/* * Based on arch/arm/mm/fault.c * * Copyright (C) 1995 Linus Torvalds * Copyright (C) 1995-2004 Russell King * Copyright (C) 2012 ARM Ltd. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct fault_info { int (*fn)(unsigned long addr, unsigned int esr, struct pt_regs *regs); int sig; int code; const char *name; }; static const struct fault_info fault_info[]; static inline const struct fault_info *esr_to_fault_info(unsigned int esr) { return fault_info + (esr & 63); } #ifdef CONFIG_KPROBES static inline int notify_page_fault(struct pt_regs *regs, unsigned int esr) { int ret = 0; /* kprobe_running() needs smp_processor_id() */ if (!user_mode(regs)) { preempt_disable(); if (kprobe_running() && kprobe_fault_handler(regs, esr)) ret = 1; preempt_enable(); } return ret; } #else static inline int notify_page_fault(struct pt_regs *regs, unsigned int esr) { return 0; } #endif static void data_abort_decode(unsigned int esr) { pr_alert("Data abort info:\n"); if (esr & ESR_ELx_ISV) { pr_alert(" Access size = %u byte(s)\n", 1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT)); pr_alert(" SSE = %lu, SRT = %lu\n", (esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT, (esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT); pr_alert(" SF = %lu, AR = %lu\n", (esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT, (esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT); } else { pr_alert(" ISV = 0, ISS = 0x%08lx\n", esr & ESR_ELx_ISS_MASK); } pr_alert(" CM = %lu, WnR = %lu\n", (esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT, (esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT); } static void mem_abort_decode(unsigned int esr) { pr_alert("Mem abort info:\n"); pr_alert(" ESR = 0x%08x\n", esr); pr_alert(" Exception class = %s, IL = %u bits\n", esr_get_class_string(esr), (esr & ESR_ELx_IL) ? 32 : 16); pr_alert(" SET = %lu, FnV = %lu\n", (esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT, (esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT); pr_alert(" EA = %lu, S1PTW = %lu\n", (esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT, (esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT); if (esr_is_data_abort(esr)) data_abort_decode(esr); } /* * Dump out the page tables associated with 'addr' in the currently active mm. */ void show_pte(unsigned long addr) { struct mm_struct *mm; pgd_t *pgd; if (addr < TASK_SIZE) { /* TTBR0 */ mm = current->active_mm; if (mm == &init_mm) { pr_alert("[%016lx] user address but active_mm is swapper\n", addr); return; } } else if (addr >= VA_START) { /* TTBR1 */ mm = &init_mm; } else { pr_alert("[%016lx] address between user and kernel address ranges\n", addr); return; } pr_alert("%s pgtable: %luk pages, %u-bit VAs, pgd = %p\n", mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K, VA_BITS, mm->pgd); pgd = pgd_offset(mm, addr); pr_alert("[%016lx] *pgd=%016llx", addr, pgd_val(*pgd)); do { pud_t *pud; pmd_t *pmd; pte_t *pte; if (pgd_none(*pgd) || pgd_bad(*pgd)) break; pud = pud_offset(pgd, addr); pr_cont(", *pud=%016llx", pud_val(*pud)); if (pud_none(*pud) || pud_bad(*pud)) break; pmd = pmd_offset(pud, addr); pr_cont(", *pmd=%016llx", pmd_val(*pmd)); if (pmd_none(*pmd) || pmd_bad(*pmd)) break; pte = pte_offset_map(pmd, addr); pr_cont(", *pte=%016llx", pte_val(*pte)); pte_unmap(pte); } while(0); pr_cont("\n"); } /* * This function sets the access flags (dirty, accessed), as well as write * permission, and only to a more permissive setting. * * It needs to cope with hardware update of the accessed/dirty state by other * agents in the system and can safely skip the __sync_icache_dcache() call as, * like set_pte_at(), the PTE is never changed from no-exec to exec here. * * Returns whether or not the PTE actually changed. */ int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address, pte_t *ptep, pte_t entry, int dirty) { pteval_t old_pteval, pteval; if (pte_same(*ptep, entry)) return 0; /* only preserve the access flags and write permission */ pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY; /* * Setting