entry * point if it is a deep sleep state. */ return psci_call(func_id, power_state, __hyp_pa(&kvm_hyp_cpu_resume), __hyp_pa(init_params)); } static int psci_system_suspend(u64 func_id, struct kvm_cpu_context *host_ctxt) { DECLARE_REG(unsigned long, pc, host_ctxt, 1); DECLARE_REG(unsigned long, r0, host_ctxt, 2); struct psci_boot_args *boot_args; struct kvm_nvhe_init_params *init_params; boot_args = this_cpu_ptr(&suspend_args); init_params = this_cpu_ptr(&kvm_init_params); /* * No need to acquire a lock before writing to boot_args because a core * can only suspend itself. Racy CPU_ON calls use a separate struct. */ boot_args->pc = pc; boot_args->r0 = r0; /* Will only return on error. */ return psci_call(func_id, __hyp_pa(&kvm_hyp_cpu_resume), __hyp_pa(init_params), 0); } asmlinkage void __noreturn kvm_host_psci_cpu_entry(bool is_cpu_on) { struct psci_boot_args *boot_args; struct kvm_cpu_context *host_ctxt; host_ctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt; if (is_cpu_on) boot_args = this_cpu_ptr(&cpu_on_args); else boot_args = this_cpu_ptr(&suspend_args); cpu_reg(host_ctxt, 0) = boot_args->r0; write_sysreg_el2(boot_args->pc, SYS_ELR); if (is_cpu_on) release_boot_args(boot_args); __host_enter(host_ctxt); } static unsigned long psci_0_1_handler(u64 func_id, struct kvm_cpu_context *host_ctxt) { if (is_psci_0_1(cpu_off, func_id) || is_psci_0_1(migrate, func_id)) return psci_forward(host_ctxt); if (is_psci_0_1(cpu_on, func_id)) return psci_cpu_on(func_id, host_ctxt); if (is_psci_0_1(cpu_suspend, func_id)) return psci_cpu_suspend(func_id, host_ctxt); return PSCI_RET_NOT_SUPPORTED; } static unsigned long psci_0_2_handler(u64 func_id, struct kvm_cpu_context *host_ctxt) { switch (func_id) { case PSCI_0_2_FN_PSCI_VERSION: case PSCI_0_2_FN_CPU_OFF: case PSCI_0_2_FN64_AFFINITY_INFO: case PSCI_0_2_FN64_MIGRATE: case PSCI_0_2_FN_MIGRATE_INFO_TYPE: case PSCI_0_2_FN64_MIGRATE_INFO_UP_CPU: return psci_forward(host_ctxt); /* * SYSTEM_OFF/RESET should not return according to the spec. * Allow it so as to stay robust to broken firmware. */ case PSCI_0_2_FN_SYSTEM_OFF: case PSCI_0_2_FN_SYSTEM_RESET: return psci_forward(host_ctxt); case PSCI_0_2_FN64_CPU_SUSPEND: return psci_cpu_suspend(func_id, host_ctxt); case PSCI_0_2_FN64_CPU_ON: return psci_cpu_on(func_id, host_ctxt); default: return PSCI_RET_NOT_SUPPORTED; } } static unsigned long psci_1_0_handler(u64 func_id, struct kvm_cpu_context *host_ctxt) { switch (func_id) { case PSCI_1_0_FN_PSCI_FEATURES: case PSCI_1_0_FN_SET_SUSPEND_MODE: case PSCI_1_1_FN64_SYSTEM_RESET2: return psci_forward(host_ctxt); case PSCI_1_0_FN64_SYSTEM_SUSPEND: return psci_system_suspend(func_id, host_ctxt); default: return psci_0_2_handler(func_id, host_ctxt); } } bool kvm_host_psci_handler(struct kvm_cpu_context *host_ctxt) { DECLARE_REG(u64, func_id, host_ctxt, 0); unsigned long ret; switch (kvm_host_psci_config.version) { case PSCI_VERSION(0, 1): if (!is_psci_0_1_call(func_id)) return false; ret = psci_0_1_handler(func_id, host_ctxt); break; case PSCI_VERSION(0, 2): if (!is_psci_0_2_call(func_id)) return false; ret = psci_0_2_handler(func_id, host_ctxt); break; default: if (!is_psci_0_2_call(func_id)) return false; ret = psci_1_0_handler(func_id, host_ctxt); break; } cpu_reg(host_ctxt, 0) = ret; cpu_reg(host_ctxt, 1) = 0; cpu_reg(host_ctxt, 2) = 0; cpu_reg(host_ctxt, 3) = 0; return true; }