/* * OpenRISC setup.c * * Linux architectural port borrowing liberally from similar works of * others. All original copyrights apply as per the original source * declaration. * * Modifications for the OpenRISC architecture: * Copyright (C) 2003 Matjaz Breskvar * Copyright (C) 2010-2011 Jonas Bonn * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * This file handles the architecture-dependent parts of initialization */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "vmlinux.h" static void __init setup_memory(void) { unsigned long ram_start_pfn; unsigned long ram_end_pfn; phys_addr_t memory_start, memory_end; struct memblock_region *region; memory_end = memory_start = 0; /* Find main memory where is the kernel, we assume its the only one */ for_each_memblock(memory, region) { memory_start = region->base; memory_end = region->base + region->size; printk(KERN_INFO "%s: Memory: 0x%x-0x%x\n", __func__, memory_start, memory_end); } if (!memory_end) { panic("No memory!"); } ram_start_pfn = PFN_UP(memory_start); ram_end_pfn = PFN_DOWN(memblock_end_of_DRAM()); /* setup bootmem globals (we use no_bootmem, but mm still depends on this) */ min_low_pfn = ram_start_pfn; max_low_pfn = ram_end_pfn; max_pfn = ram_end_pfn; /* * initialize the boot-time allocator (with low memory only). * * This makes the memory from the end of the kernel to the end of * RAM usable. */ memblock_reserve(__pa(_stext), _end - _stext); early_init_fdt_reserve_self(); early_init_fdt_scan_reserved_mem(); memblock_dump_all(); } struct cpuinfo_or1k cpuinfo_or1k[NR_CPUS]; static void print_cpuinfo(void) { unsigned long upr = mfspr(SPR_UPR); unsigned long vr = mfspr(SPR_VR); unsigned int version; unsigned int revision; struct cpuinfo_or1k *cpuinfo = &cpuinfo_or1k[smp_processor_id()]; version = (vr & SPR_VR_VER) >> 24; revision = (vr & SPR_VR_REV); printk(KERN_INFO "CPU: OpenRISC-%x (revision %d) @%d MHz\n", version, revision, cpuinfo->clock_frequency / 1000000); if (!(upr & SPR_UPR_UP)) { printk(KERN_INFO "-- no UPR register... unable to detect configuration\n"); return; } if (upr & SPR_UPR_DCP) printk(KERN_INFO "-- dcache: %4d bytes total, %2d bytes/line, %d way(s)\n", cpuinfo->dcache_size, cpuinfo->dcache_block_size, cpuinfo->dcache_ways); else printk(KERN_INFO "-- dcache disabled\n"); if (upr & SPR_UPR_ICP) printk(KERN_INFO "-- icache: %4d bytes total, %2d bytes/line, %d way(s)\n", cpuinfo->icache_size, cpuinfo->icache_block_size, cpuinfo->icache_ways); else printk(KERN_INFO "-- icache disabled\n"); if (upr & SPR_UPR_DMP) printk(KERN_INFO "-- dmmu: %4d entries, %lu way(s)\n", 1 << ((mfspr(SPR_DMMUCFGR) & SPR_DMMUCFGR_NTS) >> 2), 1 + (mfspr(SPR_DMMUCFGR) & SPR_DMMUCFGR_NTW)); if (upr & SPR_UPR_IMP) printk(KERN_INFO "-- immu: %4d entries, %lu way(s)\n", 1 << ((mfspr(SPR_IMMUCFGR) & SPR_IMMUCFGR_NTS) >> 2), 1 + (mfspr(SPR_IMMUCFGR) & SPR_IMMUCFGR_NTW)); printk(KERN_INFO "-- additional features:\n"); if (upr & SPR_UPR_DUP) printk(KERN_INFO "-- debug unit\n"); if (upr & SPR_UPR_PCUP) printk(KERN_INFO "-- performance counters\n"); if (upr & SPR_UPR_PMP) printk(KERN_INFO "-- power management\n"); if (upr & SPR_UPR_PICP) printk(KERN_INFO "-- PIC\n"); if (upr & SPR_UPR_TTP) printk(KERN_INFO "-- timer\n"); if (upr & SPR_UPR_CUP) printk(KERN_INFO "-- custom unit(s)\n"); } static struct device_node *setup_find_cpu_node(int cpu) { u32 hwid; struct device_node *cpun; struct device_node *cpus = of_find_node_by_path("/cpus"); for_each_available_child_of_node(cpus, cpun) { if (of_property_read_u32(cpun, "reg", &hwid)) continue; if (hwid == cpu) return cpun; } return NULL; } void __init setup_cpuinfo(void) { struct device_node *cpu; unsigned long iccfgr, dccfgr; unsigned long cache_set_size; int cpu_id = smp_processor_id(); struct cpuinfo_or1k *cpuinfo = &cpuinfo_or1k[cpu_id]; cpu = setup_find_cpu_node(cpu_id); if (!cpu) panic("Couldn't find CPU%d in device tree...\n", cpu_id); iccfgr = mfspr(SPR_ICCFGR); cpuinfo->icache_ways = 1 << (iccfgr & SPR_ICCFGR_NCW); cache_set_size = 1 << ((iccfgr & SPR_ICCFGR_NCS) >> 3); cpuinfo->icache_block_size = 16 << ((iccfgr & SPR_ICCFGR_CBS) >> 7); cpuinfo->icache_size = cache_set_size * cpuinfo->icache_ways * cpuinfo->icache_block_size; dccfgr = mfspr(SPR_DCCFGR); cpuinfo->dcache_ways = 1 << (dccfgr & SPR_DCCFGR_NCW); cache_set_size = 1 << ((dccfgr & SPR_DCCFGR_NCS) >> 3); cpuinfo->dcache_block_size = 16 << ((dccfgr & SPR_DCCFGR_CBS) >> 7); cpuinfo->dcache_size = cache_set_size * cpuinfo->dcache_ways * cpuinfo->dcache_block_size; if (of_property_read_u32(cpu, "clock-frequency", &cpuinfo->clock_frequency)) { printk(KERN_WARNING "Device tree missing CPU 'clock-frequency' parameter." "Assuming frequency 25MHZ" "This is probably not what you want."); } cpuinfo->coreid = mfspr(SPR_COREID); of_node_put(cpu); print_cpuinfo(); } /** * or32_early_setup * * Handles the pointer to the device tree that this kernel is to use * for establishing the available platform devices. * * Falls back on built-in device tree in case null pointer is passed. */ void __init or32_early_setup(void *fdt) { if (fdt) pr_info("FDT at %p\n", fdt); else { fdt = __dtb_start; pr_info("Compiled-in FDT at %p\n", fdt); } early_init_devtree(fdt); } static inline unsigned long extract_value_bits(unsigned long reg, short bit_nr, short width) { return (reg >> bit_nr) & (0 << width); } static inline unsigned long extract_value(unsigned long reg, unsigned long mask) { while (!(mask & 0x1)) { reg = reg >> 1; mask = mask >> 1; } return mask & reg; } void __init detect_unit_config(unsigned long upr, unsigned long mask, char *text, void (*func) (void)) { if (text != NULL) printk("%s", text); if (upr & mask) { if (func != NULL) func(); else printk("present\n"); } else printk("not present\n"); } /* * calibrate_delay * * Lightweight calibrate_delay implementation that calculates loops_per_jiffy * from the clock frequency passed in via the device tree * */ void calibrate_delay(void) { const int *val; struct device_node *cpu = setup_find_cpu_node(smp_processor_id()); val = of_get_property(cpu, "clock-frequency", NULL); if (!val) panic("no cpu 'clock-frequency' parameter in device tree"); loops_per_jiffy = *val / HZ; pr_cont("%lu.