// SPDX-License-Identifier: GPL-2.0 /* * temp.c Thermal management for cpu's with Thermal Assist Units * * Written by Troy Benjegerdes * * TODO: * dynamic power management to limit peak CPU temp (using ICTC) * calibration??? * * Silly, crazy ideas: use cpu load (from scheduler) and ICTC to extend battery * life in portables, and add a 'performance/watt' metric somewhere in /proc */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "setup.h" static struct tau_temp { int interrupts; unsigned char low; unsigned char high; unsigned char grew; } tau[NR_CPUS]; static bool tau_int_enable; /* TODO: put these in a /proc interface, with some sanity checks, and maybe * dynamic adjustment to minimize # of interrupts */ /* configurable values for step size and how much to expand the window when * we get an interrupt. These are based on the limit that was out of range */ #define step_size 2 /* step size when temp goes out of range */ #define window_expand 1 /* expand the window by this much */ /* configurable values for shrinking the window */ #define shrink_timer 2000 /* period between shrinking the window */ #define min_window 2 /* minimum window size, degrees C */ static void set_thresholds(unsigned long cpu) { u32 maybe_tie = tau_int_enable ? THRM1_TIE : 0; /* setup THRM1, threshold, valid bit, interrupt when below threshold */ mtspr(SPRN_THRM1, THRM1_THRES(tau[cpu].low) | THRM1_V | maybe_tie | THRM1_TID); /* setup THRM2, threshold, valid bit, interrupt when above threshold */ mtspr(SPRN_THRM2, THRM1_THRES(tau[cpu].high) | THRM1_V | maybe_tie); } static void TAUupdate(int cpu) { u32 thrm; u32 bits = THRM1_TIV | THRM1_TIN | THRM1_V; /* if both thresholds are crossed, the step_sizes cancel out * and the window winds up getting expanded twice. */ thrm = mfspr(SPRN_THRM1); if ((thrm & bits) == bits) { mtspr(SPRN_THRM1, 0); if (tau[cpu].low >= step_size) { tau[cpu].low -= step_size; tau[cpu].high -= (step_size - window_expand); } tau[cpu].grew = 1; pr_debug("%s: low threshold crossed\n", __func__); } thrm = mfspr(SPRN_THRM2); if ((thrm & bits) == bits) { mtspr(SPRN_THRM2, 0); if (tau[cpu].high <= 127 - step_size) { tau[cpu].low += (step_size - window_expand); tau[cpu].high += step_size; } tau[cpu].grew = 1; pr_debug("%s: high threshold crossed\n", __func__); } } #ifdef CONFIG_TAU_INT /* * TAU interrupts - called when we have a thermal assist unit interrupt * with interrupts disabled */ DEFINE_INTERRUPT_HANDLER_ASYNC(TAUException) { int cpu = smp_processor_id(); tau[cpu].interrupts++; TAUupdate(cpu); } #endif /* CONFIG_TAU_INT */ static void tau_timeout(void * info) { int cpu; int size; int shrink; cpu = smp_processor_id(); if (!tau_int_enable) TAUupdate(cpu); /* Stop thermal sensor comparisons and interrupts */ mtspr(SPRN_THRM3, 0); size = tau[cpu].high - tau[cpu].low; if (size > min_window && ! tau[cpu].grew) { /* do an exponential shrink of half the amount currently over size */ shrink = (2 + size - min_window) / 4; if (shrink) { tau[cpu].low += shrink; tau[cpu].high -= shrink; } else { /* size must have been min_window + 1 */ tau[cpu].low += 1; #if 1 /* debug */ if ((tau[cpu].high - tau[cpu].low) != min_window){ printk(KERN_ERR "temp.c: line %d, logic error\n", __LINE__); } #endif } } tau[cpu].grew = 0; set_thresholds(cpu); /* Restart thermal sensor comparisons and interrupts. * The "PowerPC 740 and PowerPC 750 Microprocessor Datasheet" * recommends that "the maximum value be set in THRM3 under all * conditions." */ mtspr(SPRN_THRM3, THRM3_SITV(0x1fff) | THRM3_E); } static struct workqueue_struct *tau_workq; static void tau_work_func(struct work_struct *work) { msleep(shrink_timer); on_each_cpu(tau_timeout, NULL, 0); /* schedule ourselves to be run again */ queue_work(tau_workq, work); } static DECLARE_WORK(tau_work, tau_work_func); /* * setup the TAU * * Set things up to use THRM1 as a temperature lower bound, and THRM2 as an upper bound. * Start off at zero */ int tau_initialized = 0; static void __init TAU_init_smp(void *info) { unsigned long cpu = smp_processor_id(); /* set these to a reasonable value and let the timer shrink the * window */ tau[cpu].low = 5; tau[cpu].high = 120; set_thresholds(cpu); } static int __init TAU_init(void) { /* We assume in SMP that if one CPU has TAU support, they * all have it --BenH */ if (!cpu_has_feature(CPU_FTR_TAU)) { printk("Thermal assist unit not available\n"); tau_initialized = 0; return 1; } tau_int_enable = IS_ENABLED(CONFIG_TAU_INT) && !strcmp(cur_cpu_spec->platform, "ppc750"); tau_workq = alloc_ordered_workqueue("tau", 0); if (!tau_workq) return -ENOMEM; on_each_cpu(TAU_init_smp, NULL, 0); queue_work(tau_workq, &tau_work); pr_info("Thermal assist unit using %s, shrink_timer: %d ms\n", tau_int_enable ? "interrupts" : "workqueue", shrink_timer); tau_initialized = 1; return 0; } __initcall(TAU_init); /* * return current temp */ u32 cpu_temp_both(unsigned long cpu) { return ((tau[cpu].high << 16) | tau[cpu].low); } u32 cpu_temp(unsigned long cpu) { return ((tau[cpu].high + tau[cpu].low) / 2); } u32 tau_interrupts(unsigned long cpu) { return (tau[cpu].interrupts); }