/* * linux/arch/m68k/kernel/time.c * * Copyright (C) 1991, 1992, 1995 Linus Torvalds * * This file contains the m68k-specific time handling details. * Most of the stuff is located in the machine specific files. * * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 * "A Kernel Model for Precision Timekeeping" by Dave Mills */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include unsigned long (*mach_random_get_entropy)(void); EXPORT_SYMBOL_GPL(mach_random_get_entropy); /* * timer_interrupt() needs to keep up the real-time clock, * as well as call the "xtime_update()" routine every clocktick */ static irqreturn_t timer_interrupt(int irq, void *dummy) { xtime_update(1); update_process_times(user_mode(get_irq_regs())); profile_tick(CPU_PROFILING); #ifdef CONFIG_HEARTBEAT /* use power LED as a heartbeat instead -- much more useful for debugging -- based on the version for PReP by Cort */ /* acts like an actual heart beat -- ie thump-thump-pause... */ if (mach_heartbeat) { static unsigned cnt = 0, period = 0, dist = 0; if (cnt == 0 || cnt == dist) mach_heartbeat( 1 ); else if (cnt == 7 || cnt == dist+7) mach_heartbeat( 0 ); if (++cnt > period) { cnt = 0; /* The hyperbolic function below modifies the heartbeat period * length in dependency of the current (5min) load. It goes * through the points f(0)=126, f(1)=86, f(5)=51, * f(inf)->30. */ period = ((672<tv_sec = 0; ts->tv_nsec = 0; if (mach_hwclk) { mach_hwclk(0, &time); if ((time.tm_year += 1900) < 1970) time.tm_year += 100; ts->tv_sec = mktime(time.tm_year, time.tm_mon, time.tm_mday, time.tm_hour, time.tm_min, time.tm_sec); } } #if defined(CONFIG_ARCH_USES_GETTIMEOFFSET) && IS_ENABLED(CONFIG_RTC_DRV_GENERIC) static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm) { mach_hwclk(0, tm); return rtc_valid_tm(tm); } static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm) { if (mach_hwclk(1, tm) < 0) return -EOPNOTSUPP; return 0; } static int rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg) { struct rtc_pll_info pll; struct rtc_pll_info __user *argp = (void __user *)arg; switch (cmd) { case RTC_PLL_GET: if (!mach_get_rtc_pll || mach_get_rtc_pll(&pll)) return -EINVAL; return copy_to_user(argp, &pll, sizeof pll) ? -EFAULT : 0; case RTC_PLL_SET: if (!mach_set_rtc_pll) return -EINVAL; if (!capable(CAP_SYS_TIME)) return -EACCES; if (copy_from_user(&pll, argp, sizeof(pll))) return -EFAULT; return mach_set_rtc_pll(&pll); } return -ENOIOCTLCMD; } static const struct rtc_class_ops generic_rtc_ops = { .ioctl = rtc_ioctl, .read_time = rtc_generic_get_time, .set_time = rtc_generic_set_time, }; static int __init rtc_init(void) { struct platform_device *pdev; if (!mach_hwclk) return -ENODEV; pdev = platform_device_register_data(NULL, "rtc-generic", -1, &generic_rtc_ops, sizeof(generic_rtc_ops)); return PTR_ERR_OR_ZERO(pdev); } module_init(rtc_init); #endif /* CONFIG_ARCH_USES_GETTIMEOFFSET */ void __init time_init(void) { mach_sched_init(timer_interrupt); }