/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * KVM/MIPS: Support for hardware virtualization extensions * * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved. * Authors: Yann Le Du */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "interrupt.h" #include "trace.h" /* Pointers to last VCPU loaded on each physical CPU */ static struct kvm_vcpu *last_vcpu[NR_CPUS]; /* Pointers to last VCPU executed on each physical CPU */ static struct kvm_vcpu *last_exec_vcpu[NR_CPUS]; /* * Number of guest VTLB entries to use, so we can catch inconsistency between * CPUs. */ static unsigned int kvm_vz_guest_vtlb_size; static inline long kvm_vz_read_gc0_ebase(void) { if (sizeof(long) == 8 && cpu_has_ebase_wg) return read_gc0_ebase_64(); else return read_gc0_ebase(); } static inline void kvm_vz_write_gc0_ebase(long v) { /* * First write with WG=1 to write upper bits, then write again in case * WG should be left at 0. * write_gc0_ebase_64() is no longer UNDEFINED since R6. */ if (sizeof(long) == 8 && (cpu_has_mips64r6 || cpu_has_ebase_wg)) { write_gc0_ebase_64(v | MIPS_EBASE_WG); write_gc0_ebase_64(v); } else { write_gc0_ebase(v | MIPS_EBASE_WG); write_gc0_ebase(v); } } /* * These Config bits may be writable by the guest: * Config: [K23, KU] (!TLB), K0 * Config1: (none) * Config2: [TU, SU] (impl) * Config3: ISAOnExc * Config4: FTLBPageSize * Config5: K, CV, MSAEn, UFE, FRE, SBRI, UFR */ static inline unsigned int kvm_vz_config_guest_wrmask(struct kvm_vcpu *vcpu) { return CONF_CM_CMASK; } static inline unsigned int kvm_vz_config1_guest_wrmask(struct kvm_vcpu *vcpu) { return 0; } static inline unsigned int kvm_vz_config2_guest_wrmask(struct kvm_vcpu *vcpu) { return 0; } static inline unsigned int kvm_vz_config3_guest_wrmask(struct kvm_vcpu *vcpu) { return MIPS_CONF3_ISA_OE; } static inline unsigned int kvm_vz_config4_guest_wrmask(struct kvm_vcpu *vcpu) { /* no need to be exact */ return MIPS_CONF4_VFTLBPAGESIZE; } static inline unsigned int kvm_vz_config5_guest_wrmask(struct kvm_vcpu *vcpu) { unsigned int mask = MIPS_CONF5_K | MIPS_CONF5_CV | MIPS_CONF5_SBRI; /* Permit MSAEn changes if MSA supported and enabled */ if (kvm_mips_guest_has_msa(&vcpu->arch)) mask |= MIPS_CONF5_MSAEN; /* * Permit guest FPU mode changes if FPU is enabled and the relevant * feature exists according to FIR register. */ if (kvm_mips_guest_has_fpu(&vcpu->arch)) { if (cpu_has_ufr) mask |= MIPS_CONF5_UFR; if (cpu_has_fre) mask |= MIPS_CONF5_FRE | MIPS_CONF5_UFE; } return mask; } /* * VZ optionally allows these additional Config bits to be written by root: * Config: M, [MT] * Config1: M, [MMUSize-1, C2, MD, PC, WR, CA], FP * Config2: M * Config3: M, MSAP, [BPG], ULRI, [DSP2P, DSPP], CTXTC, [ITL, LPA, VEIC, * VInt, SP, CDMM, MT, SM, TL] * Config4: M, [VTLBSizeExt, MMUSizeExt] * Config5: MRP */ static inline unsigned int kvm_vz_config_user_wrmask(struct kvm_vcpu *vcpu) { return kvm_vz_config_guest_wrmask(vcpu) | MIPS_CONF_M; } static inline unsigned int kvm_vz_config1_user_wrmask(struct kvm_vcpu *vcpu) { unsigned int mask = kvm_vz_config1_guest_wrmask(vcpu) | MIPS_CONF_M; /* Permit FPU to be present if FPU is supported */ if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) mask |= MIPS_CONF1_FP; return mask; } static inline unsigned int kvm_vz_config2_user_wrmask(struct kvm_vcpu *vcpu) { return kvm_vz_config2_guest_wrmask(vcpu) | MIPS_CONF_M; } static inline unsigned int kvm_vz_config3_user_wrmask(struct kvm_vcpu *vcpu) { unsigned int mask = kvm_vz_config3_guest_wrmask(vcpu) | MIPS_CONF_M | MIPS_CONF3_ULRI | MIPS_CONF3_CTXTC; /* Permit MSA to be present if MSA is supported */ if (kvm_mips_guest_can_have_msa(&vcpu->arch)) mask |= MIPS_CONF3_MSA; return mask; } static inline unsigned int kvm_vz_config4_user_wrmask(struct kvm_vcpu *vcpu) { return kvm_vz_config4_guest_wrmask(vcpu) | MIPS_CONF_M; } static inline unsigned int kvm_vz_config5_user_wrmask(struct kvm_vcpu *vcpu) { return kvm_vz_config5_guest_wrmask(vcpu) | MIPS_CONF5_MRP; } static gpa_t kvm_vz_gva_to_gpa_cb(gva_t gva) { /* VZ guest has already converted gva to gpa */ return gva; } static void kvm_vz_queue_irq(struct kvm_vcpu *vcpu, unsigned int priority) { set_bit(priority, &vcpu->arch.pending_exceptions); clear_bit(priority, &vcpu->arch.pending_exceptions_clr); } static void kvm_vz_dequeue_irq(struct kvm_vcpu *vcpu, unsigned int priority) { clear_bit(priority, &vcpu->arch.pending_exceptions); set_bit(priority, &vcpu->arch.pending_exceptions_clr); } static void kvm_vz_queue_timer_int_cb(struct kvm_vcpu *vcpu) { /* * timer expiry is asynchronous to vcpu execution therefore defer guest * cp0 accesses */ kvm_vz_queue_irq(vcpu, MIPS_EXC_INT_TIMER); } static void kvm_vz_dequeue_timer_int_cb(struct kvm_vcpu *vcpu) { /* * timer expiry is asynchronous to vcpu execution therefore defer guest * cp0 accesses */ kvm_vz_dequeue_irq(vcpu, MIPS_EXC_INT_TIMER); } static void kvm_vz_queue_io_int_cb(struct kvm_vcpu *vcpu, struct kvm_mips_interrupt *irq) { int intr = (int)irq->irq; /* * interrupts are asynchronous to vcpu execution therefore defer guest * cp0 accesses */ switch (intr) { case 2: kvm_vz_queue_irq(vcpu, MIPS_EXC_INT_IO); break; case 3: kvm_vz_queue_irq(vcpu, MIPS_EXC_INT_IPI_1); break; case 4: kvm_vz_queue_irq(vcpu, MIPS_EXC_INT_IPI_2); break; default: break; } } static void kvm_vz_dequeue_io_int_cb(struct kvm_vcpu *vcpu, struct kvm_mips_interrupt *irq) { int intr = (int)irq->irq; /* * interrupts are asynchronous to vcpu execution therefore defer guest * cp0 accesses */ switch (intr) { case -2: kvm_vz_dequeue_irq(vcpu, MIPS_EXC_INT_IO); break; case -3: kvm_vz_dequeue_irq(vcpu, MIPS_EXC_INT_IPI_1); break; case -4: kvm_vz_dequeue_irq(vcpu, MIPS_EXC_INT_IPI_2); break; default: break; } } static u32 kvm_vz_priority_to_irq[MIPS_EXC_MAX] = { [MIPS_EXC_INT_TIMER] = C_IRQ5, [MIPS_EXC_INT_IO] = C_IRQ0, [MIPS_EXC_INT_IPI_1] = C_IRQ1, [MIPS_EXC_INT_IPI_2] = C_IRQ2, }; static int kvm_vz_irq_deliver_cb(struct kvm_vcpu *vcpu, unsigned int priority, u32 cause) { u32 irq = (priority < MIPS_EXC_MAX) ? kvm_vz_priority_to_irq[priority] : 0; switch (priority) { case MIPS_EXC_INT_TIMER: set_gc0_cause(C_TI); break; case MIPS_EXC_INT_IO: case MIPS_EXC_INT_IPI_1: case MIPS_EXC_INT_IPI_2: if (cpu_has_guestctl2) set_c0_guestctl2(irq); else set_gc0_cause(irq); break; default: break; } clear_bit(priority, &vcpu->arch.pending_exceptions); return 1; } static int kvm_vz_irq_clear_cb(struct kvm_vcpu *vcpu, unsigned int priority, u32 cause) { u32 irq = (priority < MIPS_EXC_MAX) ? kvm_vz_priority_to_irq[priority] : 0; switch (priority) { case MIPS_EXC_INT_TIMER: /* * Call to kvm_write_c0_guest_compare() clears Cause.TI in * kvm_mips_emulate_CP0(). Explicitly clear irq associated with * Cause.IP[IPTI] if GuestCtl2 virtual interrupt register not * supported or if not using GuestCtl2 Hardware Clear. */ if (cpu_has_guestctl2) { if (!(read_c0_guestctl2() & (irq << 14))) clear_c0_guestctl2(irq); } else { clear_gc0_cause(irq); } break; case MIPS_EXC_INT_IO: case MIPS_EXC_INT_IPI_1: case MIPS_EXC_INT_IPI_2: /* Clear GuestCtl2.VIP irq if not using Hardware Clear */ if (cpu_has_guestctl2) { if (!(read_c0_guestctl2() & (irq << 14))) clear_c0_guestctl2(irq); } else { clear_gc0_cause(irq); } break; default: break; } clear_bit(priority, &vcpu->arch.pending_exceptions_clr); return 1; } /* * VZ guest timer handling. */ /** * kvm_vz_should_use_htimer() - Find whether to use the VZ hard guest timer. * @vcpu: Virtual CPU. * * Returns: true if the VZ GTOffset & real guest CP0_Count should be used * instead of software emulation of guest timer. * false otherwise. */ static bool kvm_vz_should_use_htimer(struct kvm_vcpu *vcpu) { if (kvm_mips_count_disabled(vcpu)) return false; /* Chosen frequency must match real frequency */ if (mips_hpt_frequency != vcpu->arch.count_hz) return false; /* We don't support a CP0_GTOffset with fewer bits than CP0_Count */ if (current_cpu_data.gtoffset_mask != 0xffffffff) return false; return true; } /** * _kvm_vz_restore_stimer() - Restore soft timer state. * @vcpu: Virtual CPU. * @compare: CP0_Compare register value, restored by caller. * @cause: CP0_Cause register to restore. * * Restore VZ state relating to the soft timer. The hard timer can be enabled * later. */ static void _kvm_vz_restore_stimer(struct kvm_vcpu *vcpu, u32 compare, u32 cause) { /* * Avoid spurious counter interrupts by setting Guest CP0_Count to just * after Guest CP0_Compare. */ write_c0_gtoffset(compare - read_c0_count()); back_to_back_c0_hazard(); write_gc0_cause(cause); } /** * _kvm_vz_restore_htimer() - Restore hard timer state. * @vcpu: Virtual CPU. * @compare: CP0_Compare register value, restored by caller. * @cause: CP0_Cause register to restore. * * Restore hard timer Guest.Count & Guest.Cause taking care to preserve the * value of Guest.CP0_Cause.TI while restoring Guest.CP0_Cause. */ static void _kvm_vz_restore_htimer(struct kvm_vcpu *vcpu, u32 compare, u32 cause) { u32 start_count, after_count; ktime_t freeze_time; unsigned long flags; /* * Freeze the soft-timer and sync the guest CP0_Count with it. We do * this with interrupts disabled to avoid latency. */ local_irq_save(flags); freeze_time = kvm_mips_freeze_hrtimer(vcpu, &start_count); write_c0_gtoffset(start_count - read_c0_count()); local_irq_restore(flags); /* restore guest CP0_Cause, as TI may already be set */ back_to_back_c0_hazard(); write_gc0_cause(cause); /* * The above sequence isn't atomic and would result in lost timer * interrupts if we're not careful. Detect if a timer interrupt is due * and assert it. */ back_to_back_c0_hazard(); after_count = read_gc0_count(); if (after_count - start_count > compare - start_count - 1) kvm_vz_queue_irq(vcpu, MIPS_EXC_INT_TIMER); } /** * kvm_vz_restore_timer() - Restore timer state. * @vcpu: Virtual CPU. * * Restore soft timer state from saved context. */ static void kvm_vz_restore_timer(struct kvm_vcpu *vcpu) { struct mips_coproc *cop0 = vcpu->arch.cop0; u32 cause, compare; compare = kvm_read_sw_gc0_compare(cop0); cause = kvm_read_sw_gc0_cause(cop0); write_gc0_compare(compare); _kvm_vz_restore_stimer(vcpu, compare, cause); } /** * kvm_vz_acquire_htimer() - Switch to hard timer state. * @vcpu: Virtual CPU. * * Restore hard timer state on top of existing soft timer state if possible. * * Since hard timer won't remain active over preemption, preemption should be * disabled by the caller. */ void kvm_vz_acquire_htimer(struct kvm_vcpu *vcpu) { u32 gctl0; gctl0 = read_c0_guestctl0(); if (!