// SPDX-License-Identifier: GPL-2.0-only /* * Load ELF vmlinux file for the kexec_file_load syscall. * * Copyright (C) 2021 Huawei Technologies Co, Ltd. * * Author: Liao Chang (liaochang1@huawei.com) * * Based on kexec-tools' kexec-elf-riscv.c, heavily modified * for kernel. */ #define pr_fmt(fmt) "kexec_image: " fmt #include #include #include #include #include #include #include #include int arch_kimage_file_post_load_cleanup(struct kimage *image) { kvfree(image->arch.fdt); image->arch.fdt = NULL; vfree(image->elf_headers); image->elf_headers = NULL; image->elf_headers_sz = 0; return kexec_image_post_load_cleanup_default(image); } static int riscv_kexec_elf_load(struct kimage *image, struct elfhdr *ehdr, struct kexec_elf_info *elf_info, unsigned long old_pbase, unsigned long new_pbase) { int i; int ret = 0; size_t size; struct kexec_buf kbuf; const struct elf_phdr *phdr; kbuf.image = image; for (i = 0; i < ehdr->e_phnum; i++) { phdr = &elf_info->proghdrs[i]; if (phdr->p_type != PT_LOAD) continue; size = phdr->p_filesz; if (size > phdr->p_memsz) size = phdr->p_memsz; kbuf.buffer = (void *) elf_info->buffer + phdr->p_offset; kbuf.bufsz = size; kbuf.buf_align = phdr->p_align; kbuf.mem = phdr->p_paddr - old_pbase + new_pbase; kbuf.memsz = phdr->p_memsz; kbuf.top_down = false; ret = kexec_add_buffer(&kbuf); if (ret) break; } return ret; } /* * Go through the available phsyical memory regions and find one that hold * an image of the specified size. */ static int elf_find_pbase(struct kimage *image, unsigned long kernel_len, struct elfhdr *ehdr, struct kexec_elf_info *elf_info, unsigned long *old_pbase, unsigned long *new_pbase) { int i; int ret; struct kexec_buf kbuf; const struct elf_phdr *phdr; unsigned long lowest_paddr = ULONG_MAX; unsigned long lowest_vaddr = ULONG_MAX; for (i = 0; i < ehdr->e_phnum; i++) { phdr = &elf_info->proghdrs[i]; if (phdr->p_type != PT_LOAD) continue; if (lowest_paddr > phdr->p_paddr) lowest_paddr = phdr->p_paddr; if (lowest_vaddr > phdr->p_vaddr) lowest_vaddr = phdr->p_vaddr; } kbuf.image = image; kbuf.buf_min = lowest_paddr; kbuf.buf_max = ULONG_MAX; kbuf.buf_align = PAGE_SIZE; kbuf.mem = KEXEC_BUF_MEM_UNKNOWN; kbuf.memsz = ALIGN(kernel_len, PAGE_SIZE); kbuf.top_down = false; ret = arch_kexec_locate_mem_hole(&kbuf); if (!ret) { *old_pbase = lowest_paddr; *new_pbase = kbuf.mem; image->start = ehdr->e_entry - lowest_vaddr + kbuf.mem; } return ret; } static int get_nr_ram_ranges_callback(struct resource *res, void *arg) { unsigned int *nr_ranges = arg; (*nr_ranges)++; return 0; } static int prepare_elf64_ram_headers_callback(struct resource *res, void *arg) { struct crash_mem *cmem = arg; cmem->ranges[cmem->nr_ranges].start = res->start; cmem->ranges[cmem->nr_ranges].end = res->end; cmem->nr_ranges++; return 0; } static int prepare_elf_headers(void **addr, unsigned long *sz) { struct crash_mem *cmem; unsigned int nr_ranges; int ret; nr_ranges = 1; /* For exclusion of crashkernel region */ walk_system_ram_res(0, -1, &nr_ranges, get_nr_ram_ranges_callback); cmem = kmalloc(struct_size(cmem, ranges, nr_ranges), GFP_KERNEL); if (!cmem) return -ENOMEM; cmem->max_nr_ranges = nr_ranges; cmem->nr_ranges = 0; ret = walk_system_ram_res(0, -1, cmem, prepare_elf64_ram_headers_callback); if (ret) goto out; /* Exclude crashkernel region */ ret = crash_exclude_mem_range(cmem, crashk_res.start, crashk_res.end); if (!ret) ret = crash_prepare_elf64_headers(cmem, true, addr, sz); out: kfree(cmem); return ret; } static char *setup_kdump_cmdline(struct kimage *image, char *cmdline, unsigned long cmdline_len) { int elfcorehdr_strlen; char *cmdline_ptr; cmdline_ptr = kzalloc(COMMAND_LINE_SIZE, GFP_KERNEL); if (!cmdline_ptr) return NULL; elfcorehdr_strlen = sprintf(cmdline_ptr, "elfcorehdr=0x%lx ", image->elf_load_addr); if (elfcorehdr_strlen + cmdline_len > COMMAND_LINE_SIZE) { pr_err("Appending elfcorehdr= exceeds cmdline size\n"); kfree(cmdline_ptr); return NULL; } memcpy(cmdline_ptr + elfcorehdr_strlen, cmdline, cmdline_len); /* Ensure it's nul terminated */ cmdline_ptr[COMMAND_LINE_SIZE - 1] = '\0'; return cmdline_ptr; } static void *elf_kexec_load(struct kimage *image, char *kernel_buf, unsigned long kernel_len, char *initrd, unsigned long initrd_len, char *cmdline, unsigned long cmdline_len) { int ret; unsigned long old_kernel_pbase = ULONG_MAX; unsigned long new_kernel_pbase = 0UL; unsigned long initrd_pbase = 0UL; unsigned long headers_sz; unsigned long kernel_start; void *fdt, *headers; struct elfhdr ehdr; struct kexec_buf kbuf; struct kexec_elf_info elf_info; char *modified_cmdline = NULL; ret = kexec_build_elf_info(kernel_buf, kernel_len, &ehdr, &elf_info); if (ret) return ERR_PTR(ret); ret = elf_find_pbase(image, kernel_len, &ehdr, &elf_info, &old_kernel_pbase, &new_kernel_pbase); if (ret) goto out; kernel_start = image->start; pr_notice("The entry point of kernel at 0x%lx\n", image->start); /* Add the kernel binary to the image */ ret = riscv_kexec_elf_load(image, &ehdr, &elf_info, old_kernel_pbase, new_kernel_pbase); if (ret) goto out; kbuf.image = image; kbuf.buf_min = new_kernel_pbase + kernel_len; kbuf.buf_max = ULONG_MAX; /* Add elfcorehdr */ if (image->type == KEXEC_TYPE_CRASH) { ret = prepare_elf_headers(&headers, &headers_sz); if (ret) { pr_err("Preparing elf core header failed\n"); goto out; } kbuf.buffer = headers; kbuf.bufsz = headers_sz; kbuf.mem = KEXEC_BUF_MEM_UNKNOWN; kbuf.memsz = headers_sz; kbuf.buf_align = ELF_CORE_HEADER_ALIGN; kbuf.top_down = true; ret = kexec_add_buffer(&kbuf); if (ret) { vfree(headers); goto out; } image->elf_headers = headers; image->elf_load_addr = kbuf.mem; image->elf_headers_sz = headers_sz; pr_debug("Loaded elf core header at 0x%lx bufsz=0x%lx memsz=0x%lx\n", image->elf_load_addr, kbuf.bufsz, kbuf.memsz); /* Setup