// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright 2008 Michael Ellerman, IBM Corporation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static int __patch_instruction(u32 *exec_addr, ppc_inst_t instr, u32 *patch_addr) { if (!ppc_inst_prefixed(instr)) { u32 val = ppc_inst_val(instr); __put_kernel_nofault(patch_addr, &val, u32, failed); } else { u64 val = ppc_inst_as_ulong(instr); __put_kernel_nofault(patch_addr, &val, u64, failed); } asm ("dcbst 0, %0; sync; icbi 0,%1; sync; isync" :: "r" (patch_addr), "r" (exec_addr)); return 0; failed: mb(); /* sync */ return -EPERM; } int raw_patch_instruction(u32 *addr, ppc_inst_t instr) { return __patch_instruction(addr, instr, addr); } struct patch_context { union { struct vm_struct *area; struct mm_struct *mm; }; unsigned long addr; pte_t *pte; }; static DEFINE_PER_CPU(struct patch_context, cpu_patching_context); static int map_patch_area(void *addr, unsigned long text_poke_addr); static void unmap_patch_area(unsigned long addr); static bool mm_patch_enabled(void) { return IS_ENABLED(CONFIG_SMP) && radix_enabled(); } /* * The following applies for Radix MMU. Hash MMU has different requirements, * and so is not supported. * * Changing mm requires context synchronising instructions on both sides of * the context switch, as well as a hwsync between the last instruction for * which the address of an associated storage access was translated using * the current context. * * switch_mm_irqs_off() performs an isync after the context switch. It is * the responsibility of the caller to perform the CSI and hwsync before * starting/stopping the temp mm. */ static struct mm_struct *start_using_temp_mm(struct mm_struct *temp_mm) { struct mm_struct *orig_mm = current->active_mm; lockdep_assert_irqs_disabled(); switch_mm_irqs_off(orig_mm, temp_mm, current); WARN_ON(!mm_is_thread_local(temp_mm)); suspend_breakpoints(); return orig_mm; } static void stop_using_temp_mm(struct mm_struct *temp_mm, struct mm_struct *orig_mm) { lockdep_assert_irqs_disabled(); switch_mm_irqs_off(temp_mm, orig_mm, current); restore_breakpoints(); } static int text_area_cpu_up(unsigned int cpu) { struct vm_struct *area; unsigned long addr; int err; area = get_vm_area(PAGE_SIZE, VM_ALLOC); if (!area) { WARN_ONCE(1, "Failed to create text area for cpu %d\n", cpu); return -1; } // Map/unmap the area to ensure all page tables are pre-allocated addr = (unsigned long)area->addr; err = map_patch_area(empty_zero_page, addr); if (err) return err; unmap_patch_area(addr); this_cpu_write(cpu_patching_context.area, area); this_cpu_write(cpu_patching_context.addr, addr); this_cpu_write(cpu_patching_context.pte, virt_to_kpte(addr)); return 0; } static int text_area_cpu_down(unsigned int cpu) { free_vm_area(this_cpu_read(cpu_patching_context.area)); this_cpu_write(cpu_patching_context.area, NULL); this_cpu_write(cpu_patching_context.addr, 0); this_cpu_write(cpu_patching_context.pte, NULL); return 0; } static void put_patching_mm(struct mm_struct *mm, unsigned long patching_addr) { struct mmu_gather tlb; tlb_gather_mmu(&tlb, mm); free_pgd_range(&tlb, patching_addr, patching_addr + PAGE_SIZE, 0, 0); mmput(mm); } static int text_area_cpu_up_mm(unsigned int cpu) { struct mm_struct *mm; unsigned long addr; pte_t *pte; spinlock_t *ptl; mm = mm_alloc(); if (WARN_ON(!mm)) goto fail_no_mm; /* * Choose a random page-aligned address from the interval * [PAGE_SIZE .. DEFAULT_MAP_WINDOW - PAGE_SIZE]. * The lower address bound is PAGE_SIZE to avoid the zero-page. */ addr = (1 + (get_random_long() % (DEFAULT_MAP_WINDOW / PAGE_SIZE - 2))) << PAGE_SHIFT; /* * PTE allocation uses GFP_KERNEL which means we need to * pre-allocate the PTE here because we cannot do the * allocation during