(gctl0 & MIPS_GCTL0_GT) && kvm_vz_should_use_htimer(vcpu)) { /* enable guest access to hard timer */ write_c0_guestctl0(gctl0 | MIPS_GCTL0_GT); _kvm_vz_restore_htimer(vcpu, read_gc0_compare(), read_gc0_cause()); } } /** * _kvm_vz_save_htimer() - Switch to software emulation of guest timer. * @vcpu: Virtual CPU. * @compare: Pointer to write compare value to. * @cause: Pointer to write cause value to. * * Save VZ guest timer state and switch to software emulation of guest CP0 * timer. The hard timer must already be in use, so preemption should be * disabled. */ static void _kvm_vz_save_htimer(struct kvm_vcpu *vcpu, u32 *out_compare, u32 *out_cause) { u32 cause, compare, before_count, end_count; ktime_t before_time; compare = read_gc0_compare(); *out_compare = compare; before_time = ktime_get(); /* * Record the CP0_Count *prior* to saving CP0_Cause, so we have a time * at which no pending timer interrupt is missing. */ before_count = read_gc0_count(); back_to_back_c0_hazard(); cause = read_gc0_cause(); *out_cause = cause; /* * Record a final CP0_Count which we will transfer to the soft-timer. * This is recorded *after* saving CP0_Cause, so we don't get any timer * interrupts from just after the final CP0_Count point. */ back_to_back_c0_hazard(); end_count = read_gc0_count(); /* * The above sequence isn't atomic, so we could miss a timer interrupt * between reading CP0_Cause and end_count. Detect and record any timer * interrupt due between before_count and end_count. */ if (end_count - before_count > compare - before_count - 1) kvm_vz_queue_irq(vcpu, MIPS_EXC_INT_TIMER); /* * Restore soft-timer, ignoring a small amount of negative drift due to * delay between freeze_hrtimer and setting CP0_GTOffset. */ kvm_mips_restore_hrtimer(vcpu, before_time, end_count, -0x10000); } /** * kvm_vz_save_timer() - Save guest timer state. * @vcpu: Virtual CPU. * * Save VZ guest timer state and switch to soft guest timer if hard timer was in * use. */ static void kvm_vz_save_timer(struct kvm_vcpu *vcpu) { struct mips_coproc *cop0 = vcpu->arch.cop0; u32 gctl0, compare, cause; gctl0 = read_c0_guestctl0(); if (gctl0 & MIPS_GCTL0_GT) { /* disable guest use of hard timer */ write_c0_guestctl0(gctl0 & ~MIPS_GCTL0_GT); /* save hard timer state */ _kvm_vz_save_htimer(vcpu, &compare, &cause); } else { compare = read_gc0_compare(); cause = read_gc0_cause(); } /* save timer-related state to VCPU context */ kvm_write_sw_gc0_cause(cop0, cause); kvm_write_sw_gc0_compare(cop0, compare); } /** * kvm_vz_lose_htimer() - Ensure hard guest timer is not in use. * @vcpu: Virtual CPU. * * Transfers the state of the hard guest timer to the soft guest timer, leaving * guest state intact so it can continue to be used with the soft timer. */ void kvm_vz_lose_htimer(struct kvm_vcpu *vcpu) { u32 gctl0, compare, cause; preempt_disable(); gctl0 = read_c0_guestctl0(); if (gctl0 & MIPS_GCTL0_GT) { /* disable guest use of timer */ write_c0_guestctl0(gctl0 & ~MIPS_GCTL0_GT); /* switch to soft timer */ _kvm_vz_save_htimer(vcpu, &compare, &cause); /* leave soft timer in usable state */ _kvm_vz_restore_stimer(vcpu, compare, cause); } preempt_enable(); } /** * is_eva_access() - Find whether an instruction is an EVA memory accessor. * @inst: 32-bit instruction encoding. * * Finds whether @inst encodes an EVA memory access instruction, which would * indicate that emulation of it should access the user mode address space * instead of the kernel mode address space. This matters for MUSUK segments * which are TLB mapped for user mode but unmapped for kernel mode. * * Returns: Whether @inst encodes an EVA accessor instruction. */ static bool is_eva_access(union mips_instruction inst) { if (inst.spec3_format.opcode != spec3_op) return false; switch (inst.spec3_format.func) { case lwle_op: case lwre_op: case cachee_op: case sbe_op: case she_op: case sce_op: case swe_op: case swle_op: case swre_op: case prefe_op: case lbue_op: case lhue_op: case lbe_op: case lhe_op: case lle_op: case lwe_op: return true; default: return false; } } /** * is_eva_am_mapped() - Find whether an access mode is mapped. * @vcpu: KVM VCPU state. * @am: 3-bit encoded access mode. * @eu: Segment becomes unmapped and uncached when Status.ERL=1. * * Decode @am to find whether it encodes a mapped segment for the current VCPU * state. Where necessary @eu and the actual instruction causing the fault are * taken into account to make the decision. * * Returns: Whether the VCPU faulted on a TLB mapped address. */ static bool is_eva_am_mapped(struct kvm_vcpu *vcpu, unsigned int am, bool eu) { u32 am_lookup; int err; /* * Interpret access control mode. We assume address errors will already * have been caught by the guest, leaving us with: * AM UM SM KM 31..24 23..16 * UK 0 000 Unm 0 0 * MK 1 001 TLB 1 * MSK 2 010 TLB TLB 1 * MUSK 3 011 TLB TLB TLB 1 * MUSUK 4 100 TLB TLB Unm 0 1 * USK 5 101 Unm Unm 0 0 * - 6 110 0 0 * UUSK 7 111 Unm Unm Unm 0 0 * * We shift a magic value by AM across the sign bit to find if always * TLB mapped, and if not shift by 8 again to find if it depends on KM. */ am_lookup = 0x70080000 << am; if ((s32)am_lookup < 0) { /* * MK, MSK, MUSK * Always TLB mapped, unless SegCtl.EU && ERL */ if (!eu || !(read_gc0_status() & ST0_ERL)) return true; } else { am_lookup <<= 8; if ((s32)am_lookup < 0) { union mips_instruction inst; unsigned int status; u32 *opc; /* * MUSUK * TLB mapped if not in kernel mode */ status = read_gc0_status(); if (!(status & (ST0_EXL | ST0_ERL)) && (status & ST0_KSU)) return true; /* * EVA access instructions in kernel * mode access user address space. */ opc = (u32 *)vcpu->arch.pc; if (vcpu->arch.host_cp0_cause & CAUSEF_BD) opc += 1; err = kvm_get_badinstr(opc, vcpu, &inst.word); if (!err && is_eva_access(inst)) return true; } } return false; } /** * kvm_vz_gva_to_gpa() - Convert valid GVA to GPA. * @vcpu: KVM VCPU state. * @gva: Guest virtual address to convert. * @gpa: Output guest physical address. * * Convert a guest virtual address (GVA) which is valid according to the guest * context, to a guest physical address (GPA). * * Returns: 0 on success. * -errno on failure. */ static int kvm_vz_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, unsigned long *gpa) { u32 gva32 = gva; unsigned long segctl; if ((long)gva == (s32)gva32) { /* Handle canonical 32-bit virtual address */ if (cpu_guest_has_segments) { unsigned long mask, pa; switch (gva32 >> 29) { case 0: case 1: /* CFG5 (1GB) */ segctl = read_gc0_segctl2() >> 16; mask = (unsigned long)0xfc0000000ull; break; case 2: case 3: /* CFG4 (1GB) */ segctl = read_gc0_segctl2(); mask = (unsigned long)0xfc0000000ull; break; case 4: /* CFG3 (512MB) */ segctl = read_gc0_segctl1() >> 16; mask = (unsigned long)0xfe0000000ull; break; case 5: /* CFG2 (512MB) */ segctl = read_gc0_segctl1(); mask = (unsigned long)0xfe0000000ull; break; case 6: /* CFG1 (512MB) */ segctl = read_gc0_segctl0() >> 16; mask = (unsigned long)0xfe0000000ull; break; case 7: /* CFG0 (512MB) */ segctl = read_gc0_segctl0(); mask = (unsigned long)0xfe0000000ull; break; default: /* * GCC 4.9 isn't smart enough to figure out that * segctl and mask are always initialised. */ unreachable(); } if (is_eva_am_mapped(vcpu, (segctl >> 4) & 0x7, segctl & 0x0008)) goto tlb_mapped; /* Unmapped, find guest physical address */ pa = (segctl << 20) & mask; pa |= gva32 & ~mask; *gpa = pa; return 0; } else if ((s32)gva32 < (s32)0xc0000000) { /* legacy unmapped KSeg0 or KSeg1 */ *gpa = gva32 & 0x1fffffff; return 0; } #ifdef CONFIG_64BIT } else if ((gva & 0xc000000000000000) == 0x8000000000000000) { /* XKPHYS */ if (cpu_guest_has_segments) { /* * Each of the 8 regions can be overridden by SegCtl2.XR * to use SegCtl1.XAM. */ segctl = read_gc0_segctl2(); if (segctl & (1ull << (56 + ((gva >> 59) & 0x7)))) { segctl = read_gc0_segctl1(); if (is_eva_am_mapped(vcpu, (segctl >> 59) & 0x7, 0)) goto tlb_mapped; } } /* * Traditionally fully unmapped. * Bits 61:59 specify the CCA, which we can just mask off here. * Bits 58:PABITS should be zero, but we shouldn't have got here * if it wasn't. */ *gpa = gva & 0x07ffffffffffffff; return 0; #endif } tlb_mapped: return kvm_vz_guest_tlb_lookup(vcpu, gva, gpa); } /** * kvm_vz_badvaddr_to_gpa() - Convert GVA BadVAddr from root exception to GPA. * @vcpu: KVM VCPU state. * @badvaddr: Root BadVAddr. * @gpa: Output guest physical address. * * VZ implementations are permitted to report guest virtual addresses (GVA) in * BadVAddr on a root exception during guest execution, instead of the more * convenient guest physical addresses (GPA). When we get a GVA, this function * converts it to a GPA, taking into account guest segmentation and guest TLB * state. * * Returns: 0 on success. * -errno on failure. */ static int kvm_vz_badvaddr_to_gpa(struct kvm_vcpu *vcpu, unsigned long badvaddr, unsigned long *gpa) { unsigned int gexccode = (vcpu->arch.host_cp0_guestctl0 & MIPS_GCTL0_GEXC) >> MIPS_GCTL0_GEXC_SHIFT; /* If BadVAddr is GPA, then all is well