cmdline for kdump kernel case */ modified_cmdline = setup_kdump_cmdline(image, cmdline, cmdline_len); if (!modified_cmdline) { pr_err("Setting up cmdline for kdump kernel failed\n"); ret = -EINVAL; goto out; } cmdline = modified_cmdline; } #ifdef CONFIG_ARCH_HAS_KEXEC_PURGATORY /* Add purgatory to the image */ kbuf.top_down = true; kbuf.mem = KEXEC_BUF_MEM_UNKNOWN; ret = kexec_load_purgatory(image, &kbuf); if (ret) { pr_err("Error loading purgatory ret=%d\n", ret); goto out; } ret = kexec_purgatory_get_set_symbol(image, "riscv_kernel_entry", &kernel_start, sizeof(kernel_start), 0); if (ret) pr_err("Error update purgatory ret=%d\n", ret); #endif /* CONFIG_ARCH_HAS_KEXEC_PURGATORY */ /* Add the initrd to the image */ if (initrd != NULL) { kbuf.buffer = initrd; kbuf.bufsz = kbuf.memsz = initrd_len; kbuf.buf_align = PAGE_SIZE; kbuf.top_down = false; kbuf.mem = KEXEC_BUF_MEM_UNKNOWN; ret = kexec_add_buffer(&kbuf); if (ret) goto out; initrd_pbase = kbuf.mem; pr_notice("Loaded initrd at 0x%lx\n", initrd_pbase); } /* Add the DTB to the image */ fdt = of_kexec_alloc_and_setup_fdt(image, initrd_pbase, initrd_len, cmdline, 0); if (!fdt) { pr_err("Error setting up the new device tree.\n"); ret = -EINVAL; goto out; } fdt_pack(fdt); kbuf.buffer = fdt; kbuf.bufsz = kbuf.memsz = fdt_totalsize(fdt); kbuf.buf_align = PAGE_SIZE; kbuf.mem = KEXEC_BUF_MEM_UNKNOWN; kbuf.top_down = true; ret = kexec_add_buffer(&kbuf); if (ret) { pr_err("Error add DTB kbuf ret=%d\n", ret); goto out_free_fdt; } /* Cache the fdt buffer address for memory cleanup */ image->arch.fdt = fdt; pr_notice("Loaded device tree at 0x%lx\n", kbuf.mem); goto out; out_free_fdt: kvfree(fdt); out: kfree(modified_cmdline); kexec_free_elf_info(&elf_info); return ret ? ERR_PTR(ret) : NULL; } #define RV_X(x, s, n) (((x) >> (s)) & ((1 << (n)) - 1)) #define RISCV_IMM_BITS 12 #define RISCV_IMM_REACH (1LL << RISCV_IMM_BITS) #define RISCV_CONST_HIGH_PART(x) \ (((x) + (RISCV_IMM_REACH >> 1)) & ~(RISCV_IMM_REACH - 1)) #define RISCV_CONST_LOW_PART(x) ((x) - RISCV_CONST_HIGH_PART(x)) #define ENCODE_ITYPE_IMM(x) \ (RV_X(x, 0, 12) << 20) #define ENCODE_BTYPE_IMM(x) \ ((RV_X(x, 1, 4) << 8) | (RV_X(x, 5, 6) << 25) | \ (RV_X(x, 11, 1) << 7) | (RV_X(x, 12, 1) << 31)) #define ENCODE_UTYPE_IMM(x) \ (RV_X(x, 12, 20) << 12) #define ENCODE_JTYPE_IMM(x) \ ((RV_X(x, 1, 10) << 21) | (RV_X(x, 11, 1) << 20) | \ (RV_X(x, 12, 8) << 12) | (RV_X(x, 20, 1) << 31)) #define ENCODE_CBTYPE_IMM(x) \ ((RV_X(x, 1, 2) << 3) | (RV_X(x, 3, 2) << 10) | (RV_X(x, 5, 1) << 2) | \ (RV_X(x, 6, 2) << 5) | (RV_X(x, 8, 1) << 12)) #define ENCODE_CJTYPE_IMM(x) \ ((RV_X(x, 1, 3) << 3) | (RV_X(x, 4, 1) << 11) | (RV_X(x, 5, 1) << 2) | \ (RV_X(x, 6, 1) << 7) | (RV_X(x, 7, 1) << 6) | (RV_X(x, 8, 2) << 9) | \ (RV_X(x, 10, 1) << 8) | (RV_X(x, 11, 1) << 12)) #define ENCODE_UJTYPE_IMM(x) \ (ENCODE_UTYPE_IMM(RISCV_CONST_HIGH_PART(x)) | \ (ENCODE_ITYPE_IMM(RISCV_CONST_LOW_PART(x)) << 32)) #define ENCODE_UITYPE_IMM(x) \ (ENCODE_UTYPE_IMM(x) | (ENCODE_ITYPE_IMM(x) << 32)) #define CLEAN_IMM(type, x) \ ((~ENCODE_##type##_IMM((uint64_t)(-1))) & (x)) int arch_kexec_apply_relocations_add(struct purgatory_info *pi, Elf_Shdr *section, const Elf_Shdr *relsec, const Elf_Shdr *symtab) { const char *strtab, *name, *shstrtab; const Elf_Shdr *sechdrs; Elf64_Rela *relas; int i, r_type; /* String & section header string table */ sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff; strtab = (char *)pi->ehdr + sechdrs[symtab->sh_link].sh_offset; shstrtab = (char *)pi->ehdr + sechdrs[pi->ehdr->e_shstrndx].sh_offset; relas = (void *)pi->ehdr + relsec->sh_offset; for (i = 0; i < relsec->sh_size / sizeof(*relas); i++) { const Elf_Sym *sym; /* symbol to relocate */ unsigned long addr; /* final location after relocation */ unsigned long val; /* relocated symbol value */ unsigned long sec_base; /* relocated symbol value */ void *loc; /* tmp location to modify */ sym = (void *)pi->ehdr + symtab->sh_offset; sym += ELF64_R_SYM(relas[i].r_info); if (sym->st_name) name = strtab + sym->st_name; else name = shstrtab + sechdrs[sym->st_shndx].sh_name; loc = pi->purgatory_buf; loc += section->sh_offset; loc += relas[i].r_offset; if (sym->st_shndx == SHN_ABS) sec_base = 0; else if (sym->st_shndx >= pi->ehdr->e_shnum) { pr_err("Invalid section %d for symbol %s\n", sym->st_shndx, name); return -ENOEXEC; } else sec_base = pi->sechdrs[sym->st_shndx].sh_addr; val = sym->st_value; val += sec_base; val += relas[i].r_addend; addr = section->sh_addr + relas[i].r_offset; r_type = ELF64_R_TYPE(relas[i].r_info); switch (r_type) { case R_RISCV_BRANCH: *(u32 *)loc = CLEAN_IMM(BTYPE, *(u32 *)loc) | ENCODE_BTYPE_IMM(val - addr); break; case R_RISCV_JAL: *(u32 *)loc = CLEAN_IMM(JTYPE, *(u32 *)loc) | ENCODE_JTYPE_IMM(val - addr); break; /* * With no R_RISCV_PCREL_LO12_S, R_RISCV_PCREL_LO12_I * sym is expected to be next to R_RISCV_PCREL_HI20 * in purgatory relsec. Handle it like R_RISCV_CALL * sym, instead of searching the whole relsec. */ case R_RISCV_PCREL_HI20: case R_RISCV_CALL: *(u64 *)loc = CLEAN_IMM(UITYPE, *(u64 *)loc) | ENCODE_UJTYPE_IMM(val - addr); break; case R_RISCV_RVC_BRANCH: *(u32 *)loc = CLEAN_IMM(CBTYPE, *(u32 *)loc) | ENCODE_CBTYPE_IMM(val - addr); break; case R_RISCV_RVC_JUMP: *(u32 *)loc = CLEAN_IMM(CJTYPE, *(u32 *)loc) | ENCODE_CJTYPE_IMM(val - addr); break; case R_RISCV_ADD32: *(u32 *)loc += val; break; case R_RISCV_SUB32: *(u32 *)loc -= val; break; /* It has been applied by R_RISCV_PCREL_HI20 sym */ case R_RISCV_PCREL_LO12_I: case R_RISCV_ALIGN: case R_RISCV_RELAX: break; default: pr_err("Unknown rela relocation: %d\n", r_type); return -ENOEXEC; } } return 0; } const struct kexec_file_ops elf_kexec_ops = { .probe = kexec_elf_probe, .load = elf_kexec_load, };