the flags must be done atomically to avoid racing with the * hardware update of the access/dirty state. The PTE_RDONLY bit must * be set to the most permissive (lowest value) of *ptep and entry * (calculated as: a & b == ~(~a | ~b)). */ pte_val(entry) ^= PTE_RDONLY; pteval = READ_ONCE(pte_val(*ptep)); do { old_pteval = pteval; pteval ^= PTE_RDONLY; pteval |= pte_val(entry); pteval ^= PTE_RDONLY; pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval); } while (pteval != old_pteval); flush_tlb_fix_spurious_fault(vma, address); return 1; } static bool is_el1_instruction_abort(unsigned int esr) { return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR; } static inline bool is_permission_fault(unsigned int esr, struct pt_regs *regs, unsigned long addr) { unsigned int ec = ESR_ELx_EC(esr); unsigned int fsc_type = esr & ESR_ELx_FSC_TYPE; if (ec != ESR_ELx_EC_DABT_CUR && ec != ESR_ELx_EC_IABT_CUR) return false; if (fsc_type == ESR_ELx_FSC_PERM) return true; if (addr < USER_DS && system_uses_ttbr0_pan()) return fsc_type == ESR_ELx_FSC_FAULT && (regs->pstate & PSR_PAN_BIT); return false; } static void __do_kernel_fault(unsigned long addr, unsigned int esr, struct pt_regs *regs) { const char *msg; /* * Are we prepared to handle this kernel fault? * We are almost certainly not prepared to handle instruction faults. */ if (!is_el1_instruction_abort(esr) && fixup_exception(regs)) return; bust_spinlocks(1); if (is_permission_fault(esr, regs, addr)) { if (esr & ESR_ELx_WNR) msg = "write to read-only memory"; else msg = "read from unreadable memory"; } else if (addr < PAGE_SIZE) { msg = "NULL pointer dereference"; } else { msg = "paging request"; } pr_alert("Unable to handle kernel %s at virtual address %08lx\n", msg, addr); mem_abort_decode(esr); show_pte(addr); die("Oops", regs, esr); bust_spinlocks(0); do_exit(SIGKILL); } static void __do_user_fault(struct task_struct *tsk, unsigned long addr, unsigned int esr, unsigned int sig, int code, struct pt_regs *regs, int fault) { struct siginfo si; const struct fault_info *inf; unsigned int lsb = 0; if (unhandled_signal(tsk, sig) && show_unhandled_signals_ratelimited()) { inf = esr_to_fault_info(esr); pr_info("%s[%d]: unhandled %s (%d) at 0x%08lx, esr 0x%03x", tsk->comm, task_pid_nr(tsk), inf->name, sig, addr, esr); print_vma_addr(KERN_CONT ", in ", regs->pc); pr_cont("\n"); __show_regs(regs); } tsk->thread.fault_address = addr; tsk->thread.fault_code = esr; si.si_signo = sig; si.si_errno = 0; si.si_code = code; si.si_addr = (void __user *)addr; /* * Either small page or large page may be poisoned. * In other words, VM_FAULT_HWPOISON_LARGE and * VM_FAULT_HWPOISON are mutually exclusive. */ if (fault & VM_FAULT_HWPOISON_LARGE) lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault)); else if (fault & VM_FAULT_HWPOISON) lsb = PAGE_SHIFT; si.si_addr_lsb = lsb; force_sig_info(sig, &si, tsk); } static void do_bad_area(unsigned long addr, unsigned int esr, struct pt_regs *regs) { struct task_struct *tsk = current; const struct fault_info *inf; /* * If we are in kernel mode at this point, we have no context to * handle this fault with. */ if (user_mode(regs)) { inf = esr_to_fault_info(esr); __do_user_fault(tsk, addr, esr, inf->sig, inf->code, regs, 0); } else __do_kernel_fault(addr, esr, regs); } #define VM_FAULT_BADMAP 0x010000 #define VM_FAULT_BADACCESS 0x020000 static int __do_page_fault(struct mm_struct *mm, unsigned long addr, unsigned int mm_flags, unsigned long vm_flags, struct task_struct *tsk) { struct vm_area_struct *vma; int fault; vma = find_vma(mm, addr); fault = VM_FAULT_BADMAP; if (unlikely(!vma)) goto out; if (unlikely(vma->vm_start > addr)) goto check_stack; /* * Ok, we have a good vm_area for this memory access, so we can handle * it. */ good_area: /* * Check that the permissions on the VMA allow for the fault which * occurred. */ if (!