in the world */ if (likely(gexccode == MIPS_GCTL0_GEXC_GPA)) { *gpa = badvaddr; return 0; } /* Otherwise we'd expect it to be GVA ... */ if (WARN(gexccode != MIPS_GCTL0_GEXC_GVA, "Unexpected gexccode %#x\n", gexccode)) return -EINVAL; /* ... and we need to perform the GVA->GPA translation in software */ return kvm_vz_gva_to_gpa(vcpu, badvaddr, gpa); } static int kvm_trap_vz_no_handler(struct kvm_vcpu *vcpu) { u32 *opc = (u32 *) vcpu->arch.pc; u32 cause = vcpu->arch.host_cp0_cause; u32 exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE; unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr; u32 inst = 0; /* * Fetch the instruction. */ if (cause & CAUSEF_BD) opc += 1; kvm_get_badinstr(opc, vcpu, &inst); kvm_err("Exception Code: %d not handled @ PC: %p, inst: 0x%08x BadVaddr: %#lx Status: %#x\n", exccode, opc, inst, badvaddr, read_gc0_status()); kvm_arch_vcpu_dump_regs(vcpu); vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; return RESUME_HOST; } static unsigned long mips_process_maar(unsigned int op, unsigned long val) { /* Mask off unused bits */ unsigned long mask = 0xfffff000 | MIPS_MAAR_S | MIPS_MAAR_VL; if (read_gc0_pagegrain() & PG_ELPA) mask |= 0x00ffffff00000000ull; if (cpu_guest_has_mvh) mask |= MIPS_MAAR_VH; /* Set or clear VH */ if (op == mtc_op) { /* clear VH */ val &= ~MIPS_MAAR_VH; } else if (op == dmtc_op) { /* set VH to match VL */ val &= ~MIPS_MAAR_VH; if (val & MIPS_MAAR_VL) val |= MIPS_MAAR_VH; } return val & mask; } static void kvm_write_maari(struct kvm_vcpu *vcpu, unsigned long val) { struct mips_coproc *cop0 = vcpu->arch.cop0; val &= MIPS_MAARI_INDEX; if (val == MIPS_MAARI_INDEX) kvm_write_sw_gc0_maari(cop0, ARRAY_SIZE(vcpu->arch.maar) - 1); else if (val < ARRAY_SIZE(vcpu->arch.maar)) kvm_write_sw_gc0_maari(cop0, val); } static enum emulation_result kvm_vz_gpsi_cop0(union mips_instruction inst, u32 *opc, u32 cause, struct kvm_run *run, struct kvm_vcpu *vcpu) { struct mips_coproc *cop0 = vcpu->arch.cop0; enum emulation_result er = EMULATE_DONE; u32 rt, rd, sel; unsigned long curr_pc; unsigned long val; /* * Update PC and hold onto current PC in case there is * an error and we want to rollback the PC */ curr_pc = vcpu->arch.pc; er = update_pc(vcpu, cause); if (er == EMULATE_FAIL) return er; if (inst.co_format.co) { switch (inst.co_format.func) { case wait_op: er = kvm_mips_emul_wait(vcpu); break; default: er = EMULATE_FAIL; } } else { rt = inst.c0r_format.rt; rd = inst.c0r_format.rd; sel = inst.c0r_format.sel; switch (inst.c0r_format.rs) { case dmfc_op: case mfc_op: #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS cop0->stat[rd][sel]++; #endif if (rd == MIPS_CP0_COUNT && sel == 0) { /* Count */ val = kvm_mips_read_count(vcpu); } else if (rd == MIPS_CP0_COMPARE && sel == 0) { /* Compare */ val = read_gc0_compare(); } else if (rd == MIPS_CP0_LLADDR && sel == 0) { /* LLAddr */ if (cpu_guest_has_rw_llb) val = read_gc0_lladdr() & MIPS_LLADDR_LLB; else val = 0; } else if (rd == MIPS_CP0_LLADDR && sel == 1 && /* MAAR */ cpu_guest_has_maar && !cpu_guest_has_dyn_maar) { /* MAARI must be in range */ BUG_ON(kvm_read_sw_gc0_maari(cop0) >= ARRAY_SIZE(vcpu->arch.maar)); val = vcpu->arch.maar[ kvm_read_sw_gc0_maari(cop0)]; } else if ((rd == MIPS_CP0_PRID && (sel == 0 || /* PRid */ sel == 2 || /* CDMMBase */ sel == 3)) || /* CMGCRBase */ (rd == MIPS_CP0_STATUS && (sel == 2 || /* SRSCtl */ sel == 3)) || /* SRSMap */ (rd == MIPS_CP0_CONFIG && (sel == 7)) || /* Config7 */ (rd == MIPS_CP0_LLADDR && (sel == 2) && /* MAARI */ cpu_guest_has_maar && !cpu_guest_has_dyn_maar) || (rd == MIPS_CP0_ERRCTL && (sel == 0))) { /* ErrCtl */ val = cop0->reg[rd][sel]; } else { val = 0; er = EMULATE_FAIL; } if (er != EMULATE_FAIL) { /* Sign extend */ if (inst.c0r_format.rs == mfc_op) val = (int)val; vcpu->arch.gprs[rt] = val; } trace_kvm_hwr(vcpu, (inst.c0r_format.rs == mfc_op) ? KVM_TRACE_MFC0 : KVM_TRACE_DMFC0, KVM_TRACE_COP0(rd, sel), val); break; case dmtc_op: case mtc_op: #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS cop0->stat[rd][sel]++; #endif val = vcpu->arch.gprs[rt]; trace_kvm_hwr(vcpu, (inst.c0r_format.rs == mtc_op) ? KVM_TRACE_MTC0 : KVM_TRACE_DMTC0, KVM_TRACE_COP0(rd, sel), val); if (rd == MIPS_CP0_COUNT && sel == 0) { /* Count */ kvm_vz_lose_htimer(vcpu); kvm_mips_write_count(vcpu, vcpu->arch.gprs[rt]); } else if (rd == MIPS_CP0_COMPARE && sel == 0) { /* Compare */ kvm_mips_write_compare(vcpu, vcpu->arch.gprs[rt], true); } else if (rd == MIPS_CP0_LLADDR && sel == 0) { /* LLAddr */ /* * P5600 generates GPSI on guest MTC0 LLAddr. * Only allow the guest to clear LLB. */ if (cpu_guest_has_rw_llb && !(val & MIPS_LLADDR_LLB)) write_gc0_lladdr(0); } else if (rd == MIPS_CP0_LLADDR && sel == 1 && /* MAAR */ cpu_guest_has_maar && !cpu_guest_has_dyn_maar) { val = mips_process_maar(inst.c0r_format.rs, val); /* MAARI must be in range */ BUG_ON(kvm_read_sw_gc0_maari(cop0) >= ARRAY_SIZE(vcpu->arch.maar)); vcpu->arch.maar[kvm_read_sw_gc0_maari(cop0)] = val; } else if (rd == MIPS_CP0_LLADDR && (sel == 2) && /* MAARI */ cpu_guest_has_maar && !cpu_guest_has_dyn_maar) { kvm_write_maari(vcpu, val); } else if (rd == MIPS_CP0_ERRCTL && (sel == 0)) { /* ErrCtl */ /* ignore the written value */ } else { er = EMULATE_FAIL; } break; default: er = EMULATE_FAIL; break; } } /* Rollback PC only if emulation was unsuccessful */ if (er == EMULATE_FAIL) { kvm_err("[%#lx]%s: unsupported cop0 instruction 0x%08x\n", curr_pc, __func__, inst.word); vcpu->arch.pc = curr_pc; } return er; } static enum emulation_result kvm_vz_gpsi_cache(union mips_instruction inst, u32 *opc, u32 cause, struct kvm_run *run, struct kvm_vcpu *vcpu) { enum emulation_result er = EMULATE_DONE; u32 cache, op_inst, op, base; s16 offset; struct kvm_vcpu_arch *arch = &vcpu->arch; unsigned long va, curr_pc; /* * Update PC and hold onto current PC in case there is * an error and we want to rollback the PC */ curr_pc = vcpu->arch.pc; er = update_pc(vcpu, cause); if (er == EMULATE_FAIL) return er; base = inst.i_format.rs; op_inst = inst.i_format.rt; if (cpu_has_mips_r6) offset = inst.spec3_format.simmediate; else offset = inst.i_format.simmediate; cache = op_inst & CacheOp_Cache; op = op_inst & CacheOp_Op; va = arch->gprs[base] + offset; kvm_debug("CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n", cache, op, base, arch->gprs[base], offset); /* Secondary or tirtiary cache ops ignored */ if (cache != Cache_I && cache != Cache_D) return EMULATE_DONE; switch (op_inst) { case Index_Invalidate_I: flush_icache_line_indexed(va); return EMULATE_DONE; case Index_Writeback_Inv_D: flush_dcache_line_indexed(va); return EMULATE_DONE; case Hit_Invalidate_I: case Hit_Invalidate_D: case Hit_Writeback_Inv_D: if (boot_cpu_type() == CPU_CAVIUM_OCTEON3) { /* We can just flush entire icache */ local_flush_icache_range(0, 0); return EMULATE_DONE; } /* So far, other platforms support guest hit cache ops */ break; default: break; }; kvm_err("@ %#lx/%#lx CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n", curr_pc, vcpu->arch.gprs[31], cache, op, base, arch->gprs[base], offset); /* Rollback PC */ vcpu->arch.pc = curr_pc; return EMULATE_FAIL; } static enum emulation_result kvm_trap_vz_handle_gpsi(u32 cause, u32 *opc, struct kvm_vcpu *vcpu) { enum emulation_result er = EMULATE_DONE; struct kvm_vcpu_arch *arch = &vcpu->arch; struct kvm_run *run = vcpu->run; union mips_instruction inst; int rd, rt, sel; int err; /* * Fetch the instruction. */ if (cause & CAUSEF_BD) opc += 1; err = kvm_get_badinstr(opc, vcpu, &inst.word); if (err) return EMULATE_FAIL; switch (inst.r_format.opcode) { case cop0_op: er = kvm_vz_gpsi_cop0(inst, opc, cause, run, vcpu); break; #ifndef CONFIG_CPU_MIPSR6 case cache_op: trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE); er = kvm_vz_gpsi_cache(inst, opc, cause, run, vcpu); break; #endif case spec3_op: switch (inst.spec3_format.func) { #ifdef CONFIG_CPU_MIPSR6 case cache6_op: trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE); er = kvm_vz_gpsi_cache(inst, opc, cause, run, vcpu); break; #endif case rdhwr_op: if (inst.r_format.rs || (inst.r_format.re >> 3)) goto unknown; rd = inst.r_format.rd; rt = inst.r_format.rt; sel = inst.r_format.re & 0x7; switch (rd) { case MIPS_HWR_CC: /* Read count register */ arch->gprs[rt] = (long)(int)kvm_mips_read_count(vcpu); break; default: trace_kvm_hwr(vcpu, KVM_TRACE_RDHWR, KVM_TRACE_HWR(rd, sel), 0); goto unknown; }; trace_kvm_hwr(vcpu, KVM_TRACE_RDHWR, KVM_TRACE_HWR(rd, sel), arch->gprs[rt]); er = update_pc(vcpu, cause); break; default: goto unknown; }; break; unknown: default: kvm_err("GPSI exception not supported (%p/%#x)\n", opc, inst.word); kvm_arch_vcpu_dump_regs(vcpu); er = EMULATE_FAIL; break; } return er; } static enum emulation_result kvm_trap_vz_handle_gsfc(u32 cause, u32 *opc, struct kvm_vcpu *vcpu) { enum emulation_result er = EMULATE_DONE; struct kvm_vcpu_arch *arch = &vcpu->arch; union mips_instruction inst; int err; /* * Fetch the instruction. */ if (cause & CAUSEF_BD) opc += 1; err = kvm_get_badinstr(opc, vcpu, &inst.word); if (err) return EMULATE_FAIL; /* complete MTC0 on behalf of guest and advance EPC */ if (inst.c0r_format.opcode == cop0_op && inst.c0r_format.rs == mtc_op && inst.c0r_format.z == 0) { int rt = inst.c0r_format.rt; int rd = inst.c0r_format.rd; int sel = inst.c0r_format.sel; unsigned int val = arch->gprs[rt]; unsigned int old_val, change; trace_kvm_hwr(vcpu, KVM_TRACE_MTC0, KVM_TRACE_COP0(rd, sel), val); if ((rd == MIPS_CP0_STATUS) && (sel == 0)) { /* FR bit should read as zero if no FPU */ if (!kvm_mips_guest_has_fpu(&vcpu->arch)) val &= ~(ST0_CU1 | ST0_FR); /* * Also don't allow FR to be set if host doesn't support * it. */ if (!