/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * KVM/MIPS: Deliver/Emulate exceptions to the guest kernel * * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved. * Authors: Sanjay Lal */ #include #include #include #include #include #include #include #include #include "interrupt.h" static gpa_t kvm_trap_emul_gva_to_gpa_cb(gva_t gva) { gpa_t gpa; gva_t kseg = KSEGX(gva); gva_t gkseg = KVM_GUEST_KSEGX(gva); if ((kseg == CKSEG0) || (kseg == CKSEG1)) gpa = CPHYSADDR(gva); else if (gkseg == KVM_GUEST_KSEG0) gpa = KVM_GUEST_CPHYSADDR(gva); else { kvm_err("%s: cannot find GPA for GVA: %#lx\n", __func__, gva); kvm_mips_dump_host_tlbs(); gpa = KVM_INVALID_ADDR; } kvm_debug("%s: gva %#lx, gpa: %#llx\n", __func__, gva, gpa); return gpa; } static int kvm_trap_emul_no_handler(struct kvm_vcpu *vcpu) { u32 __user *opc = (u32 __user *) vcpu->arch.pc; u32 cause = vcpu->arch.host_cp0_cause; u32 exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE; unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr; u32 inst = 0; /* * Fetch the instruction. */ if (cause & CAUSEF_BD) opc += 1; kvm_get_badinstr(opc, vcpu, &inst); kvm_err("Exception Code: %d not handled @ PC: %p, inst: 0x%08x BadVaddr: %#lx Status: %#x\n", exccode, opc, inst, badvaddr, kvm_read_c0_guest_status(vcpu->arch.cop0)); kvm_arch_vcpu_dump_regs(vcpu); vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; return RESUME_HOST; } static int kvm_trap_emul_handle_cop_unusable(struct kvm_vcpu *vcpu) { struct mips_coproc *cop0 = vcpu->arch.cop0; struct kvm_run *run = vcpu->run; u32 __user *opc = (u32 __user *) vcpu->arch.pc; u32 cause = vcpu->arch.host_cp0_cause; enum emulation_result er = EMULATE_DONE; int ret = RESUME_GUEST; if (((cause & CAUSEF_CE) >> CAUSEB_CE) == 1) { /* FPU Unusable */ if (!kvm_mips_guest_has_fpu(&vcpu->arch) || (kvm_read_c0_guest_status(cop0) & ST0_CU1) == 0) { /* * Unusable/no FPU in guest: * deliver guest COP1 Unusable Exception */ er = kvm_mips_emulate_fpu_exc(cause, opc, run, vcpu); } else { /* Restore FPU state */ kvm_own_fpu(vcpu); er = EMULATE_DONE; } } else { er = kvm_mips_emulate_inst(cause, opc, run, vcpu); } switch (er) { case EMULATE_DONE: ret = RESUME_GUEST; break; case EMULATE_FAIL: run->exit_reason = KVM_EXIT_INTERNAL_ERROR; ret = RESUME_HOST; break; case EMULATE_WAIT: run->exit_reason = KVM_EXIT_INTR; ret = RESUME_HOST; break; case EMULATE_HYPERCALL: ret = kvm_mips_handle_hypcall(vcpu); break; default: BUG(); } return ret; } static int kvm_mips_bad_load(u32 cause, u32 *opc, struct kvm_run *run, struct kvm_vcpu *vcpu) { enum emulation_result er; union mips_instruction inst; int err; /* A code fetch fault doesn't count as an MMIO */ if (kvm_is_ifetch_fault(&vcpu->arch)) { run->exit_reason = KVM_EXIT_INTERNAL_ERROR; return RESUME_HOST; } /* Fetch the instruction. */ if (cause & CAUSEF_BD) opc += 1; err = kvm_get_badinstr(opc, vcpu, &inst.word); if (err) { run->exit_reason = KVM_EXIT_INTERNAL_ERROR; return RESUME_HOST; } /* Emulate the load */ er = kvm_mips_emulate_load(inst, cause, run, vcpu); if (er == EMULATE_FAIL) { kvm_err("Emulate load from MMIO space failed\n"); run->exit_reason = KVM_EXIT_INTERNAL_ERROR; } else { run->exit_reason = KVM_EXIT_MMIO; } return RESUME_HOST; } static int kvm_mips_bad_store(u32 cause, u32 *opc, struct kvm_run *run, struct kvm_vcpu *vcpu) { enum emulation_result er; union mips_instruction inst; int err; /* Fetch the instruction. */ if (cause & CAUSEF_BD) opc += 1; err = kvm_get_badinstr(opc, vcpu, &inst.word); if (err) { run->exit_reason = KVM_EXIT_INTERNAL_ERROR; return RESUME_HOST; } /* Emulate the store */ er = kvm_mips_emulate_store(inst, cause, run, vcpu); if (er == EMULATE_FAIL) { kvm_err("Emulate store to MMIO space failed\n"); run->exit_reason = KVM_EXIT_INTERNAL_ERROR; } else { run->exit_reason = KVM_EXIT_MMIO; } return RESUME_HOST; } static int kvm_mips_bad_access(u32 cause, u32 *opc, struct kvm_run *run, struct kvm_vcpu *vcpu, bool store) { if (store) return kvm_mips_bad_store(cause, opc, run, vcpu); else return kvm_mips_bad_load(cause, opc, run, vcpu); } static int kvm_trap_emul_handle_tlb_mod(struct kvm_vcpu *vcpu) { struct mips_coproc *cop0 = vcpu->arch.cop0; struct kvm_run *run = vcpu->run; u32 __user *opc = (u32 __user *) vcpu->arch.pc; unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr; u32 cause = vcpu->arch.host_cp0_cause; struct kvm_mips_tlb *tlb; unsigned long entryhi; int index; if (KVM_GUEST_KSEGX(badvaddr) < KVM_GUEST_KSEG0 || KVM_GUEST_KSEGX(badvaddr) == KVM_GUEST_KSEG23) { /* * First find the mapping in the guest TLB. If the failure to * write was due to the guest TLB, it should be up to the guest * to handle it. */ entryhi = (badvaddr & VPN2_MASK) | (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID); index = kvm_mips_guest_tlb_lookup(vcpu, entryhi); /* * These should never happen. * They would indicate stale host TLB entries. */ if (unlikely(index < 0)) { run->exit_reason = KVM_EXIT_INTERNAL_ERROR; return RESUME_HOST; } tlb = vcpu->arch.guest_tlb + index; if (unlikely(!TLB_IS_VALID(*tlb, badvaddr))) { run->exit_reason = KVM_EXIT_INTERNAL_ERROR; return RESUME_HOST; } /* * Guest entry not dirty? That would explain the TLB modified * exception. Relay that on to the guest so it can handle it. */ if (!TLB_IS_DIRTY(*tlb, badvaddr)) { kvm_mips_emulate_tlbmod(cause, opc, run, vcpu); return RESUME_GUEST; } if (kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb, badvaddr, true)) /* Not writable, needs handling as MMIO */ return kvm_mips_bad_store(cause, opc, run, vcpu); return RESUME_GUEST; } else if (KVM_GUEST_KSEGX(badvaddr) == KVM_GUEST_KSEG0) { if (kvm_mips_handle_kseg0_tlb_fault(badvaddr, vcpu, true) < 0) /* Not writable, needs handling as MMIO */ return kvm_mips_bad_store(cause, opc, run, vcpu); return RESUME_GUEST; } else { /* host kernel addresses are all handled as MMIO */ return kvm_mips_bad_store(cause, opc, run, vcpu); } } static int kvm_trap_emul_handle_tlb_miss(struct kvm_vcpu *vcpu, bool store) { struct kvm_run *run = vcpu->run; u32 __user *opc = (u32 __user *) vcpu->arch.pc; unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr; u32 cause = vcpu->arch.host_cp0_cause; enum emulation_result er = EMULATE_DONE; int ret = RESUME_GUEST; if (((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) && KVM_GUEST_KERNEL_MODE(vcpu)) { if (kvm_mips_handle_commpage_tlb_fault(badvaddr, vcpu) < 0) { run->exit_reason = KVM_EXIT_INTERNAL_ERROR; ret = RESUME_HOST; } } else if (KVM_GUEST_KSEGX(badvaddr) < KVM_GUEST_KSEG0 || KVM_GUEST_KSEGX(badvaddr) == KVM_GUEST_KSEG23) { kvm_debug("USER ADDR TLB %s fault: cause %#x, PC: %p, BadVaddr: %#lx\n", store ? "ST" : "LD", cause, opc, badvaddr); /* * User Address (UA) fault, this could happen if * (1) TLB entry not present/valid in both Guest and shadow host * TLBs, in this case we pass on the fault to the guest * kernel and let it handle it. * (2) TLB entry is present in the Guest TLB but not in the * shadow, in this case we inject the TLB from the Guest TLB * into the shadow host TLB */ er = kvm_mips_handle_tlbmiss(cause, opc, run, vcpu, store); if (er == EMULATE_DONE) ret = RESUME_GUEST; else { run->exit_reason = KVM_EXIT_INTERNAL_ERROR; ret = RESUME_HOST; } } else if (KVM_GUEST_KSEGX(badvaddr) == KVM_GUEST_KSEG0) { /* * All KSEG0 faults are handled by KVM, as the guest kernel does * not expect to ever get them */ if (kvm_mips_handle_kseg0_tlb_fault(badvaddr, vcpu, store) < 0) ret = kvm_mips_bad_access(cause, opc, run, vcpu, store); } else if (KVM_GUEST_KERNEL_MODE(vcpu) && (KSEGX(badvaddr) == CKSEG0 || KSEGX(badvaddr) == CKSEG1)) { /* * With EVA we may get a TLB exception instead of an address * error when the guest performs MMIO to KSeg1 addresses. */ ret = kvm_mips_bad_access(cause, opc, run, vcpu, store); } else { kvm_err("Illegal TLB %s fault address , cause %#x, PC: %p, BadVaddr: %#lx\n", store ? "ST" : "LD", cause, opc, badvaddr); kvm_mips_dump_host_tlbs(); kvm_arch_vcpu_dump_regs(vcpu); run->exit_reason = KVM_EXIT_INTERNAL_ERROR; ret = RESUME_HOST; } return ret; } static int kvm_trap_emul_handle_tlb_st_miss(struct kvm_vcpu *vcpu) { return kvm_trap_emul_handle_tlb_miss(vcpu, true); } static int kvm_trap_emul_handle_tlb_ld_miss(struct kvm_vcpu *vcpu) { return kvm_trap_emul_handle_tlb_miss(vcpu, false); } static int kvm_trap_emul_handle_addr_err_st(struct kvm_vcpu *vcpu) { struct kvm_run *run = vcpu->run; u32 __user *opc = (u32 __user *) vcpu->arch.pc; unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr; u32 cause = vcpu->arch.host_cp0_cause; int ret = RESUME_GUEST; if (KVM_GUEST_KERNEL_MODE(vcpu) && (KSEGX(badvaddr) == CKSEG0 || KSEGX(badvaddr) == CKSEG1)) { ret = kvm_mips_bad_store(cause, opc, run, vcpu); } else { kvm_err("Address Error (STORE): cause %#x, PC: %p, BadVaddr: %#lx\n", cause, opc, badvaddr); run->exit_reason = KVM_EXIT_INTERNAL_ERROR; ret = RESUME_HOST; } return ret; } static int kvm_trap_emul_handle_addr_err_ld(struct kvm_vcpu *vcpu) { struct kvm_run *run = vcpu->run; u32 __user *opc = (u32 __user *) vcpu->arch.pc; unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr; u32 cause = vcpu->arch.host_cp0_cause; int ret = RESUME_GUEST; if (KSEGX(badvaddr) == CKSEG0 || KSEGX(badvaddr) == CKSEG1) { ret = kvm_mips_bad_load(cause, opc, run, vcpu); } else { kvm_err("Address Error (LOAD): cause %#x, PC: %p, BadVaddr: %#lx\n", cause, opc, badvaddr); run->exit_reason = KVM_EXIT_INTERNAL_ERROR; ret = RESUME_HOST; } return ret; } static int kvm_trap_emul_handle_syscall(struct kvm_vcpu *vcpu) { struct kvm_run *run = vcpu->run; u32 __user *opc = (u32 __user *) vcpu->arch.pc; u32 cause = vcpu->arch.host_cp0_cause; enum emulation_result er = EMULATE_DONE; int ret = RESUME_GUEST; er = kvm_mips_emulate_syscall(cause, opc, run, vcpu); if (er == EMULATE_DONE) ret = RESUME_GUEST; else { run->exit_reason = KVM_EXIT_INTERNAL_ERROR; ret = RESUME_HOST; } return ret; } static int kvm_trap_emul_handle_res_inst(struct kvm_vcpu *vcpu) { struct kvm_run *run = vcpu->run; u32 __user *opc = (u32 __user *) vcpu->arch.pc; u32 cause = vcpu->arch.host_cp0_cause; enum emulation_result er = EMULATE_DONE; int ret = RESUME_GUEST; er = kvm_mips_handle_ri(cause, opc, run, vcpu); if (er == EMULATE_DONE) ret = RESUME_GUEST; else { run->exit_reason = KVM_EXIT_INTERNAL_ERROR; ret = RESUME_HOST; } return ret; } static int kvm_trap_emul_handle_break(struct kvm_vcpu *vcpu) { struct kvm_run *run = vcpu->run; u32 __user *opc = (u32 __user *) vcpu->arch.pc; u32 cause = vcpu->arch.host_cp0_cause; enum emulation_result er = EMULATE_DONE; int ret = RESUME_GUEST; er = kvm_mips_emulate_bp_exc(cause, opc, run, vcpu); if (er == EMULATE_DONE) ret = RESUME_GUEST; else { run->exit_reason = KVM_EXIT_INTERNAL_ERROR; ret = RESUME_HOST; } return ret; } static int kvm_trap_emul_handle_trap(struct kvm_vcpu *vcpu) { struct kvm_run *run = vcpu->run; u32 __user *opc = (u32 __user *)vcpu->arch.pc; u32 cause = vcpu->arch.host_cp0_cause; enum emulation_result er = EMULATE_DONE; int ret = RESUME_GUEST; er = kvm_mips_emulate_trap_exc(cause, opc, run, vcpu); if (er == EMULATE_DONE) { ret = RESUME_GUEST; } else { run->exit_reason = KVM_EXIT_INTERNAL_ERROR; ret = RESUME_HOST; } return ret; } static int kvm_trap_emul_handle_msa_fpe(struct kvm_vcpu *vcpu) { struct kvm_run *run = vcpu->run; u32 __user *opc = (u32 __user *)vcpu->arch.pc; u32 cause = vcpu->arch.host_cp0_cause; enum emulation_result er = EMULATE_DONE; int ret = RESUME_GUEST; er = kvm_mips_emulate_msafpe_exc(cause, opc, run, vcpu); if (er == EMULATE_DONE) { ret = RESUME_GUEST; } else { run->exit_reason = KVM_EXIT_INTERNAL_ERROR; ret = RESUME_HOST; } return ret; } static int kvm_trap_emul_handle_fpe(struct kvm_vcpu *vcpu) { struct kvm_run *run = vcpu->run; u32 __user *opc = (u32 __user *)vcpu->arch.pc; u32 cause = vcpu->arch.host_cp0_cause; enum emulation_result er = EMULATE_DONE; int ret = RESUME_GUEST; er = kvm_mips_emulate_fpe_exc(cause, opc, run, vcpu); if (er == EMULATE_DONE) { ret = RESUME_GUEST; } else { run->exit_reason = KVM_EXIT_INTERNAL_ERROR; ret = RESUME_HOST; } return ret; } /** * kvm_trap_emul_handle_msa_disabled() - Guest used MSA while disabled in root. * @vcpu: Virtual CPU context. * * Handle when the guest attempts to use MSA when it is disabled. */ static int kvm_trap_emul_handle_msa_disabled(struct kvm_vcpu *vcpu) { struct mips_coproc *cop0 = vcpu->arch.cop0; struct kvm_run *run = vcpu->run; u32 __user *opc = (u32 __user *) vcpu->arch.pc; u32 cause = vcpu->arch.host_cp0_cause; enum emulation_result er = EMULATE_DONE; int ret = RESUME_GUEST; if (!kvm_mips_guest_has_msa(&vcpu->arch) || (kvm_read_c0_guest_status(cop0) & (ST0_CU1 | ST0_FR)) == ST0_CU1) { /* * No MSA in guest, or FPU enabled and not in FR=1 mode, * guest reserved instruction exception */ er = kvm_mips_emulate_ri_exc(cause, opc, run, vcpu); } else if (!