/* * AES modes (ECB/CBC/CTR/XTS) for PPC AES implementation * * Copyright (c) 2015 Markus Stockhausen * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 2 of the License, or (at your option) * any later version. * */ #include #include "aes-spe-regs.h" #ifdef __BIG_ENDIAN__ /* Macros for big endian builds */ #define LOAD_DATA(reg, off) \ lwz reg,off(rSP); /* load with offset */ #define SAVE_DATA(reg, off) \ stw reg,off(rDP); /* save with offset */ #define NEXT_BLOCK \ addi rSP,rSP,16; /* increment pointers per bloc */ \ addi rDP,rDP,16; #define LOAD_IV(reg, off) \ lwz reg,off(rIP); /* IV loading with offset */ #define SAVE_IV(reg, off) \ stw reg,off(rIP); /* IV saving with offset */ #define START_IV /* nothing to reset */ #define CBC_DEC 16 /* CBC decrement per block */ #define CTR_DEC 1 /* CTR decrement one byte */ #else /* Macros for little endian */ #define LOAD_DATA(reg, off) \ lwbrx reg,0,rSP; /* load reversed */ \ addi rSP,rSP,4; /* and increment pointer */ #define SAVE_DATA(reg, off) \ stwbrx reg,0,rDP; /* save reversed */ \ addi rDP,rDP,4; /* and increment pointer */ #define NEXT_BLOCK /* nothing todo */ #define LOAD_IV(reg, off) \ lwbrx reg,0,rIP; /* load reversed */ \ addi rIP,rIP,4; /* and increment pointer */ #define SAVE_IV(reg, off) \ stwbrx reg,0,rIP; /* load reversed */ \ addi rIP,rIP,4; /* and increment pointer */ #define START_IV \ subi rIP,rIP,16; /* must reset pointer */ #define CBC_DEC 32 /* 2 blocks because of incs */ #define CTR_DEC 17 /* 1 block because of incs */ #endif #define SAVE_0_REGS #define LOAD_0_REGS #define SAVE_4_REGS \ stw rI0,96(r1); /* save 32 bit registers */ \ stw rI1,100(r1); \ stw rI2,104(r1); \ stw rI3,108(r1); #define LOAD_4_REGS \ lwz rI0,96(r1); /* restore 32 bit registers */ \ lwz rI1,100(r1); \ lwz rI2,104(r1); \ lwz rI3,108(r1); #define SAVE_8_REGS \ SAVE_4_REGS \ stw rG0,112(r1); /* save 32 bit registers */ \ stw rG1,116(r1); \ stw rG2,120(r1); \ stw rG3,124(r1); #define LOAD_8_REGS \ LOAD_4_REGS \ lwz rG0,112(r1); /* restore 32 bit registers */ \ lwz rG1,116(r1); \ lwz rG2,120(r1); \ lwz rG3,124(r1); #define INITIALIZE_CRYPT(tab,nr32bitregs) \ mflr r0; \ stwu r1,-160(r1); /* create stack frame */ \ lis rT0,tab@h; /* en-/decryption table pointer */ \ stw r0,8(r1); /* save link register */ \ ori rT0,rT0,tab@l; \ evstdw r14,16(r1); \ mr rKS,rKP; \ evstdw r15,24(r1); /* We must save non volatile */ \ evstdw r16,32(r1); /* registers. Take the chance */ \ evstdw r17,40(r1); /* and save the SPE part too */ \ evstdw r18,48(r1); \ evstdw r19,56(r1); \ evstdw r20,64(r1); \ evstdw r21,72(r1); \ evstdw r22,80(r1); \ evstdw r23,88(r1); \ SAVE_##nr32bitregs##_REGS #define FINALIZE_CRYPT(nr32bitregs) \ lwz r0,8(r1); \ evldw r14,16(r1); /* restore SPE registers */ \ evldw r15,24(r1); \ evldw r16,32(r1); \ evldw r17,40(r1); \ evldw r18,48(r1); \ evldw r19,56(r1); \ evldw r20,64(r1); \ evldw r21,72(r1); \ evldw r22,80(r1); \ evldw r23,88(r1); \ LOAD_##nr32bitregs##_REGS \ mtlr r0; /* restore link register */ \ xor r0,r0,r0; \ stw r0,16(r1); /* delete sensitive data */ \ stw r0,24(r1); /* that we might have pushed */ \ stw r0,32(r1); /* from other context that runs */ \ stw r0,40(r1); /* the same code */ \ stw r0,48(r1); \ stw r0,56(r1); \ stw r0,64(r1); \ stw r0,72(r1); \ stw r0,80(r1); \ stw r0,88(r1); \ addi r1,r1,160; /* cleanup stack frame */ #define ENDIAN_SWAP(t0, t1, s0, s1) \ rotrwi t0,s0,8; /* swap endianness for 2 GPRs */ \ rotrwi t1,s1,8; \ rlwimi t0,s0,8,8,15; \ rlwimi t1,s1,8,8,15; \ rlwimi t0,s0,8,24,31; \ rlwimi t1,s1,8,24,31; #define GF128_MUL(d0, d1, d2, d3, t0) \ li t0,0x87; /* multiplication in GF128 */ \ cmpwi d3,-1; \ iselgt t0,0,t0; \ rlwimi d3,d2,0,0,0; /* propagate "carry" bits */ \ rotlwi d3,d3,1; \ rlwimi d2,d1,0,0,0; \ rotlwi d2,d2,1; \ rlwimi d1,d0,0,0,0; \ slwi d0,d0,1; /* shift left 128 bit */ \ rotlwi d1,d1,1; \ xor d0,d0,t0; #define START_KEY(d0, d1, d2, d3) \ lwz rW0,0(rKP); \ mtctr rRR; \ lwz rW1,4(rKP); \ lwz rW2,8(rKP); \ lwz rW3,12(rKP); \ xor rD0,d0,rW0; \ xor rD1,d1,rW1; \ xor rD2,d2,rW2; \ xor rD3,d3,rW3; /* * ppc_encrypt_aes(u8 *out, const u8 *in, u32 *key_enc, * u32 rounds) * * called from glue layer to encrypt a single 16 byte block * round values are AES128 = 4, AES192 = 5, AES256 = 6 * */ _GLOBAL(ppc_encrypt_aes) INITIALIZE_CRYPT(PPC_AES_4K_ENCTAB, 0) LOAD_DATA(rD0, 0) LOAD_DATA(rD1, 4) LOAD_DATA(rD2, 8) LOAD_DATA(rD3, 12) START_KEY(rD0, rD1, rD2, rD3) bl ppc_encrypt_block xor rD0,rD0,rW0 SAVE_DATA(rD0, 