(boot_cpu_data.fpu_id & MIPS_FPIR_F64)) val &= ~ST0_FR; old_val = read_gc0_status(); change = val ^ old_val; if (change & ST0_FR) { /* * FPU and Vector register state is made * UNPREDICTABLE by a change of FR, so don't * even bother saving it. */ kvm_drop_fpu(vcpu); } /* * If MSA state is already live, it is undefined how it * interacts with FR=0 FPU state, and we don't want to * hit reserved instruction exceptions trying to save * the MSA state later when CU=1 && FR=1, so play it * safe and save it first. */ if (change & ST0_CU1 && !(val & ST0_FR) && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) kvm_lose_fpu(vcpu); write_gc0_status(val); } else if ((rd == MIPS_CP0_CAUSE) && (sel == 0)) { u32 old_cause = read_gc0_cause(); u32 change = old_cause ^ val; /* DC bit enabling/disabling timer? */ if (change & CAUSEF_DC) { if (val & CAUSEF_DC) { kvm_vz_lose_htimer(vcpu); kvm_mips_count_disable_cause(vcpu); } else { kvm_mips_count_enable_cause(vcpu); } } /* Only certain bits are RW to the guest */ change &= (CAUSEF_DC | CAUSEF_IV | CAUSEF_WP | CAUSEF_IP0 | CAUSEF_IP1); /* WP can only be cleared */ change &= ~CAUSEF_WP | old_cause; write_gc0_cause(old_cause ^ change); } else if ((rd == MIPS_CP0_STATUS) && (sel == 1)) { /* IntCtl */ write_gc0_intctl(val); } else if ((rd == MIPS_CP0_CONFIG) && (sel == 5)) { old_val = read_gc0_config5(); change = val ^ old_val; /* Handle changes in FPU/MSA modes */ preempt_disable(); /* * Propagate FRE changes immediately if the FPU * context is already loaded. */ if (change & MIPS_CONF5_FRE && vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) change_c0_config5(MIPS_CONF5_FRE, val); preempt_enable(); val = old_val ^ (change & kvm_vz_config5_guest_wrmask(vcpu)); write_gc0_config5(val); } else { kvm_err("Handle GSFC, unsupported field change @ %p: %#x\n", opc, inst.word); er = EMULATE_FAIL; } if (er != EMULATE_FAIL) er = update_pc(vcpu, cause); } else { kvm_err("Handle GSFC, unrecognized instruction @ %p: %#x\n", opc, inst.word); er = EMULATE_FAIL; } return er; } static enum emulation_result kvm_trap_vz_handle_ghfc(u32 cause, u32 *opc, struct kvm_vcpu *vcpu) { /* * Presumably this is due to MC (guest mode change), so lets trace some * relevant info. */ trace_kvm_guest_mode_change(vcpu); return EMULATE_DONE; } static enum emulation_result kvm_trap_vz_handle_hc(u32 cause, u32 *opc, struct kvm_vcpu *vcpu) { enum emulation_result er; union mips_instruction inst; unsigned long curr_pc; int err; if (cause & CAUSEF_BD) opc += 1; err = kvm_get_badinstr(opc, vcpu, &inst.word); if (err) return EMULATE_FAIL; /* * Update PC and hold onto current PC in case there is * an error and we want to rollback the PC */ curr_pc = vcpu->arch.pc; er = update_pc(vcpu, cause); if (er == EMULATE_FAIL) return er; er = kvm_mips_emul_hypcall(vcpu, inst); if (er == EMULATE_FAIL) vcpu->arch.pc = curr_pc; return er; } static enum emulation_result kvm_trap_vz_no_handler_guest_exit(u32 gexccode, u32 cause, u32 *opc, struct kvm_vcpu *vcpu) { u32 inst; /* * Fetch the instruction. */ if (cause & CAUSEF_BD) opc += 1; kvm_get_badinstr(opc, vcpu, &inst); kvm_err("Guest Exception Code: %d not yet handled @ PC: %p, inst: 0x%08x Status: %#x\n", gexccode, opc, inst, read_gc0_status()); return EMULATE_FAIL; } static int kvm_trap_vz_handle_guest_exit(struct kvm_vcpu *vcpu) { u32 *opc = (u32 *) vcpu->arch.pc; u32 cause = vcpu->arch.host_cp0_cause; enum emulation_result er = EMULATE_DONE; u32 gexccode = (vcpu->arch.host_cp0_guestctl0 & MIPS_GCTL0_GEXC) >> MIPS_GCTL0_GEXC_SHIFT; int ret = RESUME_GUEST; trace_kvm_exit(vcpu, KVM_TRACE_EXIT_GEXCCODE_BASE + gexccode); switch (gexccode) { case MIPS_GCTL0_GEXC_GPSI: ++vcpu->stat.vz_gpsi_exits; er = kvm_trap_vz_handle_gpsi(cause, opc, vcpu); break; case MIPS_GCTL0_GEXC_GSFC: ++vcpu->stat.vz_gsfc_exits; er = kvm_trap_vz_handle_gsfc(cause, opc, vcpu); break; case MIPS_GCTL0_GEXC_HC: ++vcpu->stat.vz_hc_exits; er = kvm_trap_vz_handle_hc(cause, opc, vcpu); break; case MIPS_GCTL0_GEXC_GRR: ++vcpu->stat.vz_grr_exits; er = kvm_trap_vz_no_handler_guest_exit(gexccode, cause, opc, vcpu); break; case MIPS_GCTL0_GEXC_GVA: ++vcpu->stat.vz_gva_exits; er = kvm_trap_vz_no_handler_guest_exit(gexccode, cause, opc, vcpu); break; case MIPS_GCTL0_GEXC_GHFC: ++vcpu->stat.vz_ghfc_exits; er = kvm_trap_vz_handle_ghfc(cause, opc, vcpu); break; case MIPS_GCTL0_GEXC_GPA: ++vcpu->stat.vz_gpa_exits; er = kvm_trap_vz_no_handler_guest_exit(gexccode, cause, opc, vcpu); break; default: ++vcpu->stat.vz_resvd_exits; er = kvm_trap_vz_no_handler_guest_exit(gexccode, cause, opc, vcpu); break; } if (er == EMULATE_DONE) { ret = RESUME_GUEST; } else if (er == EMULATE_HYPERCALL) { ret = kvm_mips_handle_hypcall(vcpu); } else { vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; ret = RESUME_HOST; } return ret; } /** * kvm_trap_vz_handle_cop_unusuable() - Guest used unusable coprocessor. * @vcpu: Virtual CPU context. * * Handle when the guest attempts to use a coprocessor which hasn't been allowed * by the root context. */ static int kvm_trap_vz_handle_cop_unusable(struct kvm_vcpu *vcpu) { struct kvm_run *run = vcpu->run; u32 cause = vcpu->arch.host_cp0_cause; enum emulation_result er = EMULATE_FAIL; int ret = RESUME_GUEST; if (((cause & CAUSEF_CE) >> CAUSEB_CE) == 1) { /* * If guest FPU not present, the FPU operation should have been * treated as a reserved instruction! * If FPU already in use, we shouldn't get this at all. */ if (WARN_ON(!kvm_mips_guest_has_fpu(&vcpu->arch) || vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) { preempt_enable(); return EMULATE_FAIL; } kvm_own_fpu(vcpu); er = EMULATE_DONE; } /* other coprocessors not handled */ switch (er) { case EMULATE_DONE: ret = RESUME_GUEST; break; case EMULATE_FAIL: run->exit_reason = KVM_EXIT_INTERNAL_ERROR; ret = RESUME_HOST; break; default: BUG(); } return ret; } /** * kvm_trap_vz_handle_msa_disabled() - Guest used MSA while disabled in root. * @vcpu: Virtual CPU context. * * Handle when the guest attempts to use MSA when it is disabled in the root * context. */ static int kvm_trap_vz_handle_msa_disabled(struct kvm_vcpu *vcpu) { struct kvm_run *run = vcpu->run; /* * If MSA not present or not exposed to guest or FR=0, the MSA operation * should have been treated as a reserved instruction! * Same if CU1=1, FR=0. * If MSA already in use, we shouldn't get this at all. */ if (!kvm_mips_guest_has_msa(&vcpu->arch) || (read_gc0_status() & (ST0_CU1 | ST0_FR)) == ST0_CU1 || !(read_gc0_config5() & MIPS_CONF5_MSAEN) || vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) { run->exit_reason = KVM_EXIT_INTERNAL_ERROR; return RESUME_HOST; } kvm_own_msa(vcpu); return RESUME_GUEST; } static int kvm_trap_vz_handle_tlb_ld_miss(struct kvm_vcpu *vcpu) { struct kvm_run *run = vcpu->run; u32 *opc = (u32 *) vcpu->arch.pc; u32 cause = vcpu->arch.host_cp0_cause; ulong badvaddr = vcpu->arch.host_cp0_badvaddr; union mips_instruction inst; enum emulation_result er = EMULATE_DONE; int err, ret = RESUME_GUEST; if (kvm_mips_handle_vz_root_tlb_fault(badvaddr, vcpu, false)) { /* A code fetch fault doesn't count as an MMIO */ if (kvm_is_ifetch_fault(&vcpu->arch)) { run->exit_reason = KVM_EXIT_INTERNAL_ERROR; return RESUME_HOST; } /* Fetch the instruction */ if (cause & CAUSEF_BD) opc += 1; err = kvm_get_badinstr(opc, vcpu, &inst.word); if (err) { run->exit_reason = KVM_EXIT_INTERNAL_ERROR; return RESUME_HOST; } /* Treat as MMIO */ er = kvm_mips_emulate_load(inst, cause, run, vcpu); if (er == EMULATE_FAIL) { kvm_err("Guest Emulate Load from MMIO space failed: PC: %p, BadVaddr: %#lx\n", opc, badvaddr); run->exit_reason = KVM_EXIT_INTERNAL_ERROR; } } if (er == EMULATE_DONE) { ret = RESUME_GUEST; } else if (er == EMULATE_DO_MMIO) { run->exit_reason = KVM_EXIT_MMIO; ret = RESUME_HOST; } else { run->exit_reason = KVM_EXIT_INTERNAL_ERROR; ret = RESUME_HOST; } return ret; } static int kvm_trap_vz_handle_tlb_st_miss(struct kvm_vcpu *vcpu) { struct kvm_run *run = vcpu->run; u32 *opc = (u32 *) vcpu->arch.pc; u32 cause = vcpu->arch.host_cp0_cause; ulong badvaddr = vcpu->arch.host_cp0_badvaddr; union mips_instruction inst; enum emulation_result er = EMULATE_DONE; int err; int ret = RESUME_GUEST; /* Just try the access again if we couldn't do the translation */ if (kvm_vz_badvaddr_to_gpa(vcpu, badvaddr, &badvaddr)) return RESUME_GUEST; vcpu->arch.host_cp0_badvaddr = badvaddr; if (kvm_mips_handle_vz_root_tlb_fault(badvaddr, vcpu, true)) { /* Fetch the instruction */ if (cause & CAUSEF_BD) opc += 1; err = kvm_get_badinstr(opc, vcpu, &inst.word); if (err) { run->exit_reason = KVM_EXIT_INTERNAL_ERROR; return RESUME_HOST; } /* Treat as MMIO */ er = kvm_mips_emulate_store(inst, cause, run, vcpu); if (er == EMULATE_FAIL) { kvm_err("Guest Emulate Store to MMIO space failed: PC: %p, BadVaddr: %#lx\n", opc, badvaddr); run->exit_reason = KVM_EXIT_INTERNAL_ERROR; } } if (er == EMULATE_DONE) { ret = RESUME_GUEST; } else if (er == EMULATE_DO_MMIO) { run->exit_reason = KVM_EXIT_MMIO; ret = RESUME_HOST; } else { run->exit_reason = KVM_EXIT_INTERNAL_ERROR; ret = RESUME_HOST; } return ret; } static u64 kvm_vz_get_one_regs[] = { KVM_REG_MIPS_CP0_INDEX, KVM_REG_MIPS_CP0_ENTRYLO0, KVM_REG_MIPS_CP0_ENTRYLO1, KVM_REG_MIPS_CP0_CONTEXT, KVM_REG_MIPS_CP0_PAGEMASK, KVM_REG_MIPS_CP0_PAGEGRAIN, KVM_REG_MIPS_CP0_WIRED, KVM_REG_MIPS_CP0_HWRENA, KVM_REG_MIPS_CP0_BADVADDR, KVM_REG_MIPS_CP0_COUNT, KVM_REG_MIPS_CP0_ENTRYHI, KVM_REG_MIPS_CP0_COMPARE, KVM_REG_MIPS_CP0_STATUS, KVM_REG_MIPS_CP0_INTCTL, KVM_REG_MIPS_CP0_CAUSE, KVM_REG_MIPS_CP0_EPC, KVM_REG_MIPS_CP0_PRID, KVM_REG_MIPS_CP0_EBASE, KVM_REG_MIPS_CP0_CONFIG, KVM_REG_MIPS_CP0_CONFIG1, KVM_REG_MIPS_CP0_CONFIG2, KVM_REG_MIPS_CP0_CONFIG3, KVM_REG_MIPS_CP0_CONFIG4, KVM_REG_MIPS_CP0_CONFIG5, #ifdef CONFIG_64BIT KVM_REG_MIPS_CP0_XCONTEXT, #endif