(kvm_read_c0_guest_config5(cop0) & MIPS_CONF5_MSAEN)) { /* MSA disabled by guest, guest MSA disabled exception */ er = kvm_mips_emulate_msadis_exc(cause, opc, run, vcpu); } else { /* Restore MSA/FPU state */ kvm_own_msa(vcpu); er = EMULATE_DONE; } switch (er) { case EMULATE_DONE: ret = RESUME_GUEST; break; case EMULATE_FAIL: run->exit_reason = KVM_EXIT_INTERNAL_ERROR; ret = RESUME_HOST; break; default: BUG(); } return ret; } static int kvm_trap_emul_hardware_enable(void) { return 0; } static void kvm_trap_emul_hardware_disable(void) { } static int kvm_trap_emul_check_extension(struct kvm *kvm, long ext) { int r; switch (ext) { case KVM_CAP_MIPS_TE: r = 1; break; default: r = 0; break; } return r; } static int kvm_trap_emul_vcpu_init(struct kvm_vcpu *vcpu) { struct mm_struct *kern_mm = &vcpu->arch.guest_kernel_mm; struct mm_struct *user_mm = &vcpu->arch.guest_user_mm; /* * Allocate GVA -> HPA page tables. * MIPS doesn't use the mm_struct pointer argument. */ kern_mm->pgd = pgd_alloc(kern_mm); if (!kern_mm->pgd) return -ENOMEM; user_mm->pgd = pgd_alloc(user_mm); if (!user_mm->pgd) { pgd_free(kern_mm, kern_mm->pgd); return -ENOMEM; } return 0; } static void kvm_mips_emul_free_gva_pt(pgd_t *pgd) { /* Don't free host kernel page tables copied from init_mm.pgd */ const unsigned long end = 0x80000000; unsigned long pgd_va, pud_va, pmd_va; pud_t *pud; pmd_t *pmd; pte_t *pte; int i, j, k; for (i = 0; i < USER_PTRS_PER_PGD; i++) { if (pgd_none(pgd[i])) continue; pgd_va = (unsigned long)i << PGDIR_SHIFT; if (pgd_va >= end) break; pud = pud_offset(pgd + i, 0); for (j = 0; j < PTRS_PER_PUD; j++) { if (pud_none(pud[j])) continue; pud_va = pgd_va | ((unsigned long)j << PUD_SHIFT); if (pud_va >= end) break; pmd = pmd_offset(pud + j, 0); for (k = 0; k < PTRS_PER_PMD; k++) { if (pmd_none(pmd[k])) continue; pmd_va = pud_va | (k << PMD_SHIFT); if (pmd_va >= end) break; pte = pte_offset(pmd + k, 0); pte_free_kernel(NULL, pte); } pmd_free(NULL, pmd); } pud_free(NULL, pud); } pgd_free(NULL, pgd); } static void kvm_trap_emul_vcpu_uninit(struct kvm_vcpu *vcpu) { kvm_mips_emul_free_gva_pt(vcpu->arch.guest_kernel_mm.pgd); kvm_mips_emul_free_gva_pt(vcpu->arch.guest_user_mm.pgd); } static int kvm_trap_emul_vcpu_setup(struct kvm_vcpu *vcpu) { struct mips_coproc *cop0 = vcpu->arch.cop0; u32 config, config1; int vcpu_id = vcpu->vcpu_id; /* Start off the timer at 100 MHz */ kvm_mips_init_count(vcpu, 100*1000*1000); /* * Arch specific stuff, set up config registers properly so that the * guest will come up as expected */ #ifndef CONFIG_CPU_MIPSR6 /* r2-r5, simulate a MIPS 24kc */ kvm_write_c0_guest_prid(cop0, 0x00019300); #else /* r6+, simulate a generic QEMU machine */ kvm_write_c0_guest_prid(cop0, 0x00010000); #endif /* * Have config1, Cacheable, noncoherent, write-back, write allocate. * Endianness, arch revision & virtually tagged icache should match * host. */ config = read_c0_config() & MIPS_CONF_AR; config |= MIPS_CONF_M | CONF_CM_CACHABLE_NONCOHERENT | MIPS_CONF_MT_TLB; #ifdef CONFIG_CPU_BIG_ENDIAN config |= CONF_BE; #endif if (cpu_has_vtag_icache) config |= MIPS_CONF_VI; kvm_write_c0_guest_config(cop0, config); /* Read the cache characteristics from the host Config1 Register */ config1 = (read_c0_config1() & ~0x7f); /* DCache line size not correctly reported in Config1 on Octeon CPUs */ if (cpu_dcache_line_size()) { config1 &= ~MIPS_CONF1_DL; config1 |= ((ilog2(cpu_dcache_line_size()) - 1) << MIPS_CONF1_DL_SHF) & MIPS_CONF1_DL; } /* Set up MMU size */ config1 &= ~(0x3f << 25); config1 |= ((KVM_MIPS_GUEST_TLB_SIZE - 1) << 25); /* We unset some bits that we aren't emulating */ config1 &= ~(MIPS_CONF1_C2 | MIPS_CONF1_MD | MIPS_CONF1_PC | MIPS_CONF1_WR | MIPS_CONF1_CA); kvm_write_c0_guest_config1(cop0, config1); /* Have config3, no tertiary/secondary caches implemented */ kvm_write_c0_guest_config2(cop0, MIPS_CONF_M); /* MIPS_CONF_M | (read_c0_config2() & 0xfff) */ /* Have config4, UserLocal */ kvm_write_c0_guest_config3(cop0, MIPS_CONF_M | MIPS_CONF3_ULRI); /* Have config5 */ kvm_write_c0_guest_config4(cop0, MIPS_CONF_M); /* No config6 */ kvm_write_c0_guest_config5(cop0, 0); /* Set Wait IE/IXMT Ignore in Config7, IAR, AR */ kvm_write_c0_guest_config7(cop0, (MIPS_CONF7_WII) | (1 << 10)); /* Status */ kvm_write_c0_guest_status(cop0, ST0_BEV | ST0_ERL); /* * Setup IntCtl defaults, compatibility mode for timer interrupts (HW5) */ kvm_write_c0_guest_intctl(cop0, 0xFC000000); /* Put in vcpu id as CPUNum into Ebase Reg to handle SMP Guests */ kvm_write_c0_guest_ebase(cop0, KVM_GUEST_KSEG0 | (vcpu_id & MIPS_EBASE_CPUNUM)); /* Put PC at guest reset vector */ vcpu->arch.pc = KVM_GUEST_CKSEG1ADDR(0x1fc00000); return 0; } static void kvm_trap_emul_flush_shadow_all(struct kvm *kvm) { /* Flush GVA page tables and invalidate GVA ASIDs on all VCPUs */ kvm_flush_remote_tlbs(kvm); } static void kvm_trap_emul_flush_shadow_memslot(struct kvm *kvm, const struct kvm_memory_slot *slot) { kvm_trap_emul_flush_shadow_all(kvm); } static u64 kvm_trap_emul_get_one_regs[] = { KVM_REG_MIPS_CP0_INDEX, KVM_REG_MIPS_CP0_ENTRYLO0, KVM_REG_MIPS_CP0_ENTRYLO1, KVM_REG_MIPS_CP0_CONTEXT, KVM_REG_MIPS_CP0_USERLOCAL, KVM_REG_MIPS_CP0_PAGEMASK, KVM_REG_MIPS_CP0_WIRED, KVM_REG_MIPS_CP0_HWRENA, KVM_REG_MIPS_CP0_BADVADDR, KVM_REG_MIPS_CP0_COUNT, KVM_REG_MIPS_CP0_ENTRYHI, KVM_REG_MIPS_CP0_COMPARE, KVM_REG_MIPS_CP0_STATUS, KVM_REG_MIPS_CP0_INTCTL, KVM_REG_MIPS_CP0_CAUSE, KVM_REG_MIPS_CP0_EPC, KVM_REG_MIPS_CP0_PRID, KVM_REG_MIPS_CP0_EBASE, KVM_REG_MIPS_CP0_CONFIG, KVM_REG_MIPS_CP0_CONFIG1, KVM_REG_MIPS_CP0_CONFIG2, KVM_REG_MIPS_CP0_CONFIG3, KVM_REG_MIPS_CP0_CONFIG4, KVM_REG_MIPS_CP0_CONFIG5, KVM_REG_MIPS_CP0_CONFIG7, KVM_REG_MIPS_CP0_ERROREPC, KVM_REG_MIPS_CP0_KSCRATCH1, KVM_REG_MIPS_CP0_KSCRATCH2, KVM_REG_MIPS_CP0_KSCRATCH3, KVM_REG_MIPS_CP0_KSCRATCH4, KVM_REG_MIPS_CP0_KSCRATCH5, KVM_REG_MIPS_CP0_KSCRATCH6, KVM_REG_MIPS_COUNT_CTL, KVM_REG_MIPS_COUNT_RESUME, KVM_REG_MIPS_COUNT_HZ, }; static unsigned long kvm_trap_emul_num_regs(struct kvm_vcpu *vcpu) { return ARRAY_SIZE(kvm_trap_emul_get_one_regs); } static int kvm_trap_emul_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices) { if (copy_to_user(indices, kvm_trap_emul_get_one_regs, sizeof(kvm_trap_emul_get_one_regs))) return -EFAULT; indices += ARRAY_SIZE(kvm_trap_emul_get_one_regs); return 0; } static int kvm_trap_emul_get_one_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg, s64 *v) { struct mips_coproc *cop0 = vcpu->arch.cop0; switch (reg->id) { case KVM_REG_MIPS_CP0_INDEX: *v = (long)kvm_read_c0_guest_index(cop0); break; case KVM_REG_MIPS_CP0_ENTRYLO0: *v = kvm_read_c0_guest_entrylo0(cop0); break; case KVM_REG_MIPS_CP0_ENTRYLO1: *v = kvm_read_c0_guest_entrylo1(cop0); break; case KVM_REG_MIPS_CP0_CONTEXT: *v = (long)kvm_read_c0_guest_context(cop0); break; case KVM_REG_MIPS_CP0_USERLOCAL: *v = (long)kvm_read_c0_guest_userlocal(cop0); break; case KVM_REG_MIPS_CP0_PAGEMASK: *v = (long)kvm_read_c0_guest_pagemask(cop0); break; case KVM_REG_MIPS_CP0_WIRED: *v = (long)kvm_read_c0_guest_wired(cop0); break; case KVM_REG_MIPS_CP0_HWRENA: *v = (long)kvm_read_c0_guest_hwrena(cop0); break; case KVM_REG_MIPS_CP0_BADVADDR: *v = (long)kvm_read_c0_guest_badvaddr(cop0); break; case KVM_REG_MIPS_CP0_ENTRYHI: *v = (long)kvm_read_c0_guest_entryhi(cop0); break; case KVM_REG_MIPS_CP0_COMPARE: *v = (long)kvm_read_c0_guest_compare(cop0); break; case KVM_REG_MIPS_CP0_STATUS: *v = (long)kvm_read_c0_guest_status(cop0); break; case KVM_REG_MIPS_CP0_INTCTL: *v = (long)kvm_read_c0_guest_intctl(cop0); break; case KVM_REG_MIPS_CP0_CAUSE: *v = (long)kvm_read_c0_guest_cause(cop0); break; case KVM_REG_MIPS_CP0_EPC: *v = (long)kvm_read_c0_guest_epc(cop0); break; case KVM_REG_MIPS_CP0_PRID: *v = (long)kvm_read_c0_guest_prid(cop0); break; case KVM_REG_MIPS_CP0_EBASE: *v = (long)kvm_read_c0_guest_ebase(cop0); break; case KVM_REG_MIPS_CP0_CONFIG: *v = (long)kvm_read_c0_guest_config(cop0); break; case KVM_REG_MIPS_CP0_CONFIG1: *v = (long)kvm_read_c0_guest_config1(cop0); break; case KVM_REG_MIPS_CP0_CONFIG2: *v = (long)kvm_read_c0_guest_config2(cop0); break; case KVM_REG_MIPS_CP0_CONFIG3: *v = (long)kvm_read_c0_guest_config3(cop0); break; case KVM_REG_MIPS_CP0_CONFIG4: *v = (long)kvm_read_c0_guest_config4(cop0); break; case KVM_REG_MIPS_CP0_CONFIG5: *v = (long)kvm_read_c0_guest_config5(cop0); break; case KVM_REG_MIPS_CP0_CONFIG7: *v = (long)kvm_read_c0_guest_config7(cop0); break; case KVM_REG_MIPS_CP0_COUNT: *v = kvm_mips_read_count(vcpu); break; case KVM_REG_MIPS_COUNT_CTL: *v = vcpu->arch.count_ctl; break; case KVM_REG_MIPS_COUNT_RESUME: *v = ktime_to_ns(vcpu->arch.count_resume); break; case KVM_REG_MIPS_COUNT_HZ: *v = vcpu->arch.count_hz; break; case KVM_REG_MIPS_CP0_ERROREPC: *v = (long)kvm_read_c0_guest_errorepc(cop0); break; case KVM_REG_MIPS_CP0_KSCRATCH1: *v = (long)kvm_read_c0_guest_kscratch1(cop0); break; case