/* * Blackfin performance counters * * Copyright 2011 Analog Devices Inc. * * Ripped from SuperH version: * * Copyright (C) 2009 Paul Mundt * * Heavily based on the x86 and PowerPC implementations. * * x86: * Copyright (C) 2008 Thomas Gleixner * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar * Copyright (C) 2009 Jaswinder Singh Rajput * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra * Copyright (C) 2009 Intel Corporation, * * ppc: * Copyright 2008-2009 Paul Mackerras, IBM Corporation. * * Licensed under the GPL-2 or later. */ #include #include #include #include #include /* * We have two counters, and each counter can support an event type. * The 'o' is PFCNTx=1 and 's' is PFCNTx=0 * * 0x04 o pc invariant branches * 0x06 o mispredicted branches * 0x09 o predicted branches taken * 0x0B o EXCPT insn * 0x0C o CSYNC/SSYNC insn * 0x0D o Insns committed * 0x0E o Interrupts taken * 0x0F o Misaligned address exceptions * 0x80 o Code memory fetches stalled due to DMA * 0x83 o 64bit insn fetches delivered * 0x9A o data cache fills (bank a) * 0x9B o data cache fills (bank b) * 0x9C o data cache lines evicted (bank a) * 0x9D o data cache lines evicted (bank b) * 0x9E o data cache high priority fills * 0x9F o data cache low priority fills * 0x00 s loop 0 iterations * 0x01 s loop 1 iterations * 0x0A s CSYNC/SSYNC stalls * 0x10 s DAG read/after write hazards * 0x13 s RAW data hazards * 0x81 s code TAG stalls * 0x82 s code fill stalls * 0x90 s processor to memory stalls * 0x91 s data memory stalls not hidden by 0x90 * 0x92 s data store buffer full stalls * 0x93 s data memory write buffer full stalls due to high->low priority * 0x95 s data memory fill buffer stalls * 0x96 s data TAG collision stalls * 0x97 s data collision stalls * 0x98 s data stalls * 0x99 s data stalls sent to processor */ static const int event_map[] = { /* use CYCLES cpu register */ [PERF_COUNT_HW_CPU_CYCLES] = -1, [PERF_COUNT_HW_INSTRUCTIONS] = 0x0D, [PERF_COUNT_HW_CACHE_REFERENCES] = -1, [PERF_COUNT_HW_CACHE_MISSES] = 0x83, [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x09, [PERF_COUNT_HW_BRANCH_MISSES] = 0x06, [PERF_COUNT_HW_BUS_CYCLES] = -1, }; #define C(x) PERF_COUNT_HW_CACHE_##x static const int cache_events[PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [C(L1D)] = { /* Data bank A */ [C(OP_READ)] = { [C(RESULT_ACCESS)] = 0, [C(RESULT_MISS) ] = 0x9A, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = 0, [C(RESULT_MISS) ] = 0, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = 0, [C(RESULT_MISS) ] = 0, }, }, [C(L1I)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = 0, [C(RESULT_MISS) ] = 0x83, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = -1, [C(RESULT_MISS) ] = -1, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = 0, [C(RESULT_MISS) ] = 0, }, }, [C(LL)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = -1, [C(RESULT_MISS) ] = -1, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = -1, [C(RESULT_MISS) ] = -1, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = -1, [C(RESULT_MISS) ] = -1, }, }, [C(DTLB)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = -1, [C(RESULT_MISS) ] = -1, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = -1, [C(RESULT_MISS) ] = -1, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = -1, [C(RESULT_MISS) ] = -1, }, }, [C(ITLB)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = -1, [C(RESULT_MISS) ] = -1, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = -1, [C(RESULT_MISS) ] = -1, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = -1, [C(RESULT_MISS) ] = -1, }, }, [C(BPU)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = -1, [C(RESULT_MISS) ] = -1, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = -1, [C(RESULT_MISS) ] = -1, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = -1, [C(RESULT_MISS) ] = -1, }, }, }; const