(vma->vm_flags & vm_flags)) { fault = VM_FAULT_BADACCESS; goto out; } return handle_mm_fault(vma, addr & PAGE_MASK, mm_flags); check_stack: if (vma->vm_flags & VM_GROWSDOWN && !expand_stack(vma, addr)) goto good_area; out: return fault; } static bool is_el0_instruction_abort(unsigned int esr) { return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW; } static int __kprobes do_page_fault(unsigned long addr, unsigned int esr, struct pt_regs *regs) { struct task_struct *tsk; struct mm_struct *mm; int fault, sig, code, major = 0; unsigned long vm_flags = VM_READ | VM_WRITE; unsigned int mm_flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; if (notify_page_fault(regs, esr)) return 0; tsk = current; mm = tsk->mm; /* * If we're in an interrupt or have no user context, we must not take * the fault. */ if (faulthandler_disabled() || !mm) goto no_context; if (user_mode(regs)) mm_flags |= FAULT_FLAG_USER; if (is_el0_instruction_abort(esr)) { vm_flags = VM_EXEC; } else if ((esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM)) { vm_flags = VM_WRITE; mm_flags |= FAULT_FLAG_WRITE; } if (addr < USER_DS && is_permission_fault(esr, regs, addr)) { /* regs->orig_addr_limit may be 0 if we entered from EL0 */ if (regs->orig_addr_limit == KERNEL_DS) die("Accessing user space memory with fs=KERNEL_DS", regs, esr); if (is_el1_instruction_abort(esr)) die("Attempting to execute userspace memory", regs, esr); if (!search_exception_tables(regs->pc)) die("Accessing user space memory outside uaccess.h routines", regs, esr); } perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr); /* * As per x86, we may deadlock here. However, since the kernel only * validly references user space from well defined areas of the code, * we can bug out early if this is from code which shouldn't. */ if (!down_read_trylock(&mm->mmap_sem)) { if (!user_mode(regs) && !search_exception_tables(regs->pc)) goto no_context; retry: down_read(&mm->mmap_sem); } else { /* * The above down_read_trylock() might have succeeded in which * case, we'll have missed the might_sleep() from down_read(). */ might_sleep(); #ifdef CONFIG_DEBUG_VM if (!user_mode(regs) && !search_exception_tables(regs->pc)) goto no_context; #endif } fault = __do_page_fault(mm, addr, mm_flags, vm_flags, tsk); major |= fault & VM_FAULT_MAJOR; if (fault & VM_FAULT_RETRY) { /* * If we need to retry but a fatal signal is pending, * handle the signal first. We do not need to release * the mmap_sem because it would already be released * in __lock_page_or_retry in mm/filemap.c. */ if (fatal_signal_pending(current)) { if (!user_mode(regs)) goto no_context; return 0; } /* * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk of * starvation. */ if (mm_flags & FAULT_FLAG_ALLOW_RETRY) { mm_flags &= ~FAULT_FLAG_ALLOW_RETRY; mm_flags |= FAULT_FLAG_TRIED; goto retry; } } up_read(&mm->mmap_sem); /* * Handle the "normal" (no error) case first. */ if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP | VM_FAULT_BADACCESS)))) { /* * Major/minor page fault accounting is only done * once. If we go through a retry, it is extremely * likely that the page will be found in page cache at * that point. */ if (major) { tsk->maj_flt++; perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, addr); } else { tsk->min_flt++; perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, addr); } return 0; } /* * If we are in kernel mode at this point, we have no context to * handle this fault with. */ if (!user_mode(regs)) goto no_context; if (fault & VM_FAULT_OOM) { /* * We ran out of memory, call the OOM killer, and return to * userspace (which will retry the fault, or kill us if we got * oom-killed). */ pagefault_out_of_memory(); return 0; } if (fault & VM_FAULT_SIGBUS) { /* * We had some memory, but were unable to successfully fix up * this page fault. */ sig = SIGBUS; code = BUS_ADRERR; } else if (fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) { sig = SIGBUS; code = BUS_MCEERR_AR; } else { /* * Something tried to access memory that isn't in our memory * map. */ sig = SIGSEGV; code = fault == VM_FAULT_BADACCESS ? SEGV_ACCERR : SEGV_MAPERR; } __do_user_fault(tsk, addr, esr, sig, code, regs, fault); return 