KVM_REG_MIPS_CP0_KSCRATCH2: *v = (long)kvm_read_c0_guest_kscratch2(cop0); break; case KVM_REG_MIPS_CP0_KSCRATCH3: *v = (long)kvm_read_c0_guest_kscratch3(cop0); break; case KVM_REG_MIPS_CP0_KSCRATCH4: *v = (long)kvm_read_c0_guest_kscratch4(cop0); break; case KVM_REG_MIPS_CP0_KSCRATCH5: *v = (long)kvm_read_c0_guest_kscratch5(cop0); break; case KVM_REG_MIPS_CP0_KSCRATCH6: *v = (long)kvm_read_c0_guest_kscratch6(cop0); break; default: return -EINVAL; } return 0; } static int kvm_trap_emul_set_one_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg, s64 v) { struct mips_coproc *cop0 = vcpu->arch.cop0; int ret = 0; unsigned int cur, change; switch (reg->id) { case KVM_REG_MIPS_CP0_INDEX: kvm_write_c0_guest_index(cop0, v); break; case KVM_REG_MIPS_CP0_ENTRYLO0: kvm_write_c0_guest_entrylo0(cop0, v); break; case KVM_REG_MIPS_CP0_ENTRYLO1: kvm_write_c0_guest_entrylo1(cop0, v); break; case KVM_REG_MIPS_CP0_CONTEXT: kvm_write_c0_guest_context(cop0, v); break; case KVM_REG_MIPS_CP0_USERLOCAL: kvm_write_c0_guest_userlocal(cop0, v); break; case KVM_REG_MIPS_CP0_PAGEMASK: kvm_write_c0_guest_pagemask(cop0, v); break; case KVM_REG_MIPS_CP0_WIRED: kvm_write_c0_guest_wired(cop0, v); break; case KVM_REG_MIPS_CP0_HWRENA: kvm_write_c0_guest_hwrena(cop0, v); break; case KVM_REG_MIPS_CP0_BADVADDR: kvm_write_c0_guest_badvaddr(cop0, v); break; case KVM_REG_MIPS_CP0_ENTRYHI: kvm_write_c0_guest_entryhi(cop0, v); break; case KVM_REG_MIPS_CP0_STATUS: kvm_write_c0_guest_status(cop0, v); break; case KVM_REG_MIPS_CP0_INTCTL: /* No VInt, so no VS, read-only for now */ break; case KVM_REG_MIPS_CP0_EPC: kvm_write_c0_guest_epc(cop0, v); break; case KVM_REG_MIPS_CP0_PRID: kvm_write_c0_guest_prid(cop0, v); break; case KVM_REG_MIPS_CP0_EBASE: /* * Allow core number to be written, but the exception base must * remain in guest KSeg0. */ kvm_change_c0_guest_ebase(cop0, 0x1ffff000 | MIPS_EBASE_CPUNUM, v); break; case KVM_REG_MIPS_CP0_COUNT: kvm_mips_write_count(vcpu, v); break; case KVM_REG_MIPS_CP0_COMPARE: kvm_mips_write_compare(vcpu, v, false); break; case KVM_REG_MIPS_CP0_CAUSE: /* * If the timer is stopped or started (DC bit) it must look * atomic with changes to the interrupt pending bits (TI, IRQ5). * A timer interrupt should not happen in between. */ if ((kvm_read_c0_guest_cause(cop0) ^ v) & CAUSEF_DC) { if (v & CAUSEF_DC) { /* disable timer first */ kvm_mips_count_disable_cause(vcpu); kvm_change_c0_guest_cause(cop0, (u32)~CAUSEF_DC, v); } else { /* enable timer last */ kvm_change_c0_guest_cause(cop0, (u32)~CAUSEF_DC, v); kvm_mips_count_enable_cause(vcpu); } } else { kvm_write_c0_guest_cause(cop0, v); } break; case KVM_REG_MIPS_CP0_CONFIG: /* read-only for now */ break; case KVM_REG_MIPS_CP0_CONFIG1: cur = kvm_read_c0_guest_config1(cop0); change = (cur ^ v) & kvm_mips_config1_wrmask(vcpu); if (change) { v = cur ^ change; kvm_write_c0_guest_config1(cop0, v); } break; case KVM_REG_MIPS_CP0_CONFIG2: /* read-only for now */ break; case KVM_REG_MIPS_CP0_CONFIG3: cur = kvm_read_c0_guest_config3(cop0); change = (cur ^ v) & kvm_mips_config3_wrmask(vcpu); if (change) { v = cur ^ change; kvm_write_c0_guest_config3(cop0, v); } break; case KVM_REG_MIPS_CP0_CONFIG4: cur = kvm_read_c0_guest_config4(cop0); change = (cur ^ v) & kvm_mips_config4_wrmask(vcpu); if (change) { v = cur ^ change; kvm_write_c0_guest_config4(cop0, v); } break; case KVM_REG_MIPS_CP0_CONFIG5: cur = kvm_read_c0_guest_config5(cop0); change = (cur ^ v) & kvm_mips_config5_wrmask(vcpu); if (change) { v = cur ^ change; kvm_write_c0_guest_config5(cop0, v); } break; case KVM_REG_MIPS_CP0_CONFIG7: /* writes ignored */ break; case KVM_REG_MIPS_COUNT_CTL: ret = kvm_mips_set_count_ctl(vcpu, v); break; case KVM_REG_MIPS_COUNT_RESUME: ret = kvm_mips_set_count_resume(vcpu, v); break; case KVM_REG_MIPS_COUNT_HZ: ret = kvm_mips_set_count_hz(vcpu, v); break; case KVM_REG_MIPS_CP0_ERROREPC: kvm_write_c0_guest_errorepc(cop0, v); break; case KVM_REG_MIPS_CP0_KSCRATCH1: kvm_write_c0_guest_kscratch1(cop0, v); break; case KVM_REG_MIPS_CP0_KSCRATCH2: kvm_write_c0_guest_kscratch2(cop0, v); break; case KVM_REG_MIPS_CP0_KSCRATCH3: kvm_write_c0_guest_kscratch3(cop0, v); break; case KVM_REG_MIPS_CP0_KSCRATCH4: kvm_write_c0_guest_kscratch4(cop0, v); break; case KVM_REG_MIPS_CP0_KSCRATCH5: kvm_write_c0_guest_kscratch5(cop0, v); break; case