0) xor rD1,rD1,rW1 SAVE_DATA(rD1, 4) xor rD2,rD2,rW2 SAVE_DATA(rD2, 8) xor rD3,rD3,rW3 SAVE_DATA(rD3, 12) FINALIZE_CRYPT(0) blr /* * ppc_decrypt_aes(u8 *out, const u8 *in, u32 *key_dec, * u32 rounds) * * called from glue layer to decrypt a single 16 byte block * round values are AES128 = 4, AES192 = 5, AES256 = 6 * */ _GLOBAL(ppc_decrypt_aes) INITIALIZE_CRYPT(PPC_AES_4K_DECTAB,0) LOAD_DATA(rD0, 0) addi rT1,rT0,4096 LOAD_DATA(rD1, 4) LOAD_DATA(rD2, 8) LOAD_DATA(rD3, 12) START_KEY(rD0, rD1, rD2, rD3) bl ppc_decrypt_block xor rD0,rD0,rW0 SAVE_DATA(rD0, 0) xor rD1,rD1,rW1 SAVE_DATA(rD1, 4) xor rD2,rD2,rW2 SAVE_DATA(rD2, 8) xor rD3,rD3,rW3 SAVE_DATA(rD3, 12) FINALIZE_CRYPT(0) blr /* * ppc_encrypt_ecb(u8 *out, const u8 *in, u32 *key_enc, * u32 rounds, u32 bytes); * * called from glue layer to encrypt multiple blocks via ECB * Bytes must be larger or equal 16 and only whole blocks are * processed. round values are AES128 = 4, AES192 = 5 and * AES256 = 6 * */ _GLOBAL(ppc_encrypt_ecb) INITIALIZE_CRYPT(PPC_AES_4K_ENCTAB, 0) ppc_encrypt_ecb_loop: LOAD_DATA(rD0, 0) mr rKP,rKS LOAD_DATA(rD1, 4) subi rLN,rLN,16 LOAD_DATA(rD2, 8) cmpwi rLN,15 LOAD_DATA(rD3, 12) START_KEY(rD0, rD1, rD2, rD3) bl ppc_encrypt_block xor rD0,rD0,rW0 SAVE_DATA(rD0, 0) xor rD1,rD1,rW1 SAVE_DATA(rD1, 4) xor rD2,rD2,rW2 SAVE_DATA(rD2, 8) xor rD3,rD3,rW3 SAVE_DATA(rD3, 12) NEXT_BLOCK bt gt,ppc_encrypt_ecb_loop FINALIZE_CRYPT(0) blr /* * ppc_decrypt_ecb(u8 *out, const u8 *in, u32 *key_dec, * u32 rounds, u32 bytes); * * called from glue layer to decrypt multiple blocks via ECB * Bytes must be larger or equal 16 and only whole blocks are * processed. round values are AES128 = 4, AES192 = 5 and * AES256 = 6 * */ _GLOBAL(ppc_decrypt_ecb) INITIALIZE_CRYPT(PPC_AES_4K_DECTAB, 0) addi rT1,rT0,4096 ppc_decrypt_ecb_loop: LOAD_DATA(rD0, 0) mr rKP,rKS LOAD_DATA(rD1, 4) subi rLN,rLN,16 LOAD_DATA(rD2, 8) cmpwi rLN,15 LOAD_DATA(rD3, 12) START_KEY(rD0, rD1, rD2, rD3) bl ppc_decrypt_block xor rD0,rD0,rW0 SAVE_DATA(rD0, 0) xor rD1,rD1,rW1 SAVE_DATA(rD1, 4) xor rD2,rD2,rW2 SAVE_DATA(rD2, 8) xor rD3,rD3,rW3 SAVE_DATA(rD3, 12) NEXT_BLOCK bt gt,ppc_decrypt_ecb_loop FINALIZE_CRYPT(0) blr /* * ppc_encrypt_cbc(u8 *out, const u8 *in, u32 *key_enc, * 32 rounds, u32 