0; no_context: __do_kernel_fault(addr, esr, regs); return 0; } static int __kprobes do_translation_fault(unsigned long addr, unsigned int esr, struct pt_regs *regs) { if (addr < TASK_SIZE) return do_page_fault(addr, esr, regs); do_bad_area(addr, esr, regs); return 0; } static int do_alignment_fault(unsigned long addr, unsigned int esr, struct pt_regs *regs) { do_bad_area(addr, esr, regs); return 0; } static int do_bad(unsigned long addr, unsigned int esr, struct pt_regs *regs) { return 1; /* "fault" */ } static int do_sea(unsigned long addr, unsigned int esr, struct pt_regs *regs) { struct siginfo info; const struct fault_info *inf; int ret = 0; inf = esr_to_fault_info(esr); pr_err("Synchronous External Abort: %s (0x%08x) at 0x%016lx\n", inf->name, esr, addr); /* * Synchronous aborts may interrupt code which had interrupts masked. * Before calling out into the wider kernel tell the interested * subsystems. */ if (IS_ENABLED(CONFIG_ACPI_APEI_SEA)) { if (interrupts_enabled(regs)) nmi_enter(); ret = ghes_notify_sea(); if (interrupts_enabled(regs)) nmi_exit(); } info.si_signo = SIGBUS; info.si_errno = 0; info.si_code = 0; if (esr & ESR_ELx_FnV) info.si_addr = NULL; else info.si_addr = (void __user *)addr; arm64_notify_die("", regs, &info, esr); return ret; } static const struct fault_info fault_info[] = { { do_bad, SIGBUS, 0, "ttbr address size fault" }, { do_bad, SIGBUS, 0, "level 1 address size fault" }, { do_bad, SIGBUS, 0, "level 2 address size fault" }, { do_bad, SIGBUS, 0, "level 3 address size fault" }, { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 0 translation fault" }, { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 1 translation fault" }, { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 2 translation fault" }, { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 3 translation fault" }, { do_bad, SIGBUS, 0, "unknown 8" }, { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 access flag fault" }, { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 access flag fault" }, { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 access flag fault" }, { do_bad, SIGBUS, 0, "unknown 12" }, { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 permission fault" }, { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 permission fault" }, { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 permission fault" }, { do_sea, SIGBUS, 0, "synchronous external abort" }, { do_bad, SIGBUS, 0, "unknown 17" }, { do_bad, SIGBUS, 0, "unknown 18" }, { do_bad, SIGBUS, 0, "unknown 19" }, { do_sea, SIGBUS, 0, "level 0 (translation table walk)" }, { do_sea, SIGBUS, 0, "level 1 (translation table walk)" }, { do_sea, SIGBUS, 0, "level 2 (translation table walk)" }, { do_sea, SIGBUS, 0, "level 3 (translation table walk)" }, { do_sea, SIGBUS, 0, "synchronous parity or ECC error" }, // Reserved when RAS is implemented { do_bad, SIGBUS, 0, "unknown 25" }, { do_bad, SIGBUS, 0, "unknown 26" }, { do_bad, SIGBUS, 0, "unknown 27" }, { do_sea, SIGBUS, 0, "level 0 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented { do_sea, SIGBUS, 0, "level 1 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented { do_sea, SIGBUS, 0, "level 2 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented { do_sea, SIGBUS, 0, "level 3 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented { do_bad, SIGBUS, 0, "unknown 32" }, { do_alignment_fault, SIGBUS, BUS_ADRALN, "alignment fault" }, { do_bad, SIGBUS, 0, "unknown 34" }, { do_bad, SIGBUS, 0, "unknown 35" }, { do_bad, SIGBUS, 0, "unknown 36" }, { do_bad, SIGBUS, 0, "unknown 37" }, { do_bad, SIGBUS, 0, "unknown 38" }, { do_bad, SIGBUS, 0, "unknown 39" }, { do_bad, SIGBUS, 0, "unknown 40" }, { do_bad, SIGBUS, 0, "unknown 41" }, { do_bad, SIGBUS, 0, "unknown 42" }, { do_bad, SIGBUS, 0, "unknown 43" }, { do_bad, SIGBUS, 0, "unknown 44" }, { do_bad, SIGBUS, 0, "unknown 45" }, { do_bad, SIGBUS, 0, "unknown 46" }, { do_bad, SIGBUS, 0, "unknown 47" }, { do_bad, SIGBUS, 0, "TLB conflict abort" }, { do_bad, SIGBUS, 