KVM_REG_MIPS_CP0_ERROREPC, KVM_REG_MIPS_COUNT_CTL, KVM_REG_MIPS_COUNT_RESUME, KVM_REG_MIPS_COUNT_HZ, }; static u64 kvm_vz_get_one_regs_contextconfig[] = { KVM_REG_MIPS_CP0_CONTEXTCONFIG, #ifdef CONFIG_64BIT KVM_REG_MIPS_CP0_XCONTEXTCONFIG, #endif }; static u64 kvm_vz_get_one_regs_segments[] = { KVM_REG_MIPS_CP0_SEGCTL0, KVM_REG_MIPS_CP0_SEGCTL1, KVM_REG_MIPS_CP0_SEGCTL2, }; static u64 kvm_vz_get_one_regs_htw[] = { KVM_REG_MIPS_CP0_PWBASE, KVM_REG_MIPS_CP0_PWFIELD, KVM_REG_MIPS_CP0_PWSIZE, KVM_REG_MIPS_CP0_PWCTL, }; static u64 kvm_vz_get_one_regs_kscratch[] = { KVM_REG_MIPS_CP0_KSCRATCH1, KVM_REG_MIPS_CP0_KSCRATCH2, KVM_REG_MIPS_CP0_KSCRATCH3, KVM_REG_MIPS_CP0_KSCRATCH4, KVM_REG_MIPS_CP0_KSCRATCH5, KVM_REG_MIPS_CP0_KSCRATCH6, }; static unsigned long kvm_vz_num_regs(struct kvm_vcpu *vcpu) { unsigned long ret; ret = ARRAY_SIZE(kvm_vz_get_one_regs); if (cpu_guest_has_userlocal) ++ret; if (cpu_guest_has_badinstr) ++ret; if (cpu_guest_has_badinstrp) ++ret; if (cpu_guest_has_contextconfig) ret += ARRAY_SIZE(kvm_vz_get_one_regs_contextconfig); if (cpu_guest_has_segments) ret += ARRAY_SIZE(kvm_vz_get_one_regs_segments); if (cpu_guest_has_htw) ret += ARRAY_SIZE(kvm_vz_get_one_regs_htw); if (cpu_guest_has_maar && !cpu_guest_has_dyn_maar) ret += 1 + ARRAY_SIZE(vcpu->arch.maar); ret += __arch_hweight8(cpu_data[0].guest.kscratch_mask); return ret; } static int kvm_vz_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices) { u64 index; unsigned int i; if (copy_to_user(indices, kvm_vz_get_one_regs, sizeof(kvm_vz_get_one_regs))) return -EFAULT; indices += ARRAY_SIZE(kvm_vz_get_one_regs); if (cpu_guest_has_userlocal) { index = KVM_REG_MIPS_CP0_USERLOCAL; if (copy_to_user(indices, &index, sizeof(index))) return -EFAULT; ++indices; } if (cpu_guest_has_badinstr) { index = KVM_REG_MIPS_CP0_BADINSTR; if (copy_to_user(indices, &index, sizeof(index))) return -EFAULT; ++indices; } if (cpu_guest_has_badinstrp) { index = KVM_REG_MIPS_CP0_BADINSTRP; if (copy_to_user(indices, &index, sizeof(index))) return -EFAULT; ++indices; } if (cpu_guest_has_contextconfig) { if (copy_to_user(indices, kvm_vz_get_one_regs_contextconfig, sizeof(kvm_vz_get_one_regs_contextconfig))) return -EFAULT; indices += ARRAY_SIZE(kvm_vz_get_one_regs_contextconfig); } if (cpu_guest_has_segments) { if (copy_to_user(indices, kvm_vz_get_one_regs_segments, sizeof(kvm_vz_get_one_regs_segments))) return -EFAULT; indices += ARRAY_SIZE(kvm_vz_get_one_regs_segments); } if (cpu_guest_has_htw) { if (copy_to_user(indices, kvm_vz_get_one_regs_htw, sizeof(kvm_vz_get_one_regs_htw))) return -EFAULT; indices += ARRAY_SIZE(kvm_vz_get_one_regs_htw); } if (cpu_guest_has_maar && !cpu_guest_has_dyn_maar) { for (i = 0; i < ARRAY_SIZE(vcpu->arch.maar); ++i) { index = KVM_REG_MIPS_CP0_MAAR(i); if (copy_to_user(indices, &index, sizeof(index))) return -EFAULT; ++indices; } index = KVM_REG_MIPS_CP0_MAARI; if (copy_to_user(indices, &index, sizeof(index))) return -EFAULT; ++indices; } for (i = 0; i < 6; ++i) { if (!cpu_guest_has_kscr(i + 2)) continue; if (copy_to_user(indices, &kvm_vz_get_one_regs_kscratch[i], sizeof(kvm_vz_get_one_regs_kscratch[i]))) return -EFAULT; ++indices; } return 0; } static inline s64 entrylo_kvm_to_user(unsigned long v) { s64 mask, ret = v; if (BITS_PER_LONG == 32) { /* * KVM API exposes 64-bit version of the register, so move the * RI/XI bits up into place. */ mask = MIPS_ENTRYLO_RI | MIPS_ENTRYLO_XI; ret &= ~mask; ret |= ((s64)v & mask) << 32; } return ret; } static inline unsigned long entrylo_user_to_kvm(s64 v) { unsigned long mask, ret = v; if (BITS_PER_LONG == 32) { /* * KVM API exposes 64-bit versiono of the register, so move the * RI/XI bits down into place. */ mask = MIPS_ENTRYLO_RI | MIPS_ENTRYLO_XI; ret &= ~mask; ret |= (v >> 32) & mask; } return ret; } static int kvm_vz_get_one_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg, s64 *v) { struct mips_coproc *cop0 = vcpu->arch.cop0; unsigned int idx; switch (reg->id) { case KVM_REG_MIPS_CP0_INDEX: *v = (long)read_gc0_index(); break; case KVM_REG_MIPS_CP0_ENTRYLO0: *v = entrylo_kvm_to_user(read_gc0_entrylo0()); break; case KVM_REG_MIPS_CP0_ENTRYLO1: *v = entrylo_kvm_to_user(read_gc0_entrylo1()); break; case KVM_REG_MIPS_CP0_CONTEXT: *v = (long)read_gc0_context(); break; case KVM_REG_MIPS_CP0_CONTEXTCONFIG: if (!cpu_guest_has_contextconfig) return -EINVAL; *v = read_gc0_contextconfig(); break; case KVM_REG_MIPS_CP0_USERLOCAL: if (!cpu_guest_has_userlocal) return -EINVAL; *v = read_gc0_userlocal(); break; #ifdef CONFIG_64BIT case KVM_REG_MIPS_CP0_XCONTEXTCONFIG: if (!cpu_guest_has_contextconfig) return -EINVAL; *v = read_gc0_xcontextconfig(); break; #endif case KVM_REG_MIPS_CP0_PAGEMASK: *v = (long)read_gc0_pagemask(); break; case KVM_REG_MIPS_CP0_PAGEGRAIN: *v = (long)read_gc0_pagegrain(); break; case KVM_REG_MIPS_CP0_SEGCTL0: if (!cpu_guest_has_segments) return -EINVAL; *v = read_gc0_segctl0(); break; case KVM_REG_MIPS_CP0_SEGCTL1: if (!cpu_guest_has_segments) return -EINVAL; *v = read_gc0_segctl1(); break; case KVM_REG_MIPS_CP0_SEGCTL2: if (!cpu_guest_has_segments) return -EINVAL; *v = read_gc0_segctl2(); break; case KVM_REG_MIPS_CP0_PWBASE: if (!cpu_guest_has_htw) return -EINVAL; *v = read_gc0_pwbase(); break; case KVM_REG_MIPS_CP0_PWFIELD: if (!cpu_guest_has_htw) return -EINVAL; *v = read_gc0_pwfield(); break; case KVM_REG_MIPS_CP0_PWSIZE: if (!cpu_guest_has_htw) return -EINVAL; *v = read_gc0_pwsize(); break; case KVM_REG_MIPS_CP0_WIRED: *v = (long)read_gc0_wired(); break; case KVM_REG_MIPS_CP0_PWCTL: if (!cpu_guest_has_htw) return -EINVAL; *v = read_gc0_pwctl(); break; case KVM_REG_MIPS_CP0_HWRENA: *v = (long)read_gc0_hwrena(); break; case KVM_REG_MIPS_CP0_BADVADDR: *v = (long)read_gc0_badvaddr(); break; case KVM_REG_MIPS_CP0_BADINSTR: if (!cpu_guest_has_badinstr) return -EINVAL; *v = read_gc0_badinstr(); break; case KVM_REG_MIPS_CP0_BADINSTRP: if (!cpu_guest_has_badinstrp) return -EINVAL; *v = read_gc0_badinstrp(); break; case KVM_REG_MIPS_CP0_COUNT: *v = kvm_mips_read_count(vcpu); break; case KVM_REG_MIPS_CP0_ENTRYHI: *v = (long)read_gc0_entryhi(); break; case KVM_REG_MIPS_CP0_COMPARE: *v = (long)read_gc0_compare(); break; case KVM_REG_MIPS_CP0_STATUS: *v = (long)read_gc0_status(); break; case KVM_REG_MIPS_CP0_INTCTL: *v = read_gc0_intctl(); break; case KVM_REG_MIPS_CP0_CAUSE: *v = (long)read_gc0_cause(); break; case KVM_REG_MIPS_CP0_EPC: *v = (long)read_gc0_epc(); break; case KVM_REG_MIPS_CP0_PRID: switch (boot_cpu_type()) { case CPU_CAVIUM_OCTEON3: /* Octeon III has a read-only guest.PRid */ *v = read_gc0_prid(); break; default: *v = (long)kvm_read_c0_guest_prid(cop0); break; }; break; case KVM_REG_MIPS_CP0_EBASE: *v = kvm_vz_read_gc0_ebase(); break; case KVM_REG_MIPS_CP0_CONFIG: *v = read_gc0_config(); break; case KVM_REG_MIPS_CP0_CONFIG1: if (!cpu_guest_has_conf1) return -EINVAL; *v = read_gc0_config1(); break; case KVM_REG_MIPS_CP0_CONFIG2: if (!cpu_guest_has_conf2) return -EINVAL; *v = read_gc0_config2(); break; case KVM_REG_MIPS_CP0_CONFIG3: if (!cpu_guest_has_conf3) return -EINVAL; *v = read_gc0_config3(); break; case KVM_REG_MIPS_CP0_CONFIG4: if (!cpu_guest_has_conf4) return -EINVAL; *v = read_gc0_config4(); break; case KVM_REG_MIPS_CP0_CONFIG5: if (!cpu_guest_has_conf5) return -EINVAL; *v = read_gc0_config5(); break; case KVM_REG_MIPS_CP0_MAAR(0) ... KVM_REG_MIPS_CP0_MAAR(0x3f): if (!cpu_guest_has_maar || cpu_guest_has_dyn_maar) return -EINVAL; idx = reg->id - KVM_REG_MIPS_CP0_MAAR(0); if (idx >= ARRAY_SIZE(vcpu->arch.maar)) return -EINVAL; *v = vcpu->arch.maar[idx]; break; case KVM_REG_MIPS_CP0_MAARI: if (!cpu_guest_has_maar || cpu_guest_has_dyn_maar) return -EINVAL; *v = kvm_read_sw_gc0_maari(vcpu->arch.cop0); break; #ifdef CONFIG_64BIT case KVM_REG_MIPS_CP0_XCONTEXT: *v = read_gc0_xcontext(); break; #endif case KVM_REG_MIPS_CP0_ERROREPC: *v = (long)read_gc0_errorepc(); break; case KVM_REG_MIPS_CP0_KSCRATCH1 ... KVM_REG_MIPS_CP0_KSCRATCH6: idx = reg->id - KVM_REG_MIPS_CP0_KSCRATCH1 + 2; if (!cpu_guest_has_kscr(idx)) return -EINVAL; switch (idx) { case 2: *v = (long)read_gc0_kscratch1(); break; case 3: *v = (long)read_gc0_kscratch2(); break; case 4: *v = (long)read_gc0_kscratch3(); break; case 5: *v = (long)read_gc0_kscratch4(); break; case 6: *v = (long)read_gc0_kscratch5(); break; case 7: *v = (long)read_gc0_kscratch6(); break; } break; case KVM_REG_MIPS_COUNT_CTL: *v = vcpu->arch.count_ctl; break; case KVM_REG_MIPS_COUNT_RESUME: *v = ktime_to_ns(vcpu->arch.count_resume); break; case KVM_REG_MIPS_COUNT_HZ: *v = vcpu->arch.count_hz; break; default: return -EINVAL; } return 0; } static int kvm_vz_set_one_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg, s64 v) { struct mips_coproc *cop0 = vcpu->arch.cop0; unsigned int idx; int ret = 0; unsigned int cur, change; switch (reg->id) { case KVM_REG_MIPS_CP0_INDEX: write_gc0_index(v); break; case KVM_REG_MIPS_CP0_ENTRYLO0: write_gc0_entrylo0(entrylo_user_to_kvm(v)); break; case KVM_REG_MIPS_CP0_ENTRYLO1: write_gc0_entrylo1(entrylo_user_to_kvm(v)); break; case KVM_REG_MIPS_CP0_CONTEXT: write_gc0_context(v); break; case KVM_REG_MIPS_CP0_CONTEXTCONFIG: if (!cpu_guest_has_contextconfig) return -EINVAL; write_gc0_contextconfig(v); break; case KVM_REG_MIPS_CP0_USERLOCAL: if (!cpu_guest_has_userlocal) return -EINVAL; write_gc0_userlocal(v); break; #ifdef CONFIG_64BIT case KVM_REG_MIPS_CP0_XCONTEXTCONFIG: if (!cpu_guest_has_contextconfig) return -EINVAL; write_gc0_xcontextconfig(v); break; #endif case KVM_REG_MIPS_CP0_PAGEMASK: write_gc0_pagemask(v); break; case KVM_REG_MIPS_CP0_PAGEGRAIN: write_gc0_pagegrain(v); break; case KVM_REG_MIPS_CP0_SEGCTL0: if (!cpu_guest_has_segments) return -EINVAL; write_gc0_segctl0(v); break; case KVM_REG_MIPS_CP0_SEGCTL1: if (!cpu_guest_has_segments) return -EINVAL; write_gc0_segctl1(v); break; case KVM_REG_MIPS_CP0_SEGCTL2: if (!cpu_guest_has_segments) return -EINVAL; write_gc0_segctl2(v); break; case KVM_REG_MIPS_CP0_PWBASE: if (!cpu_guest_has_htw) return -EINVAL; write_gc0_pwbase(v); break; case KVM_REG_MIPS_CP0_PWFIELD: if (!cpu_guest_has_htw) return -EINVAL; write_gc0_pwfield(v); break; case KVM_REG_MIPS_CP0_PWSIZE: if (!cpu_guest_has_htw) return -EINVAL; write_gc0_pwsize(v); break; case KVM_REG_MIPS_CP0_WIRED: change_gc0_wired(MIPSR6_WIRED_WIRED, v); break; case KVM_REG_MIPS_CP0_PWCTL: if (!cpu_guest_has_htw) return -EINVAL; write_gc0_pwctl(v); break; case KVM_REG_MIPS_CP0_HWRENA: write_gc0_hwrena(v); break; case KVM_REG_MIPS_CP0_BADVADDR: write_gc0_badvaddr(v); break; case KVM_REG_MIPS_CP0_BADINSTR: if (!cpu_guest_has_badinstr) return -EINVAL; write_gc0_badinstr(v); break; case KVM_REG_MIPS_CP0_BADINSTRP: if (!cpu_guest_has_badinstrp) return -EINVAL; write_gc0_badinstrp(v); break; case KVM_REG_MIPS_CP0_COUNT: kvm_mips_write_count(vcpu, v); break; case KVM_REG_MIPS_CP0_ENTRYHI: write_gc0_entryhi(v); break; case KVM_REG_MIPS_CP0_COMPARE: kvm_mips_write_compare(vcpu, v, false); break; case KVM_REG_MIPS_CP0_STATUS: write_gc0_status(v); break; case KVM_REG_MIPS_CP0_INTCTL: write_gc0_intctl(v); break; case KVM_REG_MIPS_CP0_CAUSE: /* * If the timer is stopped or started (DC bit) it must look * atomic with changes to the timer interrupt pending bit (TI). * A timer interrupt should not happen in between. */ if ((read_gc0_cause() ^ v) & CAUSEF_DC) { if (v & CAUSEF_DC) { /* disable timer first */ kvm_mips_count_disable_cause(vcpu); change_gc0_cause((u32)~CAUSEF_DC, v); } else { /* enable timer last */ change_gc0_cause((u32)~CAUSEF_DC, v); kvm_mips_count_enable_cause(vcpu); } } else { write_gc0_cause(v); } break; case KVM_REG_MIPS_CP0_EPC: write_gc0_epc(v); break; case KVM_REG_MIPS_CP0_PRID: switch (boot_cpu_type()) { case CPU_CAVIUM_OCTEON3: /* Octeon III has a guest.PRid, but its read-only */ break; default: kvm_write_c0_guest_prid(cop0, v); break; }; break; case KVM_REG_MIPS_CP0_EBASE: kvm_vz_write_gc0_ebase(v); break; case KVM_REG_MIPS_CP0_CONFIG: cur = read_gc0_config(); change = (cur ^ v) & kvm_vz_config_user_wrmask(vcpu); if (change) { v = cur ^ change; write_gc0_config(v); } break; case KVM_REG_MIPS_CP0_CONFIG1: if (!cpu_guest_has_conf1) break; cur = read_gc0_config1(); change = (cur ^ v) & kvm_vz_config1_user_wrmask(vcpu); if (change) { v = cur ^ change; write_gc0_config1(v); } break; case KVM_REG_MIPS_CP0_CONFIG2: if (!cpu_guest_has_conf2) break; cur = read_gc0_config2(); change = (cur ^ v) & kvm_vz_config2_user_wrmask(vcpu); if (change) { v = cur ^ change; write_gc0_config2(v); } break; case KVM_REG_MIPS_CP0_CONFIG3: if (!cpu_guest_has_conf3) break; cur = read_gc0_config3(); change = (cur ^ v) & kvm_vz_config3_user_wrmask(vcpu); if (change) { v = cur ^ change; write_gc0_config3(v); } break; case KVM_REG_MIPS_CP0_CONFIG4: if (!cpu_guest_has_conf4) break; cur = read_gc0_config4(); change = (cur ^ v) & kvm_vz_config4_user_wrmask(vcpu); if (change) { v = cur ^ change; write_gc0_config4(v); } break; case KVM_REG_MIPS_CP0_CONFIG5: if (!cpu_guest_has_conf5) break; cur = read_gc0_config5(); change = (cur ^ v) & kvm_vz_config5_user_wrmask(vcpu); if (change) { v = cur ^ change; write_gc0_config5(v); } break; case KVM_REG_MIPS_CP0_MAAR(0) ... KVM_REG_MIPS_CP0_MAAR(0x3f): if (!cpu_guest_has_maar || cpu_guest_has_dyn_maar) return -EINVAL; idx = reg->id - KVM_REG_MIPS_CP0_MAAR(0); if (idx >= ARRAY_SIZE(vcpu->arch.maar)) return -EINVAL; vcpu->arch.maar[idx] = mips_process_maar(dmtc_op, v); break; case KVM_REG_MIPS_CP0_MAARI: if (!cpu_guest_has_maar || cpu_guest_has_dyn_maar) return -EINVAL; kvm_write_maari(vcpu, v); break; #ifdef CONFIG_64BIT case KVM_REG_MIPS_CP0_XCONTEXT: write_gc0_xcontext(v); break; #endif case KVM_REG_MIPS_CP0_ERROREPC: write_gc0_errorepc(v); break; case KVM_REG_MIPS_CP0_KSCRATCH1 ... KVM_REG_MIPS_CP0_KSCRATCH6: idx = reg->id - KVM_REG_MIPS_CP0_KSCRATCH1 + 2; if (!cpu_guest_has_kscr(idx)) return -EINVAL; switch (idx) { case 2: write_gc0_kscratch1(v); break; case 3: write_gc0_kscratch2(v); break; case 4: write_gc0_kscratch3(v); break; case 5: write_gc0_kscratch4(v); break; case 6: write_gc0_kscratch5(v); break; case 7: write_gc0_kscratch6(v); break; } break; case KVM_REG_MIPS_COUNT_CTL: ret = kvm_mips_set_count_ctl(vcpu, v); break; case KVM_REG_MIPS_COUNT_RESUME: ret = kvm_mips_set_count_resume(vcpu, v); break; case KVM_REG_MIPS_COUNT_HZ: ret = kvm_mips_set_count_hz(vcpu, v); break; default: return -EINVAL; } return ret; } #define guestid_cache(cpu) (cpu_data[cpu].guestid_cache) static void kvm_vz_get_new_guestid(unsigned long cpu, struct kvm_vcpu *vcpu) { unsigned long guestid = guestid_cache(cpu); if (!(++guestid & GUESTID_MASK)) { if (cpu_has_vtag_icache) flush_icache_all(); if (!guestid) /* fix version if needed */ guestid = GUESTID_FIRST_VERSION; ++guestid; /* guestid 0 reserved for root */ /* start new guestid cycle */ kvm_vz_local_flush_roottlb_all_guests(); kvm_vz_local_flush_guesttlb_all(); } guestid_cache(cpu) = guestid; } /* Returns 1 if the guest TLB may be clobbered */ static int kvm_vz_check_requests(struct kvm_vcpu *vcpu, int cpu) { int ret = 0; int i; if (!kvm_request_pending(vcpu)) return 0; if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) { if (cpu_has_guestid) { /* Drop all GuestIDs for this VCPU */ for_each_possible_cpu(i) vcpu->arch.vzguestid[i] = 0; /* This will clobber guest TLB contents too */ ret = 1; } /* * For Root ASID Dealias (RAD) we don't do anything here, but we * still need the request to ensure we recheck asid_flush_mask. * We can still return 0 as only the root TLB will be affected * by a root ASID flush. */ } return ret; } static void kvm_vz_vcpu_save_wired(struct kvm_vcpu *vcpu) { unsigned int wired = read_gc0_wired(); struct kvm_mips_tlb *tlbs; int i; /* Expand the wired TLB array if necessary */ wired &= MIPSR6_WIRED_WIRED; if (wired > vcpu->arch.wired_tlb_limit) { tlbs = krealloc(vcpu->arch.wired_tlb, wired * sizeof(*vcpu->arch.wired_tlb), GFP_ATOMIC); if (WARN_ON(!tlbs)) { /* Save whatever we can */ wired = vcpu->arch.wired_tlb_limit; } else { vcpu->arch.wired_tlb = tlbs; vcpu->arch.wired_tlb_limit = wired; } } if (wired) /* Save wired entries from the guest TLB */ kvm_vz_save_guesttlb(vcpu->arch.wired_tlb, 0, wired); /* Invalidate any dropped entries since last time */ for (i = wired; i < vcpu->arch.wired_tlb_used; ++i) { vcpu->arch.wired_tlb[i].tlb_hi = UNIQUE_GUEST_ENTRYHI(i); vcpu->arch.wired_tlb[i].tlb_lo[0] = 0; vcpu->arch.wired_tlb[i].tlb_lo[1] = 0; vcpu->arch.wired_tlb[i].tlb_mask = 0; } vcpu->arch.wired_tlb_used = wired; } static void kvm_vz_vcpu_load_wired(struct kvm_vcpu *vcpu) { /* Load wired entries into the guest TLB */ if (vcpu->arch.wired_tlb) kvm_vz_load_guesttlb(vcpu->arch.wired_tlb, 0, vcpu->arch.wired_tlb_used); } static void kvm_vz_vcpu_load_tlb(struct kvm_vcpu *vcpu, int cpu) { struct kvm *kvm = vcpu->kvm; struct mm_struct *gpa_mm = &kvm->arch.gpa_mm; bool migrated; /* * Are we entering guest context on a different CPU to last time? * If so, the VCPU's guest TLB state on this CPU may be stale. */ migrated = (vcpu->arch.last_exec_cpu != cpu); vcpu->arch.last_exec_cpu = cpu; /* * A vcpu's GuestID is set in GuestCtl1.ID when the vcpu is loaded and * remains set until another vcpu is loaded in. As a rule GuestRID * remains zeroed when in root context unless the kernel is busy * manipulating guest tlb entries. */ if (cpu_has_guestid) { /* * Check if our GuestID is of an older version and thus invalid. * * We also discard the stored GuestID if we've executed on * another CPU, as the guest mappings may have changed without * hypervisor knowledge. */ if (migrated || (vcpu->arch.vzguestid[cpu] ^ guestid_cache(cpu)) & GUESTID_VERSION_MASK) { kvm_vz_get_new_guestid(cpu, vcpu); vcpu->arch.vzguestid[cpu] = guestid_cache(cpu); trace_kvm_guestid_change(vcpu, vcpu->arch.vzguestid[cpu]); } /* Restore GuestID */ change_c0_guestctl1(GUESTID_MASK, vcpu->arch.vzguestid[cpu]); } else { /* * The Guest TLB only stores a single guest's TLB state, so * flush it if another VCPU has executed on this CPU. * * We also flush if we've executed on another CPU, as the guest * mappings may have changed without hypervisor knowledge. */ if (migrated || last_exec_vcpu[cpu] != vcpu) kvm_vz_local_flush_guesttlb_all(); last_exec_vcpu[cpu] = vcpu; /* * Root ASID dealiases guest GPA mappings in the root TLB. * Allocate new root ASID if needed. */ if (cpumask_test_and_clear_cpu(cpu, &kvm->arch.asid_flush_mask) || (cpu_context(cpu, gpa_mm) ^ asid_cache(cpu)) & asid_version_mask(cpu)) get_new_mmu_context(gpa_mm, cpu); } } static int kvm_vz_vcpu_load(struct kvm_vcpu *vcpu, int cpu) { struct mips_coproc *cop0 = vcpu->arch.cop0; bool migrated, all; /* * Have we migrated to a different CPU? * If so, any old guest TLB state may be stale. */ migrated = (vcpu->arch.last_sched_cpu != cpu); /* * Was this the last VCPU to run on this CPU? * If not, any old guest state from this VCPU will have been clobbered. */ all = migrated || (last_vcpu[cpu] != vcpu); last_vcpu[cpu] = vcpu; /* * Restore CP0_Wired unconditionally as we clear it after use, and * restore wired guest TLB entries (while in guest context). */ kvm_restore_gc0_wired(cop0); if (current->flags & PF_VCPU) { tlbw_use_hazard(); kvm_vz_vcpu_load_tlb(vcpu, cpu); kvm_vz_vcpu_load_wired(vcpu); } /* * Restore timer state regardless, as e.g. Cause.TI can change over time * if left unmaintained. */ kvm_vz_restore_timer(vcpu); /* Set MC bit if we want to trace guest mode changes */ if (kvm_trace_guest_mode_change) set_c0_guestctl0(MIPS_GCTL0_MC); else clear_c0_guestctl0(MIPS_GCTL0_MC); /* Don't