#include #include #include #include #include #include #include #include #define CHKSUM_BLOCK_SIZE 1 #define CHKSUM_DIGEST_SIZE 4 #define VMX_ALIGN 16 #define VMX_ALIGN_MASK (VMX_ALIGN-1) #define VECTOR_BREAKPOINT 512 u32 __crc32c_vpmsum(u32 crc, unsigned char const *p, size_t len); static u32 crc32c_vpmsum(u32 crc, unsigned char const *p, size_t len) { unsigned int prealign; unsigned int tail; if (len < (VECTOR_BREAKPOINT + VMX_ALIGN) || in_interrupt()) return __crc32c_le(crc, p, len); if ((unsigned long)p & VMX_ALIGN_MASK) { prealign = VMX_ALIGN - ((unsigned long)p & VMX_ALIGN_MASK); crc = __crc32c_le(crc, p, prealign); len -= prealign; p += prealign; } if (len & ~VMX_ALIGN_MASK) { preempt_disable(); pagefault_disable(); enable_kernel_altivec(); crc = __crc32c_vpmsum(crc, p, len & ~VMX_ALIGN_MASK); disable_kernel_altivec(); pagefault_enable(); preempt_enable(); } tail = len & VMX_ALIGN_MASK; if (tail) { p += len & ~VMX_ALIGN_MASK; crc = __crc32c_le(crc, p, tail); } return crc; } static int crc32c_vpmsum_cra_init(struct crypto_tfm *tfm) { u32 *key = crypto_tfm_ctx(tfm); *key = ~0; return 0; } /* * Setting the seed allows arbitrary accumulators and flexible XOR policy * If your algorithm starts with ~0, then XOR with ~0 before you set * the seed. */ static int crc32c_vpmsum_setkey(struct crypto_shash *hash, const u8 *key, unsigned int keylen) { u32 *mctx = crypto_shash_ctx(hash); if (keylen != sizeof(u32)) { crypto_shash_set_flags(hash, CRYPTO_TFM_RES_BAD_KEY_LEN); return -EINVAL; } *mctx = le32_to_cpup((__le32 *)key); return 0; } static int crc32c_vpmsum_init(struct shash_desc *desc) { u32 *mctx = crypto_shash_ctx(desc->tfm); u32 *crcp = shash_desc_ctx(desc); *crcp = *mctx; return 0; } static int crc32c_vpmsum_update(struct shash_desc *desc, const u8 *data, unsigned int len) { u32 *crcp = shash_desc_ctx(desc); *crcp = crc32c_vpmsum(*crcp, data, len); return 0; } static int __crc32c_vpmsum_finup(u32 *crcp, const u8 *data, unsigned int len, u8 *out) { *(__le32 *)out = ~cpu_to_le32(crc32c_vpmsum(*crcp, data, len)); return 0; } static int crc32c_vpmsum_finup(struct shash_desc *desc, const u8 *data, unsigned int len, u8 *out) { return __crc32c_vpmsum_finup(shash_desc_ctx(desc), data, len, out); } static int crc32c_vpmsum_final(struct shash_desc *desc, u8 *out) { u32 *crcp = shash_desc_ctx(desc); *(__le32 *)out = ~cpu_to_le32p(crcp); return 0; } static int crc32c_vpmsum_digest(struct shash_desc *desc, const u8 *data, unsigned int len, u8 *out) { return __crc32c_vpmsum_finup(crypto_shash_ctx(desc->tfm), data, len, out); } static struct shash_alg alg = { .setkey = crc32c_vpmsum_setkey, .init = crc32c_vpmsum_init, .update = crc32c_vpmsum_update, .final = crc32c_vpmsum_final, .finup = crc32c_vpmsum_finup, .digest = crc32c_vpmsum_digest, .descsize = sizeof(u32), .digestsize = CHKSUM_DIGEST_SIZE, .base = { .cra_name = "crc32c", .cra_driver_name = "crc32c-vpmsum", .cra_priority = 200, .cra_blocksize = CHKSUM_BLOCK_SIZE, .cra_ctxsize = sizeof(u32), .cra_module = THIS_MODULE, .cra_init = crc32c_vpmsum_cra_init, } }; static int __init crc32c_vpmsum_mod_init(void) { if (!cpu_has_feature(CPU_FTR_ARCH_207S)) return -ENODEV; return crypto_register_shash(&alg); } static void __exit crc32c_vpmsum_mod_fini(void) { crypto_unregister_shash(&alg); } module_cpu_feature_match(PPC_MODULE_FEATURE_VEC_CRYPTO, crc32c_vpmsum_mod_init); module_exit(crc32c_vpmsum_mod_fini); MODULE_AUTHOR("Anton Blanchard "); MODULE_DESCRIPTION("CRC32C using vector polynomial multiply-sum instructions"); MODULE_LICENSE("GPL"); MODULE_ALIAS_CRYPTO("crc32c"); MODULE_ALIAS_CRYPTO("crc32c-vpmsum");