0, "Unsupported atomic hardware update fault" }, { do_bad, SIGBUS, 0, "unknown 50" }, { do_bad, SIGBUS, 0, "unknown 51" }, { do_bad, SIGBUS, 0, "implementation fault (lockdown abort)" }, { do_bad, SIGBUS, 0, "implementation fault (unsupported exclusive)" }, { do_bad, SIGBUS, 0, "unknown 54" }, { do_bad, SIGBUS, 0, "unknown 55" }, { do_bad, SIGBUS, 0, "unknown 56" }, { do_bad, SIGBUS, 0, "unknown 57" }, { do_bad, SIGBUS, 0, "unknown 58" }, { do_bad, SIGBUS, 0, "unknown 59" }, { do_bad, SIGBUS, 0, "unknown 60" }, { do_bad, SIGBUS, 0, "section domain fault" }, { do_bad, SIGBUS, 0, "page domain fault" }, { do_bad, SIGBUS, 0, "unknown 63" }, }; int handle_guest_sea(phys_addr_t addr, unsigned int esr) { int ret = -ENOENT; if (IS_ENABLED(CONFIG_ACPI_APEI_SEA)) ret = ghes_notify_sea(); return ret; } asmlinkage void __exception do_mem_abort(unsigned long addr, unsigned int esr, struct pt_regs *regs) { const struct fault_info *inf = esr_to_fault_info(esr); struct siginfo info; if (!inf->fn(addr, esr, regs)) return; pr_alert("Unhandled fault: %s at 0x%016lx\n", inf->name, addr); mem_abort_decode(esr); if (!user_mode(regs)) show_pte(addr); info.si_signo = inf->sig; info.si_errno = 0; info.si_code = inf->code; info.si_addr = (void __user *)addr; arm64_notify_die("", regs, &info, esr); } asmlinkage void __exception do_sp_pc_abort(unsigned long addr, unsigned int esr, struct pt_regs *regs) { struct siginfo info; struct task_struct *tsk = current; if (show_unhandled_signals && unhandled_signal(tsk, SIGBUS)) pr_info_ratelimited("%s[%d]: %s exception: pc=%p sp=%p\n", tsk->comm, task_pid_nr(tsk), esr_get_class_string(esr), (void *)regs->pc, (void *)regs->sp); info.si_signo = SIGBUS; info.si_errno = 0; info.si_code = BUS_ADRALN; info.si_addr = (void __user *)addr; arm64_notify_die("Oops - SP/PC alignment exception", regs, &info, esr); } int __init early_brk64(unsigned long addr, unsigned int esr, struct pt_regs *regs); /* * __refdata because early_brk64 is __init, but the reference to it is * clobbered at arch_initcall time. * See traps.c and debug-monitors.c:debug_traps_init(). */ static struct fault_info __refdata debug_fault_info[] = { { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware breakpoint" }, { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware single-step" }, { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware watchpoint" }, { do_bad, SIGBUS, 0, "unknown 3" }, { do_bad, SIGTRAP, TRAP_BRKPT, "aarch32 BKPT" }, { do_bad, SIGTRAP, 0, "aarch32 vector catch" }, { early_brk64, SIGTRAP, TRAP_BRKPT, "aarch64 BRK" }, { do_bad, SIGBUS, 0, "unknown 7" }, }; void __init hook_debug_fault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *), int sig, int code, const char *name) { BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info)); debug_fault_info[nr].fn = fn; debug_fault_info[nr].sig = sig; debug_fault_info[nr].code = code; debug_fault_info[nr].name = name; } asmlinkage int __exception do_debug_exception(unsigned long addr, unsigned int esr, struct pt_regs *regs) { const struct fault_info *inf = debug_fault_info + DBG_ESR_EVT(esr); struct siginfo info; int rv; /* * Tell lockdep we disabled irqs in entry.S. Do nothing if they were * already disabled to preserve the last enabled/disabled addresses. */ if (interrupts_enabled(regs)) trace_hardirqs_off(); if (!inf->fn(addr, esr, regs)) { rv = 1; } else { pr_alert("Unhandled debug exception: %s (0x%08x) at 0x%016lx\n", inf->name, esr, addr); info.si_signo = inf->sig; info.si_errno = 0; info.si_code = inf->code; info.si_addr = (void __user *)addr; arm64_notify_die("", regs, &info, 0); rv = 0; } if (interrupts_enabled(regs)) trace_hardirqs_on(); return rv; } NOKPROBE_SYMBOL(do_debug_exception); #ifdef CONFIG_ARM64_PAN int cpu_enable_pan(void *__unused) { /* * We modify PSTATE. This won't work from irq context as the PSTATE * is discarded once we return from the exception. */ WARN_ON_ONCE(in_interrupt()); config_sctlr_el1(SCTLR_EL1_SPAN, 0); asm(SET_PSTATE_PAN(1)); return 0; } #endif /* CONFIG_ARM64_PAN */