bother restoring registers multiple times unless necessary */ if (!all) return 0; /* * Restore config registers first, as some implementations restrict * writes to other registers when the corresponding feature bits aren't * set. For example Status.CU1 cannot be set unless Config1.FP is set. */ kvm_restore_gc0_config(cop0); if (cpu_guest_has_conf1) kvm_restore_gc0_config1(cop0); if (cpu_guest_has_conf2) kvm_restore_gc0_config2(cop0); if (cpu_guest_has_conf3) kvm_restore_gc0_config3(cop0); if (cpu_guest_has_conf4) kvm_restore_gc0_config4(cop0); if (cpu_guest_has_conf5) kvm_restore_gc0_config5(cop0); if (cpu_guest_has_conf6) kvm_restore_gc0_config6(cop0); if (cpu_guest_has_conf7) kvm_restore_gc0_config7(cop0); kvm_restore_gc0_index(cop0); kvm_restore_gc0_entrylo0(cop0); kvm_restore_gc0_entrylo1(cop0); kvm_restore_gc0_context(cop0); if (cpu_guest_has_contextconfig) kvm_restore_gc0_contextconfig(cop0); #ifdef CONFIG_64BIT kvm_restore_gc0_xcontext(cop0); if (cpu_guest_has_contextconfig) kvm_restore_gc0_xcontextconfig(cop0); #endif kvm_restore_gc0_pagemask(cop0); kvm_restore_gc0_pagegrain(cop0); kvm_restore_gc0_hwrena(cop0); kvm_restore_gc0_badvaddr(cop0); kvm_restore_gc0_entryhi(cop0); kvm_restore_gc0_status(cop0); kvm_restore_gc0_intctl(cop0); kvm_restore_gc0_epc(cop0); kvm_vz_write_gc0_ebase(kvm_read_sw_gc0_ebase(cop0)); if (cpu_guest_has_userlocal) kvm_restore_gc0_userlocal(cop0); kvm_restore_gc0_errorepc(cop0); /* restore KScratch registers if enabled in guest */ if (cpu_guest_has_conf4) { if (cpu_guest_has_kscr(2)) kvm_restore_gc0_kscratch1(cop0); if (cpu_guest_has_kscr(3)) kvm_restore_gc0_kscratch2(cop0); if (cpu_guest_has_kscr(4)) kvm_restore_gc0_kscratch3(cop0); if (cpu_guest_has_kscr(5)) kvm_restore_gc0_kscratch4(cop0); if (cpu_guest_has_kscr(6)) kvm_restore_gc0_kscratch5(cop0); if (cpu_guest_has_kscr(7)) kvm_restore_gc0_kscratch6(cop0); } if (cpu_guest_has_badinstr) kvm_restore_gc0_badinstr(cop0); if (cpu_guest_has_badinstrp) kvm_restore_gc0_badinstrp(cop0); if (cpu_guest_has_segments) { kvm_restore_gc0_segctl0(cop0); kvm_restore_gc0_segctl1(cop0); kvm_restore_gc0_segctl2(cop0); } /* restore HTW registers */ if (cpu_guest_has_htw) { kvm_restore_gc0_pwbase(cop0); kvm_restore_gc0_pwfield(cop0); kvm_restore_gc0_pwsize(cop0); kvm_restore_gc0_pwctl(cop0); } /* restore Root.GuestCtl2 from unused Guest guestctl2 register */ if (cpu_has_guestctl2) write_c0_guestctl2( cop0->reg[MIPS_CP0_GUESTCTL2][MIPS_CP0_GUESTCTL2_SEL]); /* * We should clear linked load bit to break interrupted atomics. This * prevents a SC on the next VCPU from succeeding by matching a LL on * the previous VCPU. */ if (cpu_guest_has_rw_llb) write_gc0_lladdr(0); return 0; } static int kvm_vz_vcpu_put(struct kvm_vcpu *vcpu, int cpu) { struct mips_coproc *cop0 = vcpu->arch.cop0; if (current->flags & PF_VCPU) kvm_vz_vcpu_save_wired(vcpu); kvm_lose_fpu(vcpu); kvm_save_gc0_index(cop0); kvm_save_gc0_entrylo0(cop0); kvm_save_gc0_entrylo1(cop0); kvm_save_gc0_context(cop0); if (cpu_guest_has_contextconfig) kvm_save_gc0_contextconfig(cop0); #ifdef CONFIG_64BIT kvm_save_gc0_xcontext(cop0); if (cpu_guest_has_contextconfig) kvm_save_gc0_xcontextconfig(cop0); #endif kvm_save_gc0_pagemask(cop0); kvm_save_gc0_pagegrain(cop0); kvm_save_gc0_wired(cop0); /* allow wired TLB entries to be overwritten */ clear_gc0_wired(MIPSR6_WIRED_WIRED); kvm_save_gc0_hwrena(cop0); kvm_save_gc0_badvaddr(cop0); kvm_save_gc0_entryhi(cop0); kvm_save_gc0_status(cop0); kvm_save_gc0_intctl(cop0); kvm_save_gc0_epc(cop0); kvm_write_sw_gc0_ebase(cop0, kvm_vz_read_gc0_ebase()); if (cpu_guest_has_userlocal) kvm_save_gc0_userlocal(cop0); /* only save implemented config registers */ kvm_save_gc0_config(cop0); if (cpu_guest_has_conf1) kvm_save_gc0_config1(cop0); if (cpu_guest_has_conf2) kvm_save_gc0_config2(cop0); if (cpu_guest_has_conf3) kvm_save_gc0_config3(cop0); if (cpu_guest_has_conf4) kvm_save_gc0_config4(cop0); if (cpu_guest_has_conf5) kvm_save_gc0_config5(cop0); if (cpu_guest_has_conf6) kvm_save_gc0_config6(cop0); if (cpu_guest_has_conf7) kvm_save_gc0_config7(cop0); kvm_save_gc0_errorepc(cop0); /* save KScratch registers if enabled in guest */ if (cpu_guest_has_conf4) { if (cpu_guest_has_kscr(2)) kvm_save_gc0_kscratch1(cop0); if (cpu_guest_has_kscr(3)) kvm_save_gc0_kscratch2(cop0); if (cpu_guest_has_kscr(4)) kvm_save_gc0_kscratch3(cop0); if (cpu_guest_has_kscr(5)) kvm_save_gc0_kscratch4(cop0); if (cpu_guest_has_kscr(6)) kvm_save_gc0_kscratch5(cop0); if (cpu_guest_has_kscr(7)) kvm_save_gc0_kscratch6(cop0); } if (cpu_guest_has_badinstr) kvm_save_gc0_badinstr(cop0); if (cpu_guest_has_badinstrp) kvm_save_gc0_badinstrp(cop0); if (cpu_guest_has_segments) { kvm_save_gc0_segctl0(cop0); kvm_save_gc0_segctl1(cop0); kvm_save_gc0_segctl2(cop0); } /* save HTW registers if enabled in guest */ if (cpu_guest_has_htw && kvm_read_sw_gc0_config3(cop0) & MIPS_CONF3_PW) { kvm_save_gc0_pwbase(cop0); kvm_save_gc0_pwfield(cop0); kvm_save_gc0_pwsize(cop0); kvm_save_gc0_pwctl(cop0); } kvm_vz_save_timer(vcpu); /* save Root.GuestCtl2 in unused Guest guestctl2 register */ if (cpu_has_guestctl2) cop0->reg[MIPS_CP0_GUESTCTL2][MIPS_CP0_GUESTCTL2_SEL] = read_c0_guestctl2(); return 0; } /** * kvm_vz_resize_guest_vtlb() - Attempt to resize guest VTLB. * @size: Number of guest VTLB entries (0 < @size <= root VTLB entries). * * Attempt to resize the guest VTLB by writing guest Config registers. This is * necessary for cores with a shared root/guest TLB to avoid overlap with wired * entries in the root VTLB. * * Returns: The resulting guest VTLB size. */ static unsigned int kvm_vz_resize_guest_vtlb(unsigned int size) { unsigned int config4 = 0, ret = 0, limit; /* Write MMUSize - 1 into guest Config registers */ if (cpu_guest_has_conf1) change_gc0_config1(MIPS_CONF1_TLBS, (size - 1) << MIPS_CONF1_TLBS_SHIFT); if (cpu_guest_has_conf4) { config4 = read_gc0_config4(); if (cpu_has_mips_r6 || (config4 & MIPS_CONF4_MMUEXTDEF) == MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT) { config4 &= ~MIPS_CONF4_VTLBSIZEEXT; config4 |= ((size - 1) >> MIPS_CONF1_TLBS_SIZE) << MIPS_CONF4_VTLBSIZEEXT_SHIFT; } else if ((config4 & MIPS_CONF4_MMUEXTDEF) == MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT) { config4 &= ~MIPS_CONF4_MMUSIZEEXT; config4 |= ((size - 1) >> MIPS_CONF1_TLBS_SIZE) << MIPS_CONF4_MMUSIZEEXT_SHIFT; } write_gc0_config4(config4); } /* * Set Guest.Wired.Limit = 0 (no limit up to Guest.MMUSize-1), unless it * would exceed Root.Wired.Limit (clearing Guest.Wired.Wired so write * not dropped) */ if (cpu_has_mips_r6) { limit = (read_c0_wired() & MIPSR6_WIRED_LIMIT) >> MIPSR6_WIRED_LIMIT_SHIFT; if (size - 1 <= limit) limit = 0; write_gc0_wired(limit << MIPSR6_WIRED_LIMIT_SHIFT); } /* Read back MMUSize - 1 */ back_to_back_c0_hazard(); if (cpu_guest_has_conf1) ret = (read_gc0_config1() & MIPS_CONF1_TLBS) >> MIPS_CONF1_TLBS_SHIFT; if (config4) { if (cpu_has_mips_r6 || (config4 & MIPS_CONF4_MMUEXTDEF) == MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT) ret |= ((config4 & MIPS_CONF4_VTLBSIZEEXT) >> MIPS_CONF4_VTLBSIZEEXT_SHIFT) << MIPS_CONF1_TLBS_SIZE; else if ((config4 & MIPS_CONF4_MMUEXTDEF) == MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT) ret |= ((config4 & MIPS_CONF4_MMUSIZEEXT) >> MIPS_CONF4_MMUSIZEEXT_SHIFT) << MIPS_CONF1_TLBS_SIZE; } return ret + 1; } static int kvm_vz_hardware_enable(void) { unsigned int mmu_size, guest_mmu_size, ftlb_size; u64 guest_cvmctl, cvmvmconfig; switch (current_cpu_type()) { case CPU_CAVIUM_OCTEON3: /* Set up guest timer/perfcount IRQ lines */ guest_cvmctl = read_gc0_cvmctl(); guest_cvmctl &= ~CVMCTL_IPTI; guest_cvmctl |= 7ull << CVMCTL_IPTI_SHIFT; guest_cvmctl &= ~CVMCTL_IPPCI; guest_cvmctl |= 6ull << CVMCTL_IPPCI_SHIFT; write_gc0_cvmctl(guest_cvmctl); cvmvmconfig = read_c0_cvmvmconfig(); /* No I/O hole translation. */ cvmvmconfig |= CVMVMCONF_DGHT; /* Halve the root MMU size */ mmu_size = ((cvmvmconfig & CVMVMCONF_MMUSIZEM1) >> CVMVMCONF_MMUSIZEM1_S) + 1; guest_mmu_size = mmu_size / 2; mmu_size -= guest_mmu_size; cvmvmconfig &= ~CVMVMCONF_RMMUSIZEM1; cvmvmconfig |= mmu_size - 1; write_c0_cvmvmconfig(cvmvmconfig); /* Update our records */ current_cpu_data.tlbsize = mmu_size; current_cpu_data.tlbsizevtlb = mmu_size; current_cpu_data.guest.tlbsize = guest_mmu_size; /* Flush moved entries in new (guest) context */ kvm_vz_local_flush_guesttlb_all(); break; default: /* * ImgTec cores tend to use a shared root/guest TLB. To avoid * overlap of root wired and guest entries, the guest TLB may * need resizing. */ mmu_size = current_cpu_data.tlbsizevtlb; ftlb_size = current_cpu_data.tlbsize - mmu_size; /* Try switching to maximum guest VTLB size for flush */ guest_mmu_size = kvm_vz_resize_guest_vtlb(mmu_size); current_cpu_data.guest.tlbsize = guest_mmu_size + ftlb_size; kvm_vz_local_flush_guesttlb_all(); /* * Reduce to make space for root wired entries and at least 2 * root non-wired entries. This does assume that long-term wired * entries won't be added later. */ guest_mmu_size = mmu_size - num_wired_entries() - 2; guest_mmu_size = kvm_vz_resize_guest_vtlb(guest_mmu_size); current_cpu_data.guest.tlbsize = guest_mmu_size + ftlb_size; /* * Write the VTLB size, but if another CPU has already written, * check it matches or we won't provide a consistent view to the * guest. If this ever happens it suggests an asymmetric number * of wired entries. */ if (cmpxchg(&kvm_vz_guest_vtlb_size, 0, guest_mmu_size) && WARN(guest_mmu_size != kvm_vz_guest_vtlb_size, "Available guest VTLB size mismatch")) return -EINVAL; break; } /* * Enable virtualization features granting guest direct control of * certain features: * CP0=1: Guest coprocessor 0 context. * AT=Guest: Guest MMU. * CG=1: Hit (virtual address) CACHE