char *perf_pmu_name(void) { return "bfin"; } EXPORT_SYMBOL(perf_pmu_name); int perf_num_counters(void) { return ARRAY_SIZE(event_map); } EXPORT_SYMBOL(perf_num_counters); static u64 bfin_pfmon_read(int idx) { return bfin_read32(PFCNTR0 + (idx * 4)); } static void bfin_pfmon_disable(struct hw_perf_event *hwc, int idx) { bfin_write_PFCTL(bfin_read_PFCTL() & ~PFCEN(idx, PFCEN_MASK)); } static void bfin_pfmon_enable(struct hw_perf_event *hwc, int idx) { u32 val, mask; val = PFPWR; if (idx) { mask = ~(PFCNT1 | PFMON1 | PFCEN1 | PEMUSW1); /* The packed config is for event0, so shift it to event1 slots */ val |= (hwc->config << (PFMON1_P - PFMON0_P)); val |= (hwc->config & PFCNT0) << (PFCNT1_P - PFCNT0_P); bfin_write_PFCNTR1(0); } else { mask = ~(PFCNT0 | PFMON0 | PFCEN0 | PEMUSW0); val |= hwc->config; bfin_write_PFCNTR0(0); } bfin_write_PFCTL((bfin_read_PFCTL() & mask) | val); } static void bfin_pfmon_disable_all(void) { bfin_write_PFCTL(bfin_read_PFCTL() & ~PFPWR); } static void bfin_pfmon_enable_all(void) { bfin_write_PFCTL(bfin_read_PFCTL() | PFPWR); } struct cpu_hw_events { struct perf_event *events[MAX_HWEVENTS]; unsigned long used_mask[BITS_TO_LONGS(MAX_HWEVENTS)]; }; DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events); static int hw_perf_cache_event(int config, int *evp) { unsigned long type, op, result; int ev; /* unpack config */ type = config & 0xff; op = (config >> 8) & 0xff; result = (config >> 16) & 0xff; if (type >= PERF_COUNT_HW_CACHE_MAX || op >= PERF_COUNT_HW_CACHE_OP_MAX || result >= PERF_COUNT_HW_CACHE_RESULT_MAX) return -EINVAL; ev = cache_events[type][op][result]; if (ev == 0) return -EOPNOTSUPP; if (ev == -1) return -EINVAL; *evp = ev; return 0; } static void bfin_perf_event_update(struct perf_event *event, struct hw_perf_event *hwc, int idx) { u64 prev_raw_count, new_raw_count; s64 delta; int shift = 0; /* * Depending on the counter configuration, they may or may not * be chained, in which case the previous counter value can be * updated underneath us if the lower-half overflows. * * Our tactic to handle this is to first atomically read and * exchange a new raw count - then add that new-prev delta * count to the generic counter atomically. * * As there is no interrupt associated with the overflow events, * this is the simplest approach for maintaining consistency. */ again: prev_raw_count = local64_read(&hwc->prev_count); new_raw_count = bfin_pfmon_read(idx); if (local64_cmpxchg(&hwc->prev_count, prev_raw_count, new_raw_count) != prev_raw_count) goto again; /* * Now we have the new raw value and have updated the prev * timestamp already. We can now calculate the elapsed delta * (counter-)time and add that to the generic counter. * * Careful, not all hw sign-extends above the physical width * of the count. */ delta = (new_raw_count << shift) - (prev_raw_count << shift); delta >>= shift; local64_add(delta, &event->count); } static void bfin_pmu_stop(struct perf_event *event, int flags) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); struct hw_perf_event *hwc = &event->hw; int idx = hwc->idx; if (!(event->hw.state & PERF_HES_STOPPED)) { bfin_pfmon_disable(hwc, idx); cpuc->events[idx] = NULL; event->hw.state |= PERF_HES_STOPPED; } if ((flags & PERF_EF_UPDATE) && !