/* SPDX-License-Identifier: GPL-2.0 */ #ifndef __POWERNV_PCI_H #define __POWERNV_PCI_H #include /* for __printf */ #include #include #include struct pci_dn; enum pnv_phb_type { PNV_PHB_IODA2, PNV_PHB_NPU_OCAPI, }; /* Precise PHB model for error management */ enum pnv_phb_model { PNV_PHB_MODEL_UNKNOWN, PNV_PHB_MODEL_P7IOC, PNV_PHB_MODEL_PHB3, }; #define PNV_PCI_DIAG_BUF_SIZE 8192 #define PNV_IODA_PE_DEV (1 << 0) /* PE has single PCI device */ #define PNV_IODA_PE_BUS (1 << 1) /* PE has primary PCI bus */ #define PNV_IODA_PE_BUS_ALL (1 << 2) /* PE has subordinate buses */ #define PNV_IODA_PE_MASTER (1 << 3) /* Master PE in compound case */ #define PNV_IODA_PE_SLAVE (1 << 4) /* Slave PE in compound case */ #define PNV_IODA_PE_VF (1 << 5) /* PE for one VF */ /* * A brief note on PNV_IODA_PE_BUS_ALL * * This is needed because of the behaviour of PCIe-to-PCI bridges. The PHB uses * the Requester ID field of the PCIe request header to determine the device * (and PE) that initiated a DMA. In legacy PCI individual memory read/write * requests aren't tagged with the RID. To work around this the PCIe-to-PCI * bridge will use (secondary_bus_no << 8) | 0x00 as the RID on the PCIe side. * * PCIe-to-X bridges have a similar issue even though PCI-X requests also have * a RID in the transaction header. The PCIe-to-X bridge is permitted to "take * ownership" of a transaction by a PCI-X device when forwarding it to the PCIe * side of the bridge. * * To work around these problems we use the BUS_ALL flag since every subordinate * bus of the bridge should go into the same PE. */ /* Indicates operations are frozen for a PE: MMIO in PESTA & DMA in PESTB. */ #define PNV_IODA_STOPPED_STATE 0x8000000000000000 /* Data associated with a PE, including IOMMU tracking etc.. */ struct pnv_phb; struct pnv_ioda_pe { unsigned long flags; struct pnv_phb *phb; int device_count; /* A PE can be associated with a single device or an * entire bus (& children). In the former case, pdev * is populated, in the later case, pbus is. */ #ifdef CONFIG_PCI_IOV struct pci_dev *parent_dev; #endif struct pci_dev *pdev; struct pci_bus *pbus; /* Effective RID (device RID for a device PE and base bus * RID with devfn 0 for a bus PE) */ unsigned int rid; /* PE number */ unsigned int pe_number; /* "Base" iommu table, ie, 4K TCEs, 32-bit DMA */ struct iommu_table_group table_group; /* 64-bit TCE bypass region */ bool tce_bypass_enabled; uint64_t tce_bypass_base; /* * Used to track whether we've done DMA setup for this PE or not. We * want to defer allocating TCE tables, etc until we've added a * non-bridge device to the PE. */ bool dma_setup_done; /* MSIs. MVE index is identical for 32 and 64 bit MSI * and -1 if not supported. (It's actually identical to the * PE number) */ int mve_number; /* PEs in compound case */ struct pnv_ioda_pe *master; struct list_head slaves; /* Link in list of PE#s */ struct list_head list; }; #define PNV_PHB_FLAG_EEH (1 << 0) struct pnv_phb { struct pci_controller *hose; enum pnv_phb_type type; enum pnv_phb_model model; u64 hub_id; u64 opal_id; int flags; void __iomem *regs; u64 regs_phys; spinlock_t lock; #ifdef CONFIG_DEBUG_FS int has_dbgfs; struct dentry *dbgfs; #endif unsigned int msi_base; struct msi_bitmap msi_bmp; int (*init_m64)(struct pnv_phb *phb); int (*get_pe_state)(struct pnv_phb *phb, int pe_no); void (*freeze_pe)(struct pnv_phb *phb, int pe_no); int (*unfreeze_pe)(struct pnv_phb *phb, int pe_no, int opt); struct { /* Global bridge info */ unsigned int total_pe_num; unsigned int reserved_pe_idx; unsigned int root_pe_idx; /* 32-bit MMIO window */ unsigned int m32_size; unsigned int m32_segsize; unsigned int m32_pci_base; /* 64-bit MMIO window */ unsigned int m64_bar_idx; unsigned long m64_size; unsigned long m64_segsize; unsigned long m64_base; #define MAX_M64_BARS 64 unsigned long m64_bar_alloc; /* IO ports */ unsigned int io_size; unsigned int io_segsize; unsigned int io_pci_base; /* PE allocation */ struct mutex pe_alloc_mutex; unsigned long *pe_alloc; struct pnv_ioda_pe *pe_array; /* M32 & IO segment maps */ unsigned int *m64_segmap; unsigned int *m32_segmap; unsigned int *io_segmap; /* IRQ chip */ int irq_chip_init; struct irq_chip irq_chip; /* Sorted list of used PE's based * on the sequence of creation */ struct list_head pe_list; struct mutex pe_list_mutex; /* Reverse map of PEs, indexed by {bus, devfn} */ unsigned int pe_rmap[0x10000]; } ioda; /* PHB and hub diagnostics */ unsigned int diag_data_size; u8 *diag_data; }; /* IODA PE management */ static inline bool pnv_pci_is_m64(struct pnv_phb *phb, struct resource *r) { /* * WARNING: We cannot rely on the resource flags. The Linux PCI * allocation code sometimes decides to put a 64-bit prefetchable * BAR in the 32-bit window, so we have to compare the addresses. * * For simplicity we only test resource start. */ return (r->start >= phb->ioda.m64_base && r->start < (phb->ioda.m64_base + phb->ioda.m64_size)); } static inline bool pnv_pci_is_m64_flags(unsigned long resource_flags) { unsigned long flags = (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH); return (resource_flags & flags) == flags; } int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe); int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe); void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe); void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe); struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb, int count); void pnv_ioda_free_pe(struct pnv_ioda_pe *pe); #ifdef CONFIG_PCI_IOV /* * For SR-IOV we want to put each VF's MMIO resource in to a separate PE. * This requires a bit of acrobatics with the MMIO -> PE configuration * and this structure is used to keep track of it all. */ struct pnv_iov_data { /* number of VFs enabled */ u16 num_vfs; /* pointer to the array of VF PEs. num_vfs long*/ struct pnv_ioda_pe *vf_pe_arr; /* Did we map the VF BAR with single-PE IODA BARs? */ bool m64_single_mode[PCI_SRIOV_NUM_BARS]; /* * True if we're using any segmented windows. In that case we need * shift the start of the IOV resource the segment corresponding to * the allocated PE. */ bool need_shift; /* * Bit mask used to track which m64 windows are used to map the * SR-IOV BARs for this device. */ DECLARE_BITMAP(used_m64_bar_mask, MAX_M64_BARS); /* * If we map the SR-IOV BARs with a segmented window then * parts of that window will be "claimed" by other PEs. * * "holes" here is used to reserve the leading portion * of the window that is used by other (non VF) PEs. */ struct resource holes[PCI_SRIOV_NUM_BARS]; }; static inline struct pnv_iov_data *pnv_iov_get(struct pci_dev *pdev) { return pdev->dev.archdata.iov_data; } void pnv_pci_ioda_fixup_iov(struct pci_dev *pdev); resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev, int resno); int pnv_pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs); int pnv_pcibios_sriov_disable(struct pci_dev *pdev); #endif /* CONFIG_PCI_IOV */ extern struct pci_ops pnv_pci_ops; void pnv_pci_dump_phb_diag_data(struct pci_controller *hose, unsigned char *log_buff); int pnv_pci_cfg_read(struct pci_dn *pdn, int where, int size, u32 *val); int pnv_pci_cfg_write(struct pci_dn *pdn, int where, int size, u32 val); extern struct iommu_table *pnv_pci_table_alloc(int nid); extern void pnv_pci_init_ioda_hub(struct device_node *np); extern void pnv_pci_init_ioda2_phb(struct device_node *np); extern void pnv_pci_init_npu2_opencapi_phb(struct device_node *np); extern void pnv_pci_reset_secondary_bus(struct pci_dev *dev); extern int pnv_eeh_phb_reset(struct pci_controller *hose, int option); extern struct pnv_ioda_pe *pnv_pci_bdfn_to_pe(struct pnv_phb *phb, u16 bdfn); extern struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev); extern void pnv_set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq); extern unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift, __u64 window_size, __u32 levels); extern int pnv_eeh_post_init(void); __printf(3, 4) extern void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level, const char *fmt, ...); #define pe_err(pe, fmt, ...) \ pe_level_printk(pe, KERN_ERR, fmt, ##__VA_ARGS__) #define pe_warn(pe, fmt, ...) \ pe_level_printk(pe, KERN_WARNING, fmt, ##__VA_ARGS__) #define pe_info(pe, fmt, ...) \ pe_level_printk(pe, KERN_INFO, fmt, ##__VA_ARGS__) /* pci-ioda-tce.c */ #define POWERNV_IOMMU_DEFAULT_LEVELS 2 #define POWERNV_IOMMU_MAX_LEVELS 5 extern int pnv_tce_build(struct iommu_table *tbl, long index, long npages, unsigned long uaddr, enum dma_data_direction direction, unsigned long attrs); extern void pnv_tce_free(struct iommu_table *tbl, long index, long npages); extern int pnv_tce_xchg(struct iommu_table *tbl, long index, unsigned long *hpa, enum dma_data_direction *direction); extern __be64 *pnv_tce_useraddrptr(struct iommu_table *tbl, long index, bool alloc); extern unsigned long pnv_tce_get(struct iommu_table *tbl, long index); extern long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset, __u32 page_shift, __u64 window_size, __u32 levels, bool alloc_userspace_copy, struct iommu_table *tbl); extern void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl); extern long pnv_pci_link_table_and_group(int node, int num, struct iommu_table *tbl, struct iommu_table_group *table_group); extern void pnv_pci_unlink_table_and_group(struct iommu_table *tbl, struct iommu_table_group *table_group); extern void pnv_pci_setup_iommu_table(struct iommu_table *tbl, void *tce_mem, u64 tce_size, u64 dma_offset, unsigned int page_shift); extern unsigned long pnv_ioda_parse_tce_sizes(struct pnv_phb *phb); static inline struct pnv_phb *pci_bus_to_pnvhb(struct pci_bus *bus) { struct pci_controller *hose = bus->sysdata; if (hose) return hose->private_data; return NULL; } #endif /* __POWERNV_PCI_H */