KVM_REG_MIPS_CP0_KSCRATCH6: kvm_write_c0_guest_kscratch6(cop0, v); break; default: return -EINVAL; } return ret; } static int kvm_trap_emul_vcpu_load(struct kvm_vcpu *vcpu, int cpu) { struct mm_struct *kern_mm = &vcpu->arch.guest_kernel_mm; struct mm_struct *user_mm = &vcpu->arch.guest_user_mm; struct mm_struct *mm; /* * Were we in guest context? If so, restore the appropriate ASID based * on the mode of the Guest (Kernel/User). */ if (current->flags & PF_VCPU) { mm = KVM_GUEST_KERNEL_MODE(vcpu) ? kern_mm : user_mm; if ((cpu_context(cpu, mm) ^ asid_cache(cpu)) & asid_version_mask(cpu)) get_new_mmu_context(mm, cpu); write_c0_entryhi(cpu_asid(cpu, mm)); TLBMISS_HANDLER_SETUP_PGD(mm->pgd); kvm_mips_suspend_mm(cpu); ehb(); } return 0; } static int kvm_trap_emul_vcpu_put(struct kvm_vcpu *vcpu, int cpu) { kvm_lose_fpu(vcpu); if (current->flags & PF_VCPU) { /* Restore normal Linux process memory map */ if (((cpu_context(cpu, current->mm) ^ asid_cache(cpu)) & asid_version_mask(cpu))) get_new_mmu_context(current->mm, cpu); write_c0_entryhi(cpu_asid(cpu, current->mm)); TLBMISS_HANDLER_SETUP_PGD(current->mm->pgd); kvm_mips_resume_mm(cpu); ehb(); } return 0; } static void kvm_trap_emul_check_requests(struct kvm_vcpu *vcpu, int cpu, bool reload_asid) { struct mm_struct *kern_mm = &vcpu->arch.guest_kernel_mm; struct mm_struct *user_mm = &vcpu->arch.guest_user_mm; struct mm_struct *mm; int i; if (likely(!kvm_request_pending(vcpu))) return; if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) { /* * Both kernel & user GVA mappings must be invalidated. The * caller is just about to check whether the ASID is stale * anyway so no need to reload it here. */ kvm_mips_flush_gva_pt(kern_mm->pgd, KMF_GPA | KMF_KERN); kvm_mips_flush_gva_pt(user_mm->pgd, KMF_GPA | KMF_USER); for_each_possible_cpu(i) { cpu_context(i, kern_mm) = 0; cpu_context(i, user_mm) = 0; } /* Generate new ASID for current mode */ if (reload_asid) { mm = KVM_GUEST_KERNEL_MODE(vcpu) ? kern_mm : user_mm; get_new_mmu_context(mm, cpu); htw_stop(); write_c0_entryhi(cpu_asid(cpu, mm)); TLBMISS_HANDLER_SETUP_PGD(mm->pgd); htw_start(); } } } /** * kvm_trap_emul_gva_lockless_begin() - Begin lockless access to GVA space. * @vcpu: VCPU pointer. * * Call before a GVA space access outside of guest mode, to ensure that * asynchronous TLB flush requests are handled or delayed until completion of * the GVA access (as indicated by a matching kvm_trap_emul_gva_lockless_end()). * * Should be called with IRQs already enabled. */ void kvm_trap_emul_gva_lockless_begin(struct kvm_vcpu *vcpu) { /* We re-enable IRQs in kvm_trap_emul_gva_lockless_end() */ WARN_ON_ONCE(irqs_disabled()); /* * The caller is about to access the GVA space, so we set the mode to * force TLB flush requests to send an IPI, and also disable IRQs to * delay IPI handling until kvm_trap_emul_gva_lockless_end(). */ local_irq_disable(); /* * Make sure the read of VCPU requests is not reordered ahead of the * write to vcpu->mode, or we could miss a TLB flush request while * the requester sees the VCPU as outside of guest mode and not needing * an IPI. */ smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES); /* * If a TLB flush has been requested (potentially while * OUTSIDE_GUEST_MODE and assumed immediately effective), perform it * before accessing the GVA space, and be sure to reload the ASID if * necessary as it'll be immediately used. * * TLB flush requests after this check will trigger an IPI due to the * mode change above, which will be delayed due to IRQs disabled. */ kvm_trap_emul_check_requests(vcpu, smp_processor_id(), true); } /** * kvm_trap_emul_gva_lockless_end() - End lockless access to GVA space. * @vcpu: VCPU pointer. * * Called after a GVA space access outside of guest mode. Should have a matching * call to kvm_trap_emul_gva_lockless_begin(). */ void kvm_trap_emul_gva_lockless_end(struct kvm_vcpu *vcpu) { /* * Make sure the write to vcpu->mode is not reordered in front of GVA * accesses, or a TLB flush requester may not think it necessary to send * an IPI. */ smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE); /* * Now that the access to GVA space is complete, its safe for pending * TLB flush request IPIs to be handled (which indicates completion). */ local_irq_enable(); } static void kvm_trap_emul_vcpu_reenter(struct