patching when IRQs are disabled. * * Using get_locked_pte() to avoid open coding, the lock * is unnecessary. */ pte = get_locked_pte(mm, addr, &ptl); if (!pte) goto fail_no_pte; pte_unmap_unlock(pte, ptl); this_cpu_write(cpu_patching_context.mm, mm); this_cpu_write(cpu_patching_context.addr, addr); return 0; fail_no_pte: put_patching_mm(mm, addr); fail_no_mm: return -ENOMEM; } static int text_area_cpu_down_mm(unsigned int cpu) { put_patching_mm(this_cpu_read(cpu_patching_context.mm), this_cpu_read(cpu_patching_context.addr)); this_cpu_write(cpu_patching_context.mm, NULL); this_cpu_write(cpu_patching_context.addr, 0); return 0; } static __ro_after_init DEFINE_STATIC_KEY_FALSE(poking_init_done); void __init poking_init(void) { int ret; if (mm_patch_enabled()) ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "powerpc/text_poke_mm:online", text_area_cpu_up_mm, text_area_cpu_down_mm); else ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "powerpc/text_poke:online", text_area_cpu_up, text_area_cpu_down); /* cpuhp_setup_state returns >= 0 on success */ if (WARN_ON(ret < 0)) return; static_branch_enable(&poking_init_done); } static unsigned long get_patch_pfn(void *addr) { if (IS_ENABLED(CONFIG_MODULES) && is_vmalloc_or_module_addr(addr)) return vmalloc_to_pfn(addr); else return __pa_symbol(addr) >> PAGE_SHIFT; } /* * This can be called for kernel text or a module. */ static int map_patch_area(void *addr, unsigned long text_poke_addr) { unsigned long pfn = get_patch_pfn(addr); return map_kernel_page(text_poke_addr, (pfn << PAGE_SHIFT), PAGE_KERNEL); } static void unmap_patch_area(unsigned long addr) { pte_t *ptep; pmd_t *pmdp; pud_t *pudp; p4d_t *p4dp; pgd_t *pgdp; pgdp = pgd_offset_k(addr); if (WARN_ON(pgd_none(*pgdp))) return; p4dp = p4d_offset(pgdp, addr); if (WARN_ON(p4d_none(*p4dp))) return; pudp = pud_offset(p4dp, addr); if (WARN_ON(pud_none(*pudp))) return; pmdp = pmd_offset(pudp, addr); if (WARN_ON(pmd_none(*pmdp))) return; ptep = pte_offset_kernel(pmdp, addr); if (WARN_ON(pte_none(*ptep))) return; /* * In hash, pte_clear flushes the tlb, in radix, we have to */ pte_clear(&init_mm, addr, ptep); flush_tlb_kernel_range(addr, addr + PAGE_SIZE); } static int __do_patch_instruction_mm(u32 *addr, ppc_inst_t instr) { int err; u32 *patch_addr; unsigned long text_poke_addr; pte_t *pte; unsigned long pfn = get_patch_pfn(addr); struct mm_struct *patching_mm; struct mm_struct *orig_mm; spinlock_t *ptl; patching_mm = __this_cpu_read(cpu_patching_context.mm); text_poke_addr = __this_cpu_read(cpu_patching_context.addr); patch_addr = (u32 *)(text_poke_addr + offset_in_page(addr)); pte = get_locked_pte(patching_mm, text_poke_addr, &ptl); if (!pte) return -ENOMEM; __set_pte_at(patching_mm, text_poke_addr, pte, pfn_pte(pfn, PAGE_KERNEL), 0); /* order PTE update before use, also serves as the hwsync */ asm volatile("ptesync": : :"memory"); /* order context switch after arbitrary prior code */ isync(); orig_mm = start_using_temp_mm(patching_mm); err = __patch_instruction(addr, instr, patch_addr); /* context synchronisation performed by __patch_instruction (isync or exception) */ stop_using_temp_mm(patching_mm, orig_mm); pte_clear(patching_mm, text_poke_addr, pte); /* * ptesync to order PTE update before TLB invalidation done * by radix__local_flush_tlb_page_psize (in _tlbiel_va) */ local_flush_tlb_page_psize(patching_mm, text_poke_addr, mmu_virtual_psize); pte_unmap_unlock(pte, ptl); return err; } static int __do_patch_instruction(u32 *addr, ppc_inst_t instr) { int err; u32 *patch_addr; unsigned long text_poke_addr; pte_t *pte; unsigned long pfn = get_patch_pfn(addr); text_poke_addr = (unsigned long)__this_cpu_read(cpu_patching_context.addr) & PAGE_MASK; patch_addr = (u32 *)(text_poke_addr + offset_in_page(addr)); pte = __this_cpu_read(cpu_patching_context.pte); __set_pte_at(&init_mm, text_poke_addr, pte, pfn_pte(pfn, PAGE_KERNEL), 0); /* See ptesync comment in radix__set_pte_at() */ if (radix_enabled()) asm volatile("ptesync": : :"memory"); err = __patch_instruction(addr, instr, patch_addr); pte_clear(&init_mm, text_poke_addr, pte); flush_tlb_kernel_range(text_poke_addr, text_poke_addr + PAGE_SIZE); return err; } int patch_instruction(u32 *addr, ppc_inst_t instr) { int err; unsigned long flags; /* * During early early boot patch_instruction is called * when text_poke_area is not ready, but we still need * to allow patching. We just do the plain old patching */ if (!IS_ENABLED(CONFIG_STRICT_KERNEL_RWX) || !static_branch_likely(&poking_init_done)) return raw_patch_instruction(addr, instr); local_irq_save(flags); if (mm_patch_enabled()) err = __do_patch_instruction_mm(addr, instr); else err = __do_patch_instruction(addr, instr); local_irq_restore(flags); return err; } NOKPROBE_SYMBOL(patch_instruction); static int __patch_instructions(u32 *patch_addr, u32 *code, size_t len, bool repeat_instr) { unsigned long start = (unsigned long)patch_addr; /* Repeat instruction */ if (repeat_instr) { ppc_inst_t instr = ppc_inst_read(code); if (ppc_inst_prefixed(instr)) { u64 val = ppc_inst_as_ulong(instr); memset64((u64 *)patch_addr, val, len / 8); } else { u32 val = ppc_inst_val(instr); memset32(patch_addr, val, len / 4); } } else { memcpy(patch_addr, code, len); } smp_wmb(); /* smp write barrier */ flush_icache_range(start, start + len); return 0; } /* * A page is mapped and instructions that fit the page are patched. * Assumes 'len' to be (PAGE_SIZE - offset_in_page(addr)) or below. */ static int __do_patch_instructions_mm(u32 *addr, u32 *code, size_t len, bool repeat_instr) { struct mm_struct *patching_mm, *orig_mm; unsigned long pfn = get_patch_pfn(addr); unsigned long text_poke_addr; spinlock_t *ptl; u32 *patch_addr; pte_t *pte; int err; patching_mm = __this_cpu_read(cpu_patching_context.mm); text_poke_addr = __this_cpu_read(cpu_patching_context.addr); patch_addr = (u32 *)(text_poke_addr + offset_in_page(addr)); pte = get_locked_pte(patching_mm, text_poke_addr, &ptl); if (!pte) return -ENOMEM; __set_pte_at(patching_mm, text_poke_addr, pte, pfn_pte(pfn, PAGE_KERNEL), 0); /* order PTE update before use, also serves as the hwsync */ asm volatile("ptesync" ::: "memory"); /* order context switch after arbitrary prior code */ isync(); orig_mm = start_using_temp_mm(patching_mm); err = __patch_instructions(patch_addr, code, len, repeat_instr); /* context synchronisation performed by __patch_instructions */ stop_using_temp_mm(patching_mm, orig_mm); pte_clear(patching_mm, text_poke_addr, pte); /* * ptesync to order PTE update before TLB invalidation done * by radix__local_flush_tlb_page_psize (in _tlbiel_va) */ local_flush_tlb_page_psize(patching_mm, text_poke_addr, mmu_virtual_psize); pte_unmap_unlock(pte, ptl); return err; } /* * A page is mapped and instructions that fit the page are patched. * Assumes 'len' to be (PAGE_SIZE - offset_in_page(addr)) or below. */ static int __do_patch_instructions(u32 *addr, u32 *code, size_t len, bool repeat_instr) { unsigned long pfn = get_patch_pfn(addr); unsigned long text_poke_addr; u32 *patch_addr; pte_t *pte; int err; text_poke_addr = (unsigned long)__this_cpu_read(cpu_patching_context.addr) & PAGE_MASK; patch_addr = (u32 *)(text_poke_addr + offset_in_page(addr)); pte = __this_cpu_read(cpu_patching_context.pte); __set_pte_at(&init_mm, text_poke_addr, pte, pfn_pte(pfn, PAGE_KERNEL), 0); /* See ptesync comment in radix__set_pte_at() */ if (radix_enabled()) asm volatile("ptesync" ::: "memory"); err = __patch_instructions(patch_addr, code, len, repeat_instr); pte_clear(&init_mm, text_poke_addr, pte); flush_tlb_kernel_range(text_poke_addr, text_poke_addr + PAGE_SIZE); return err; } /* * Patch 'addr' with 'len' bytes of instructions from 'code'. * * If repeat_instr is true, the same instruction is filled for * 'len' bytes. */ int patch_instructions(u32 *addr, u32 *code, size_t len, bool repeat_instr) { while (len > 0) { unsigned long flags; size_t plen; int err; plen = min_t(size_t, PAGE_SIZE - offset_in_page(addr), len); local_irq_save(flags); if (mm_patch_enabled()) err = __do_patch_instructions_mm(addr, code, plen, repeat_instr); else err = __do_patch_instructions(addr, code, plen, repeat_instr); local_irq_restore(flags); if (err) return err; len -= plen; addr = (u32 *)((unsigned long)addr + plen); if (!repeat_instr) code = (u32 *)((unsigned long)code + plen); } return 0; } NOKPROBE_SYMBOL(patch_instructions); int patch_branch(u32 *addr, unsigned long target, int flags) { ppc_inst_t instr; if (create_branch(&instr, addr, target, flags)) return -ERANGE; return patch_instruction(addr, instr); } /* * Helper to check if a given instruction is a conditional branch * Derived from the conditional checks in analyse_instr() */ bool is_conditional_branch(ppc_inst_t instr) { unsigned int opcode = ppc_inst_primary_opcode(instr); if (opcode == 16) /* bc, bca, bcl, bcla */ return true; if (opcode == 19) { switch ((ppc_inst_val(instr) >> 1) & 0x3ff) { case 16: /* bclr, bclrl */ case 528: /* bcctr, bcctrl */ case 560: /* bctar, bctarl */ return true; } } return false; } NOKPROBE_SYMBOL(is_conditional_branch); int create_cond_branch(ppc_inst_t *instr, const u32 *addr, unsigned long target, int flags) { long offset; offset = target; if (! (flags & BRANCH_ABSOLUTE)) offset = offset - (unsigned long)addr; /* Check we can represent the target in the instruction format */ if (!is_offset_in_cond_branch_range(offset)) return 1; /* Mask out the flags and target, so they don't step on each other. */ *instr = ppc_inst(0x40000000 | (flags & 0x3FF0003) | (offset & 0xFFFC)); return 0; } int instr_is_relative_branch(ppc_inst_t instr) { if (ppc_inst_val(instr) & BRANCH_ABSOLUTE) return 0; return instr_is_branch_iform(instr) || instr_is_branch_bform(instr); } int instr_is_relative_link_branch(ppc_inst_t instr) { return instr_is_relative_branch(instr) && (ppc_inst_val(instr) & BRANCH_SET_LINK); } static unsigned long branch_iform_target(const u32 *instr) { signed long imm; imm = ppc_inst_val(ppc_inst_read(instr)) & 0x3FFFFFC; /* If the top bit of the immediate value is set this is negative */ if (imm & 0x2000000) imm -= 0x4000000; if ((ppc_inst_val(ppc_inst_read(instr)) & BRANCH_ABSOLUTE) == 0) imm += (unsigned long)instr; return (unsigned long)imm; } static unsigned long branch_bform_target(const u32 *instr) { signed long imm; imm = ppc_inst_val(ppc_inst_read(instr)) & 0xFFFC; /* If the top bit of the immediate value is set this is negative */ if (imm & 0x8000) imm -= 0x10000; if ((ppc_inst_val(ppc_inst_read(instr)) & BRANCH_ABSOLUTE) == 0) imm += (unsigned long)instr; return (unsigned long)imm; } unsigned long branch_target(const u32 *instr) { if (instr_is_branch_iform(ppc_inst_read(instr))) return branch_iform_target(instr); else if (instr_is_branch_bform(ppc_inst_read(instr))) return branch_bform_target(instr); return 0; } int translate_branch(ppc_inst_t *instr, const u32 *dest, const u32 *src) { unsigned long target; target = branch_target(src); if (instr_is_branch_iform(ppc_inst_read(src))) return create_branch(instr, dest, target, ppc_inst_val(ppc_inst_read(src))); else if (instr_is_branch_bform(ppc_inst_read(src))) return create_cond_branch(instr, dest, target, ppc_inst_val(ppc_inst_read(src))); return 1; }