bytes, u8 *iv); * * called from glue layer to encrypt multiple blocks via CBC * Bytes must be larger or equal 16 and only whole blocks are * processed. round values are AES128 = 4, AES192 = 5 and * AES256 = 6 * */ _GLOBAL(ppc_encrypt_cbc) INITIALIZE_CRYPT(PPC_AES_4K_ENCTAB, 4) LOAD_IV(rI0, 0) LOAD_IV(rI1, 4) LOAD_IV(rI2, 8) LOAD_IV(rI3, 12) ppc_encrypt_cbc_loop: LOAD_DATA(rD0, 0) mr rKP,rKS LOAD_DATA(rD1, 4) subi rLN,rLN,16 LOAD_DATA(rD2, 8) cmpwi rLN,15 LOAD_DATA(rD3, 12) xor rD0,rD0,rI0 xor rD1,rD1,rI1 xor rD2,rD2,rI2 xor rD3,rD3,rI3 START_KEY(rD0, rD1, rD2, rD3) bl ppc_encrypt_block xor rI0,rD0,rW0 SAVE_DATA(rI0, 0) xor rI1,rD1,rW1 SAVE_DATA(rI1, 4) xor rI2,rD2,rW2 SAVE_DATA(rI2, 8) xor rI3,rD3,rW3 SAVE_DATA(rI3, 12) NEXT_BLOCK bt gt,ppc_encrypt_cbc_loop START_IV SAVE_IV(rI0, 0) SAVE_IV(rI1, 4) SAVE_IV(rI2, 8) SAVE_IV(rI3, 12) FINALIZE_CRYPT(4) blr /* * ppc_decrypt_cbc(u8 *out, const u8 *in, u32 *key_dec, * u32 rounds, u32 bytes, u8 *iv); * * called from glue layer to decrypt multiple blocks via CBC * round values are AES128 = 4, AES192 = 5, AES256 = 6 * */ _GLOBAL(ppc_decrypt_cbc) INITIALIZE_CRYPT(PPC_AES_4K_DECTAB, 4) li rT1,15 LOAD_IV(rI0, 0) andc rLN,rLN,rT1 LOAD_IV(rI1, 4) subi rLN,rLN,16 LOAD_IV(rI2, 8) add rSP,rSP,rLN /* reverse processing */ LOAD_IV(rI3, 12) add rDP,rDP,rLN LOAD_DATA(rD0, 0) addi rT1,rT0,4096 LOAD_DATA(rD1, 4) LOAD_DATA(rD2, 8) LOAD_DATA(rD3, 12) START_IV SAVE_IV(rD0, 0) SAVE_IV(rD1, 4) SAVE_IV(rD2, 8) cmpwi rLN,16 SAVE_IV(rD3, 12) bt lt,ppc_decrypt_cbc_end ppc_decrypt_cbc_loop: mr rKP,rKS START_KEY(rD0, rD1, rD2, rD3) bl ppc_decrypt_block subi rLN,rLN,16 subi rSP,rSP,CBC_DEC xor rW0,rD0,rW0 LOAD_DATA(rD0, 0) xor rW1,rD1,rW1 LOAD_DATA(rD1, 4) xor rW2,rD2,rW2 LOAD_DATA(rD2, 8) xor rW3,rD3,rW3 LOAD_DATA(rD3, 12) xor rW0,rW0,rD0 SAVE_DATA(rW0, 0) xor rW1,rW1,rD1 SAVE_DATA(rW1, 4) xor rW2,rW2,rD2 SAVE_DATA(rW2, 8) xor rW3,rW3,rD3 SAVE_DATA(rW3, 12) cmpwi rLN,15 subi rDP,rDP,CBC_DEC bt gt,ppc_decrypt_cbc_loop ppc_decrypt_cbc_end: mr rKP,rKS START_KEY(rD0, rD1, rD2, rD3) bl ppc_decrypt_block xor rW0,rW0,rD0 xor rW1,rW1,rD1 xor rW2,rW2,rD2 xor rW3,rW3,rD3 xor rW0,rW0,rI0 /* decrypt with initial IV */ SAVE_DATA(rW0, 0) xor rW1,rW1,rI1 SAVE_DATA(rW1, 4) xor rW2,rW2,rI2 SAVE_DATA(rW2, 