kvm_run *run, struct kvm_vcpu *vcpu) { struct mm_struct *kern_mm = &vcpu->arch.guest_kernel_mm; struct mm_struct *user_mm = &vcpu->arch.guest_user_mm; struct mm_struct *mm; struct mips_coproc *cop0 = vcpu->arch.cop0; int i, cpu = smp_processor_id(); unsigned int gasid; /* * No need to reload ASID, IRQs are disabled already so there's no rush, * and we'll check if we need to regenerate below anyway before * re-entering the guest. */ kvm_trap_emul_check_requests(vcpu, cpu, false); if (KVM_GUEST_KERNEL_MODE(vcpu)) { mm = kern_mm; } else { mm = user_mm; /* * Lazy host ASID regeneration / PT flush for guest user mode. * If the guest ASID has changed since the last guest usermode * execution, invalidate the stale TLB entries and flush GVA PT * entries too. */ gasid = kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID; if (gasid != vcpu->arch.last_user_gasid) { kvm_mips_flush_gva_pt(user_mm->pgd, KMF_USER); for_each_possible_cpu(i) cpu_context(i, user_mm) = 0; vcpu->arch.last_user_gasid = gasid; } } /* * Check if ASID is stale. This may happen due to a TLB flush request or * a lazy user MM invalidation. */ if ((cpu_context(cpu, mm) ^ asid_cache(cpu)) & asid_version_mask(cpu)) get_new_mmu_context(mm, cpu); } static int kvm_trap_emul_vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu) { int cpu = smp_processor_id(); int r; /* Check if we have any exceptions/interrupts pending */ kvm_mips_deliver_interrupts(vcpu, kvm_read_c0_guest_cause(vcpu->arch.cop0)); kvm_trap_emul_vcpu_reenter(run, vcpu); /* * We use user accessors to access guest memory, but we don't want to * invoke Linux page faulting. */ pagefault_disable(); /* Disable hardware page table walking while in guest */ htw_stop(); /* * While in guest context we're in the guest's address space, not the * host process address space, so we need to be careful not to confuse * e.g. cache management IPIs. */ kvm_mips_suspend_mm(cpu); r = vcpu->arch.vcpu_run(run, vcpu); /* We may have migrated while handling guest exits */ cpu = smp_processor_id(); /* Restore normal Linux process memory map */ if (((cpu_context(cpu, current->mm) ^ asid_cache(cpu)) & asid_version_mask(cpu))) get_new_mmu_context(current->mm, cpu); write_c0_entryhi(cpu_asid(cpu, current->mm)); TLBMISS_HANDLER_SETUP_PGD(current->mm->pgd); kvm_mips_resume_mm(cpu); htw_start(); pagefault_enable(); return r; } static struct kvm_mips_callbacks kvm_trap_emul_callbacks = { /* exit handlers */ .handle_cop_unusable = kvm_trap_emul_handle_cop_unusable, .handle_tlb_mod = kvm_trap_emul_handle_tlb_mod, .handle_tlb_st_miss = kvm_trap_emul_handle_tlb_st_miss, .handle_tlb_ld_miss = kvm_trap_emul_handle_tlb_ld_miss, .handle_addr_err_st = kvm_trap_emul_handle_addr_err_st, .handle_addr_err_ld = kvm_trap_emul_handle_addr_err_ld, .handle_syscall = kvm_trap_emul_handle_syscall, .handle_res_inst = kvm_trap_emul_handle_res_inst, .handle_break = kvm_trap_emul_handle_break, .handle_trap = kvm_trap_emul_handle_trap, .handle_msa_fpe = kvm_trap_emul_handle_msa_fpe, .handle_fpe = kvm_trap_emul_handle_fpe, .handle_msa_disabled = kvm_trap_emul_handle_msa_disabled, .handle_guest_exit = kvm_trap_emul_no_handler, .hardware_enable = kvm_trap_emul_hardware_enable, .hardware_disable = kvm_trap_emul_hardware_disable, .check_extension = kvm_trap_emul_check_extension, .vcpu_init = kvm_trap_emul_vcpu_init, .vcpu_uninit = kvm_trap_emul_vcpu_uninit, .vcpu_setup = kvm_trap_emul_vcpu_setup, .flush_shadow_all = kvm_trap_emul_flush_shadow_all, .flush_shadow_memslot = kvm_trap_emul_flush_shadow_memslot, .gva_to_gpa = kvm_trap_emul_gva_to_gpa_cb, .queue_timer_int = kvm_mips_queue_timer_int_cb, .dequeue_timer_int = kvm_mips_dequeue_timer_int_cb, .queue_io_int = kvm_mips_queue_io_int_cb, .dequeue_io_int = kvm_mips_dequeue_io_int_cb, .irq_deliver = kvm_mips_irq_deliver_cb, .irq_clear = kvm_mips_irq_clear_cb, .num_regs = kvm_trap_emul_num_regs, .copy_reg_indices = kvm_trap_emul_copy_reg_indices, .get_one_reg = kvm_trap_emul_get_one_reg, .set_one_reg = kvm_trap_emul_set_one_reg, .vcpu_load = kvm_trap_emul_vcpu_load, .vcpu_put = kvm_trap_emul_vcpu_put, .vcpu_run = kvm_trap_emul_vcpu_run, .vcpu_reenter = kvm_trap_emul_vcpu_reenter, }; int kvm_mips_emulation_init(struct kvm_mips_callbacks **install_callbacks) { *install_callbacks = &kvm_trap_emul_callbacks; return 0; }