%02lu BogoMIPS (lpj=%lu)\n", loops_per_jiffy / (500000 / HZ), (loops_per_jiffy / (5000 / HZ)) % 100, loops_per_jiffy); } void __init setup_arch(char **cmdline_p) { unflatten_and_copy_device_tree(); setup_cpuinfo(); #ifdef CONFIG_SMP smp_init_cpus(); #endif /* process 1's initial memory region is the kernel code/data */ init_mm.start_code = (unsigned long)_stext; init_mm.end_code = (unsigned long)_etext; init_mm.end_data = (unsigned long)_edata; init_mm.brk = (unsigned long)_end; #ifdef CONFIG_BLK_DEV_INITRD initrd_start = (unsigned long)&__initrd_start; initrd_end = (unsigned long)&__initrd_end; if (initrd_start == initrd_end) { initrd_start = 0; initrd_end = 0; } initrd_below_start_ok = 1; #endif /* setup memblock allocator */ setup_memory(); /* paging_init() sets up the MMU and marks all pages as reserved */ paging_init(); #if defined(CONFIG_VT) && defined(CONFIG_DUMMY_CONSOLE) if (!conswitchp) conswitchp = &dummy_con; #endif *cmdline_p = boot_command_line; printk(KERN_INFO "OpenRISC Linux -- http://openrisc.io\n"); } static int show_cpuinfo(struct seq_file *m, void *v) { unsigned int vr, cpucfgr; unsigned int avr; unsigned int version; struct cpuinfo_or1k *cpuinfo = v; vr = mfspr(SPR_VR); cpucfgr = mfspr(SPR_CPUCFGR); #ifdef CONFIG_SMP seq_printf(m, "processor\t\t: %d\n", cpuinfo->coreid); #endif if (vr & SPR_VR_UVRP) { vr = mfspr(SPR_VR2); version = vr & SPR_VR2_VER; avr = mfspr(SPR_AVR); seq_printf(m, "cpu architecture\t: " "OpenRISC 1000 (%d.%d-rev%d)\n", (avr >> 24) & 0xff, (avr >> 16) & 0xff, (avr >> 8) & 0xff); seq_printf(m, "cpu implementation id\t: 0x%x\n", (vr & SPR_VR2_CPUID) >> 24); seq_printf(m, "cpu version\t\t: 0x%x\n", version); } else { version = (vr & SPR_VR_VER) >> 24; seq_printf(m, "cpu\t\t\t: OpenRISC-%x\n", version); seq_printf(m, "revision\t\t: %d\n", vr & SPR_VR_REV); } seq_printf(m, "frequency\t\t: %ld\n", loops_per_jiffy * HZ); seq_printf(m, "dcache size\t\t: %d bytes\n", cpuinfo->dcache_size); seq_printf(m, "dcache block size\t: %d bytes\n", cpuinfo->dcache_block_size); seq_printf(m, "dcache ways\t\t: %d\n", cpuinfo->dcache_ways); seq_printf(m, "icache size\t\t: %d bytes\n", cpuinfo->icache_size); seq_printf(m, "icache block size\t: %d bytes\n", cpuinfo->icache_block_size); seq_printf(m, "icache ways\t\t: %d\n", cpuinfo->icache_ways); seq_printf(m, "immu\t\t\t: %d entries, %lu ways\n", 1 << ((mfspr(SPR_DMMUCFGR) & SPR_DMMUCFGR_NTS) >> 2), 1 + (mfspr(SPR_DMMUCFGR) & SPR_DMMUCFGR_NTW)); seq_printf(m, "dmmu\t\t\t: %d entries, %lu ways\n", 1 << ((mfspr(SPR_IMMUCFGR) & SPR_IMMUCFGR_NTS) >> 2), 1 + (mfspr(SPR_IMMUCFGR) & SPR_IMMUCFGR_NTW)); seq_printf(m, "bogomips\t\t: %lu.%02lu\n", (loops_per_jiffy * HZ) / 500000, ((loops_per_jiffy * HZ) / 5000) % 100); seq_puts(m, "features\t\t: "); seq_printf(m, "%s ", cpucfgr & SPR_CPUCFGR_OB32S ? "orbis32" : ""); seq_printf(m, "%s ", cpucfgr & SPR_CPUCFGR_OB64S ? "orbis64" : ""); seq_printf(m, "%s ", cpucfgr & SPR_CPUCFGR_OF32S ? "orfpx32" : ""); seq_printf(m, "%s ", cpucfgr & SPR_CPUCFGR_OF64S ? "orfpx64" : ""); seq_printf(m, "%s ", cpucfgr & SPR_CPUCFGR_OV64S ? "orvdx64" : ""); seq_puts(m, "\n"); seq_puts(m, "\n"); return 0; } static void *c_start(struct seq_file *m, loff_t *pos) { *pos = cpumask_next(*pos - 1, cpu_online_mask); if ((*pos) < nr_cpu_ids) return &cpuinfo_or1k[*pos]; return NULL; } static void *c_next(struct seq_file *m, void *v, loff_t *pos) { (*pos)++; return c_start(m, pos); } static void c_stop(struct seq_file *m, void *v) { } const struct seq_operations cpuinfo_op = { .start = c_start, .next = c_next, .stop = c_stop, .show = show_cpuinfo, };