operations (optional). * CF=1: Guest Config registers. * CGI=1: Indexed flush CACHE operations (optional). */ write_c0_guestctl0(MIPS_GCTL0_CP0 | (MIPS_GCTL0_AT_GUEST << MIPS_GCTL0_AT_SHIFT) | MIPS_GCTL0_CG | MIPS_GCTL0_CF); if (cpu_has_guestctl0ext) set_c0_guestctl0ext(MIPS_GCTL0EXT_CGI); if (cpu_has_guestid) { write_c0_guestctl1(0); kvm_vz_local_flush_roottlb_all_guests(); GUESTID_MASK = current_cpu_data.guestid_mask; GUESTID_FIRST_VERSION = GUESTID_MASK + 1; GUESTID_VERSION_MASK = ~GUESTID_MASK; current_cpu_data.guestid_cache = GUESTID_FIRST_VERSION; } /* clear any pending injected virtual guest interrupts */ if (cpu_has_guestctl2) clear_c0_guestctl2(0x3f << 10); return 0; } static void kvm_vz_hardware_disable(void) { u64 cvmvmconfig; unsigned int mmu_size; /* Flush any remaining guest TLB entries */ kvm_vz_local_flush_guesttlb_all(); switch (current_cpu_type()) { case CPU_CAVIUM_OCTEON3: /* * Allocate whole TLB for root. Existing guest TLB entries will * change ownership to the root TLB. We should be safe though as * they've already been flushed above while in guest TLB. */ cvmvmconfig = read_c0_cvmvmconfig(); mmu_size = ((cvmvmconfig & CVMVMCONF_MMUSIZEM1) >> CVMVMCONF_MMUSIZEM1_S) + 1; cvmvmconfig &= ~CVMVMCONF_RMMUSIZEM1; cvmvmconfig |= mmu_size - 1; write_c0_cvmvmconfig(cvmvmconfig); /* Update our records */ current_cpu_data.tlbsize = mmu_size; current_cpu_data.tlbsizevtlb = mmu_size; current_cpu_data.guest.tlbsize = 0; /* Flush moved entries in new (root) context */ local_flush_tlb_all(); break; } if (cpu_has_guestid) { write_c0_guestctl1(0); kvm_vz_local_flush_roottlb_all_guests(); } } static int kvm_vz_check_extension(struct kvm *kvm, long ext) { int r; switch (ext) { case KVM_CAP_MIPS_VZ: /* we wouldn't be here unless cpu_has_vz */ r = 1; break; #ifdef CONFIG_64BIT case KVM_CAP_MIPS_64BIT: /* We support 64-bit registers/operations and addresses */ r = 2; break; #endif default: r = 0; break; } return r; } static int kvm_vz_vcpu_init(struct kvm_vcpu *vcpu) { int i; for_each_possible_cpu(i) vcpu->arch.vzguestid[i] = 0; return 0; } static void kvm_vz_vcpu_uninit(struct kvm_vcpu *vcpu) { int cpu; /* * If the VCPU is freed and reused as another VCPU, we don't want the * matching pointer wrongly hanging around in last_vcpu[] or * last_exec_vcpu[]. */ for_each_possible_cpu(cpu) { if (last_vcpu[cpu] == vcpu) last_vcpu[cpu] = NULL; if (last_exec_vcpu[cpu] == vcpu) last_exec_vcpu[cpu] = NULL; } } static int kvm_vz_vcpu_setup(struct kvm_vcpu *vcpu) { struct mips_coproc *cop0 = vcpu->arch.cop0; unsigned long count_hz = 100*1000*1000; /* default to 100 MHz */ /* * Start off the timer at the same frequency as the host timer, but the * soft timer doesn't handle frequencies greater than 1GHz yet. */ if (mips_hpt_frequency && mips_hpt_frequency <= NSEC_PER_SEC) count_hz = mips_hpt_frequency; kvm_mips_init_count(vcpu, count_hz); /* * Initialize guest register state to valid architectural reset state. */ /* PageGrain */ if (cpu_has_mips_r6) kvm_write_sw_gc0_pagegrain(cop0, PG_RIE | PG_XIE | PG_IEC); /* Wired */ if (cpu_has_mips_r6) kvm_write_sw_gc0_wired(cop0, read_gc0_wired() & MIPSR6_WIRED_LIMIT); /* Status */ kvm_write_sw_gc0_status(cop0, ST0_BEV | ST0_ERL); if (cpu_has_mips_r6) kvm_change_sw_gc0_status(cop0, ST0_FR, read_gc0_status()); /* IntCtl */ kvm_write_sw_gc0_intctl(cop0, read_gc0_intctl() & (INTCTLF_IPFDC | INTCTLF_IPPCI | INTCTLF_IPTI)); /* PRId */ kvm_write_sw_gc0_prid(cop0, boot_cpu_data.processor_id); /* EBase */ kvm_write_sw_gc0_ebase(cop0, (s32)0x80000000 | vcpu->vcpu_id); /* Config */ kvm_save_gc0_config(cop0); /* architecturally writable (e.g. from guest) */ kvm_change_sw_gc0_config(cop0, CONF_CM_CMASK, _page_cachable_default >> _CACHE_SHIFT); /* architecturally read only, but maybe writable from root */ kvm_change_sw_gc0_config(cop0, MIPS_CONF_MT, read_c0_config()); if (cpu_guest_has_conf1) { kvm_set_sw_gc0_config(cop0, MIPS_CONF_M); /* Config1 */ kvm_save_gc0_config1(cop0); /* architecturally read only, but maybe writable from root */ kvm_clear_sw_gc0_config1(cop0, MIPS_CONF1_C2 | MIPS_CONF1_MD | MIPS_CONF1_PC | MIPS_CONF1_WR | MIPS_CONF1_CA | MIPS_CONF1_FP); } if (cpu_guest_has_conf2) { kvm_set_sw_gc0_config1(cop0, MIPS_CONF_M); /* Config2 */ kvm_save_gc0_config2(cop0); } if (cpu_guest_has_conf3) { kvm_set_sw_gc0_config2(cop0, MIPS_CONF_M); /* Config3 */ kvm_save_gc0_config3(cop0); /* architecturally writable (e.g. from guest) */ kvm_clear_sw_gc0_config3(cop0, MIPS_CONF3_ISA_OE); /* architecturally read only, but maybe writable from root */ kvm_clear_sw_gc0_config3(cop0, MIPS_CONF3_MSA | MIPS_CONF3_BPG | MIPS_CONF3_ULRI | MIPS_CONF3_DSP | MIPS_CONF3_CTXTC | MIPS_CONF3_ITL | MIPS_CONF3_LPA | MIPS_CONF3_VEIC | MIPS_CONF3_VINT | MIPS_CONF3_SP | MIPS_CONF3_CDMM | MIPS_CONF3_MT | MIPS_CONF3_SM | MIPS_CONF3_TL); } if (cpu_guest_has_conf4) { kvm_set_sw_gc0_config3(cop0, MIPS_CONF_M); /* Config4 */ kvm_save_gc0_config4(cop0); } if (cpu_guest_has_conf5) { kvm_set_sw_gc0_config4(cop0, MIPS_CONF_M); /* Config5 */ kvm_save_gc0_config5(cop0); /* architecturally writable (e.g. from guest) */ kvm_clear_sw_gc0_config5(cop0, MIPS_CONF5_K | MIPS_CONF5_CV | MIPS_CONF5_MSAEN | MIPS_CONF5_UFE | MIPS_CONF5_FRE | MIPS_CONF5_SBRI | MIPS_CONF5_UFR); /* architecturally read only, but maybe writable from root */ kvm_clear_sw_gc0_config5(cop0, MIPS_CONF5_MRP); } if (cpu_guest_has_contextconfig) { /* ContextConfig */ kvm_write_sw_gc0_contextconfig(cop0, 0x007ffff0); #ifdef CONFIG_64BIT /* XContextConfig */ /* bits SEGBITS-13+3:4 set */ kvm_write_sw_gc0_xcontextconfig(cop0, ((1ull << (cpu_vmbits - 13)) - 1) << 4); #endif } /* Implementation dependent, use the legacy layout */ if (cpu_guest_has_segments) { /* SegCtl0, SegCtl1, SegCtl2 */ kvm_write_sw_gc0_segctl0(cop0, 0x00200010); kvm_write_sw_gc0_segctl1(cop0, 0x00000002 | (_page_cachable_default >> _CACHE_SHIFT) << (16 + MIPS_SEGCFG_C_SHIFT)); kvm_write_sw_gc0_segctl2(cop0, 0x00380438); } /* reset HTW registers */ if (cpu_guest_has_htw && cpu_has_mips_r6) { /* PWField */ kvm_write_sw_gc0_pwfield(cop0, 0x0c30c302); /* PWSize */ kvm_write_sw_gc0_pwsize(cop0, 1 << MIPS_PWSIZE_PTW_SHIFT); } /* start with no pending virtual guest interrupts */ if (cpu_has_guestctl2) cop0->reg[MIPS_CP0_GUESTCTL2][MIPS_CP0_GUESTCTL2_SEL] = 0; /* Put PC at reset vector */ vcpu->arch.pc = CKSEG1ADDR(0x1fc00000); return 0; } static void kvm_vz_flush_shadow_all(struct kvm *kvm) { if (cpu_has_guestid) { /* Flush GuestID for each VCPU individually */ kvm_flush_remote_tlbs(kvm); } else { /* * For each CPU there is a single GPA ASID used by all VCPUs in * the VM, so it doesn't make sense for the VCPUs to handle * invalidation of these ASIDs individually. * * Instead mark all CPUs as needing ASID invalidation in * asid_flush_mask, and just use kvm_flush_remote_tlbs(kvm) to * kick any running VCPUs so they check asid_flush_mask. */ cpumask_setall(&kvm->arch.asid_flush_mask); kvm_flush_remote_tlbs(kvm); } } static void kvm_vz_flush_shadow_memslot(struct kvm *kvm, const struct kvm_memory_slot *slot) { kvm_vz_flush_shadow_all(kvm); } static void kvm_vz_vcpu_reenter(struct kvm_run *run, struct kvm_vcpu *vcpu) { int cpu = smp_processor_id(); int preserve_guest_tlb; preserve_guest_tlb = kvm_vz_check_requests(vcpu, cpu); if (preserve_guest_tlb) kvm_vz_vcpu_save_wired(vcpu); kvm_vz_vcpu_load_tlb(vcpu, cpu); if (preserve_guest_tlb) kvm_vz_vcpu_load_wired(vcpu); } static int kvm_vz_vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu) { int cpu = smp_processor_id(); int r; kvm_vz_acquire_htimer(vcpu); /* Check if we have any exceptions/interrupts pending */ kvm_mips_deliver_interrupts(vcpu, read_gc0_cause()); kvm_vz_check_requests(vcpu, cpu); kvm_vz_vcpu_load_tlb(vcpu, cpu); kvm_vz_vcpu_load_wired(vcpu); r = vcpu->arch.vcpu_run(run, vcpu); kvm_vz_vcpu_save_wired(vcpu); return r; } static struct kvm_mips_callbacks kvm_vz_callbacks = { .handle_cop_unusable = kvm_trap_vz_handle_cop_unusable, .handle_tlb_mod = kvm_trap_vz_handle_tlb_st_miss, .handle_tlb_ld_miss = kvm_trap_vz_handle_tlb_ld_miss, .handle_tlb_st_miss = kvm_trap_vz_handle_tlb_st_miss, .handle_addr_err_st = kvm_trap_vz_no_handler, .handle_addr_err_ld = kvm_trap_vz_no_handler, .handle_syscall = kvm_trap_vz_no_handler, .handle_res_inst = kvm_trap_vz_no_handler, .handle_break = kvm_trap_vz_no_handler, .handle_msa_disabled = kvm_trap_vz_handle_msa_disabled, .handle_guest_exit = kvm_trap_vz_handle_guest_exit, .hardware_enable = kvm_vz_hardware_enable, .hardware_disable = kvm_vz_hardware_disable, .check_extension = kvm_vz_check_extension, .vcpu_init = kvm_vz_vcpu_init, .vcpu_uninit = kvm_vz_vcpu_uninit, .vcpu_setup = kvm_vz_vcpu_setup, .flush_shadow_all = kvm_vz_flush_shadow_all, .flush_shadow_memslot = kvm_vz_flush_shadow_memslot, .gva_to_gpa = kvm_vz_gva_to_gpa_cb, .queue_timer_int = kvm_vz_queue_timer_int_cb, .dequeue_timer_int = kvm_vz_dequeue_timer_int_cb, .queue_io_int = kvm_vz_queue_io_int_cb, .dequeue_io_int = kvm_vz_dequeue_io_int_cb, .irq_deliver = kvm_vz_irq_deliver_cb, .irq_clear = kvm_vz_irq_clear_cb, .num_regs = kvm_vz_num_regs, .copy_reg_indices = kvm_vz_copy_reg_indices, .get_one_reg = kvm_vz_get_one_reg, .set_one_reg = kvm_vz_set_one_reg, .vcpu_load = kvm_vz_vcpu_load, .vcpu_put = kvm_vz_vcpu_put, .vcpu_run = kvm_vz_vcpu_run, .vcpu_reenter = kvm_vz_vcpu_reenter, }; int kvm_mips_emulation_init(struct kvm_mips_callbacks **install_callbacks) { if (!cpu_has_vz) return -ENODEV; /* * VZ requires at least 2 KScratch registers, so it should have been * possible to allocate pgd_reg. */ if (WARN(pgd_reg == -1, "pgd_reg not allocated even though cpu_has_vz\n")) return -ENODEV; pr_info("Starting KVM with MIPS VZ extensions\n"); *install_callbacks = &kvm_vz_callbacks; return 0; }