8) xor rW3,rW3,rI3 SAVE_DATA(rW3, 12) FINALIZE_CRYPT(4) blr /* * ppc_crypt_ctr(u8 *out, const u8 *in, u32 *key_enc, * u32 rounds, u32 bytes, u8 *iv); * * called from glue layer to encrypt/decrypt multiple blocks * via CTR. Number of bytes does not need to be a multiple of * 16. Round values are AES128 = 4, AES192 = 5, AES256 = 6 * */ _GLOBAL(ppc_crypt_ctr) INITIALIZE_CRYPT(PPC_AES_4K_ENCTAB, 4) LOAD_IV(rI0, 0) LOAD_IV(rI1, 4) LOAD_IV(rI2, 8) cmpwi rLN,16 LOAD_IV(rI3, 12) START_IV bt lt,ppc_crypt_ctr_partial ppc_crypt_ctr_loop: mr rKP,rKS START_KEY(rI0, rI1, rI2, rI3) bl ppc_encrypt_block xor rW0,rD0,rW0 xor rW1,rD1,rW1 xor rW2,rD2,rW2 xor rW3,rD3,rW3 LOAD_DATA(rD0, 0) subi rLN,rLN,16 LOAD_DATA(rD1, 4) LOAD_DATA(rD2, 8) LOAD_DATA(rD3, 12) xor rD0,rD0,rW0 SAVE_DATA(rD0, 0) xor rD1,rD1,rW1 SAVE_DATA(rD1, 4) xor rD2,rD2,rW2 SAVE_DATA(rD2, 8) xor rD3,rD3,rW3 SAVE_DATA(rD3, 12) addic rI3,rI3,1 /* increase counter */ addze rI2,rI2 addze rI1,rI1 addze rI0,rI0 NEXT_BLOCK cmpwi rLN,15 bt gt,ppc_crypt_ctr_loop ppc_crypt_ctr_partial: cmpwi rLN,0 bt eq,ppc_crypt_ctr_end mr rKP,rKS START_KEY(rI0, rI1, rI2, rI3) bl ppc_encrypt_block xor rW0,rD0,rW0 SAVE_IV(rW0, 0) xor rW1,rD1,rW1 SAVE_IV(rW1, 4) xor rW2,rD2,rW2 SAVE_IV(rW2, 8) xor rW3,rD3,rW3 SAVE_IV(rW3, 12) mtctr rLN subi rIP,rIP,CTR_DEC subi rSP,rSP,1 subi rDP,rDP,1 ppc_crypt_ctr_xorbyte: lbzu rW4,1(rIP) /* bytewise xor for partial block */ lbzu rW5,1(rSP) xor rW4,rW4,rW5 stbu rW4,1(rDP) bdnz ppc_crypt_ctr_xorbyte subf rIP,rLN,rIP addi rIP,rIP,1 addic rI3,rI3,1 addze rI2,rI2 addze rI1,rI1 addze rI0,rI0 ppc_crypt_ctr_end: SAVE_IV(rI0, 0) SAVE_IV(rI1, 4) SAVE_IV(rI2, 8) SAVE_IV(rI3, 12) FINALIZE_CRYPT(4) blr /* * ppc_encrypt_xts(u8 *out, const u8 *in, u32 *key_enc, * u32 rounds, u32 bytes, u8 *iv, u32 *key_twk); * * called from glue layer to encrypt multiple blocks via XTS * If key_twk is given, the initial IV encryption will be * processed too. Round values are AES128 = 4, AES192 = 5, * AES256 = 6 * */ _GLOBAL(ppc_encrypt_xts) INITIALIZE_CRYPT(PPC_AES_4K_ENCTAB, 8) LOAD_IV(rI0, 0) LOAD_IV(rI1, 4) LOAD_IV(rI2, 8) cmpwi rKT,0 LOAD_IV(rI3, 12) bt eq,ppc_encrypt_xts_notweak mr rKP,rKT START_KEY(rI0, rI1, rI2, rI3) bl ppc_encrypt_block xor rI0,rD0,rW0 xor