(event->hw.state & PERF_HES_UPTODATE)) { bfin_perf_event_update(event, &event->hw, idx); event->hw.state |= PERF_HES_UPTODATE; } } static void bfin_pmu_start(struct perf_event *event, int flags) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); struct hw_perf_event *hwc = &event->hw; int idx = hwc->idx; if (WARN_ON_ONCE(idx == -1)) return; if (flags & PERF_EF_RELOAD) WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE)); cpuc->events[idx] = event; event->hw.state = 0; bfin_pfmon_enable(hwc, idx); } static void bfin_pmu_del(struct perf_event *event, int flags) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); bfin_pmu_stop(event, PERF_EF_UPDATE); __clear_bit(event->hw.idx, cpuc->used_mask); perf_event_update_userpage(event); } static int bfin_pmu_add(struct perf_event *event, int flags) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); struct hw_perf_event *hwc = &event->hw; int idx = hwc->idx; int ret = -EAGAIN; perf_pmu_disable(event->pmu); if (__test_and_set_bit(idx, cpuc->used_mask)) { idx = find_first_zero_bit(cpuc->used_mask, MAX_HWEVENTS); if (idx == MAX_HWEVENTS) goto out; __set_bit(idx, cpuc->used_mask); hwc->idx = idx; } bfin_pfmon_disable(hwc, idx); event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED; if (flags & PERF_EF_START) bfin_pmu_start(event, PERF_EF_RELOAD); perf_event_update_userpage(event); ret = 0; out: perf_pmu_enable(event->pmu); return ret; } static void bfin_pmu_read(struct perf_event *event) { bfin_perf_event_update(event, &event->hw, event->hw.idx); } static int bfin_pmu_event_init(struct perf_event *event) { struct perf_event_attr *attr = &event->attr; struct hw_perf_event *hwc = &event->hw; int config = -1; int ret; if (attr->exclude_hv || attr->exclude_idle) return -EPERM; ret = 0; switch (attr->type) { case PERF_TYPE_RAW: config = PFMON(0, attr->config & PFMON_MASK) | PFCNT(0, !(attr->config & 0x100)); break; case PERF_TYPE_HW_CACHE: ret = hw_perf_cache_event(attr->config, &config); break; case PERF_TYPE_HARDWARE: if (attr->config >= ARRAY_SIZE(event_map)) return -EINVAL; config = event_map[attr->config]; break; } if (config == -1) return -EINVAL; if (!attr->exclude_kernel) config |= PFCEN(0, PFCEN_ENABLE_SUPV); if (!attr->exclude_user) config |= PFCEN(0, PFCEN_ENABLE_USER); hwc->config |= config; return ret; } static void bfin_pmu_enable(struct pmu *pmu) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); struct perf_event *event; struct hw_perf_event *hwc; int i; for (i = 0; i < MAX_HWEVENTS; ++i) { event = cpuc->events[i]; if (!event) continue; hwc = &event->hw; bfin_pfmon_enable(hwc, hwc->idx); } bfin_pfmon_enable_all(); } static void bfin_pmu_disable(struct pmu *pmu) { bfin_pfmon_disable_all(); } static struct pmu pmu = { .pmu_enable = bfin_pmu_enable, .pmu_disable = bfin_pmu_disable, .event_init = bfin_pmu_event_init, .add = bfin_pmu_add, .del = bfin_pmu_del, .start = bfin_pmu_start, .stop = bfin_pmu_stop, .read = bfin_pmu_read, }; static int bfin_pmu_prepare_cpu(unsigned int cpu) { struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu); bfin_write_PFCTL(0); memset(cpuhw, 0, sizeof(struct cpu_hw_events)); return 0; } static int __init bfin_pmu_init(void) { int ret; /* * All of the on-chip counters are "limited", in that they have * no interrupts, and are therefore unable to do sampling without * further work and timer assistance. */ pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT; ret = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW); if (!ret) cpuhp_setup_state(CPUHP_PERF_BFIN,"perf/bfin:starting", bfin_pmu_prepare_cpu, NULL); return ret; } early_initcall(bfin_pmu_init);