rI1,rD1,rW1 xor rI2,rD2,rW2 xor rI3,rD3,rW3 ppc_encrypt_xts_notweak: ENDIAN_SWAP(rG0, rG1, rI0, rI1) ENDIAN_SWAP(rG2, rG3, rI2, rI3) ppc_encrypt_xts_loop: LOAD_DATA(rD0, 0) mr rKP,rKS LOAD_DATA(rD1, 4) subi rLN,rLN,16 LOAD_DATA(rD2, 8) LOAD_DATA(rD3, 12) xor rD0,rD0,rI0 xor rD1,rD1,rI1 xor rD2,rD2,rI2 xor rD3,rD3,rI3 START_KEY(rD0, rD1, rD2, rD3) bl ppc_encrypt_block xor rD0,rD0,rW0 xor rD1,rD1,rW1 xor rD2,rD2,rW2 xor rD3,rD3,rW3 xor rD0,rD0,rI0 SAVE_DATA(rD0, 0) xor rD1,rD1,rI1 SAVE_DATA(rD1, 4) xor rD2,rD2,rI2 SAVE_DATA(rD2, 8) xor rD3,rD3,rI3 SAVE_DATA(rD3, 12) GF128_MUL(rG0, rG1, rG2, rG3, rW0) ENDIAN_SWAP(rI0, rI1, rG0, rG1) ENDIAN_SWAP(rI2, rI3, rG2, rG3) cmpwi rLN,0 NEXT_BLOCK bt gt,ppc_encrypt_xts_loop START_IV SAVE_IV(rI0, 0) SAVE_IV(rI1, 4) SAVE_IV(rI2, 8) SAVE_IV(rI3, 12) FINALIZE_CRYPT(8) blr /* * ppc_decrypt_xts(u8 *out, const u8 *in, u32 *key_dec, * u32 rounds, u32 blocks, u8 *iv, u32 *key_twk); * * called from glue layer to decrypt multiple blocks via XTS * If key_twk is given, the initial IV encryption will be * processed too. Round values are AES128 = 4, AES192 = 5, * AES256 = 6 * */ _GLOBAL(ppc_decrypt_xts) INITIALIZE_CRYPT(PPC_AES_4K_DECTAB, 8) LOAD_IV(rI0, 0) addi rT1,rT0,4096 LOAD_IV(rI1, 4) LOAD_IV(rI2, 8) cmpwi rKT,0 LOAD_IV(rI3, 12) bt eq,ppc_decrypt_xts_notweak subi rT0,rT0,4096 mr rKP,rKT START_KEY(rI0, rI1, rI2, rI3) bl ppc_encrypt_block xor rI0,rD0,rW0 xor rI1,rD1,rW1 xor rI2,rD2,rW2 xor rI3,rD3,rW3 addi rT0,rT0,4096 ppc_decrypt_xts_notweak: ENDIAN_SWAP(rG0, rG1, rI0, rI1) ENDIAN_SWAP(rG2, rG3, rI2, rI3) ppc_decrypt_xts_loop: LOAD_DATA(rD0, 0) mr rKP,rKS LOAD_DATA(rD1, 4) subi rLN,rLN,16 LOAD_DATA(rD2, 8) LOAD_DATA(rD3, 12) xor rD0,rD0,rI0 xor rD1,rD1,rI1 xor rD2,rD2,rI2 xor rD3,rD3,rI3 START_KEY(rD0, rD1, rD2, rD3) bl ppc_decrypt_block xor rD0,rD0,rW0 xor rD1,rD1,rW1 xor rD2,rD2,rW2 xor rD3,rD3,rW3 xor rD0,rD0,rI0 SAVE_DATA(rD0, 0) xor rD1,rD1,rI1 SAVE_DATA(rD1, 4) xor rD2,rD2,rI2 SAVE_DATA(rD2, 8) xor rD3,rD3,rI3 SAVE_DATA(rD3, 12) GF128_MUL(rG0, rG1, rG2, rG3, rW0) ENDIAN_SWAP(rI0, rI1, rG0, rG1) ENDIAN_SWAP(rI2, rI3, rG2, rG3) cmpwi rLN,0 NEXT_BLOCK bt gt,ppc_decrypt_xts_loop START_IV SAVE_IV(rI0, 0) SAVE_IV(rI1, 4) SAVE_IV(rI2, 8) SAVE_IV(rI3, 12) FINALIZE_CRYPT(8) blr