// SPDX-License-Identifier: GPL-2.0 /* * ioport.c: Simple io mapping allocator. * * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu) * Copyright (C) 1995 Miguel de Icaza (miguel@nuclecu.unam.mx) * * 1996: sparc_free_io, 1999: ioremap()/iounmap() by Pete Zaitcev. * * 2000/01/29 * zait: as long as pci_alloc_consistent produces something addressable, * things are ok. * rth: no, it is relevant, because get_free_pages returns you a * pointer into the big page mapping * zait: so what? * zait: remap_it_my_way(virt_to_phys(get_free_page())) * Hmm * Suppose I did this remap_it_my_way(virt_to_phys(get_free_page())). * So far so good. * Now, driver calls pci_free_consistent(with result of * remap_it_my_way()). * How do you find the address to pass to free_pages()? * zait: walk the page tables? It's only two or three level after all. * zait: you have to walk them anyway to remove the mapping. * Hmm * Sounds reasonable */ #include #include #include #include #include #include #include #include #include /* struct pci_dev */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* This function must make sure that caches and memory are coherent after DMA * On LEON systems without cache snooping it flushes the entire D-CACHE. */ static inline void dma_make_coherent(unsigned long pa, unsigned long len) { if (sparc_cpu_model == sparc_leon) { if (!sparc_leon3_snooping_enabled()) leon_flush_dcache_all(); } } static void __iomem *_sparc_ioremap(struct resource *res, u32 bus, u32 pa, int sz); static void __iomem *_sparc_alloc_io(unsigned int busno, unsigned long phys, unsigned long size, char *name); static void _sparc_free_io(struct resource *res); static void register_proc_sparc_ioport(void); /* This points to the next to use virtual memory for DVMA mappings */ static struct resource _sparc_dvma = { .name = "sparc_dvma", .start = DVMA_VADDR, .end = DVMA_END - 1 }; /* This points to the start of I/O mappings, cluable from outside. */ /*ext*/ struct resource sparc_iomap = { .name = "sparc_iomap", .start = IOBASE_VADDR, .end = IOBASE_END - 1 }; /* * Our mini-allocator... * Boy this is gross! We need it because we must map I/O for * timers and interrupt controller before the kmalloc is available. */ #define XNMLN 15 #define XNRES 10 /* SS-10 uses 8 */ struct xresource { struct resource xres; /* Must be first */ int xflag; /* 1 == used */ char xname[XNMLN+1]; }; static struct xresource xresv[XNRES]; static struct xresource *xres_alloc(void) { struct xresource *xrp; int n; xrp = xresv; for (n = 0; n < XNRES; n++) { if (xrp->xflag == 0) { xrp->xflag = 1; return xrp; } xrp++; } return NULL; } static void xres_free(struct xresource *xrp) { xrp->xflag = 0; } /* * These are typically used in PCI drivers * which are trying to be cross-platform. * * Bus type is always zero on IIep. */ void __iomem *ioremap(phys_addr_t offset, size_t size) { char name[14]; sprintf(name, "phys_%08x", (u32)offset); return _sparc_alloc_io(0, (unsigned long)offset, size, name); } EXPORT_SYMBOL(ioremap); /* * Complementary to ioremap(). */ void iounmap(volatile void __iomem *virtual) { unsigned long vaddr = (unsigned long) virtual & PAGE_MASK; struct resource *res; /* * XXX Too slow. Can have 8192 DVMA pages on sun4m in the worst case. * This probably warrants some sort of hashing. */ if ((res = lookup_resource(&sparc_iomap, vaddr)) == NULL) { printk("free_io/iounmap: cannot free %lx\n", vaddr); return; } _sparc_free_io(res); if ((char *)res >= (char*)xresv && (char *)res < (char *)&xresv[XNRES]) { xres_free((struct xresource *)res); } else { kfree(res); } } EXPORT_SYMBOL(iounmap); void __iomem *of_ioremap(struct resource *res, unsigned long offset, unsigned long size, char *name) { return _sparc_alloc_io(res->flags & 0xF, res->start + offset, size, name); } EXPORT_SYMBOL(of_ioremap); void of_iounmap(struct resource *res, void __iomem *base, unsigned long size) { iounmap(base); } EXPORT_SYMBOL(of_iounmap); /* * Meat of mapping */ static void __iomem *_sparc_alloc_io(unsigned int busno, unsigned long phys, unsigned long size, char *name) { static int printed_full; struct xresource *xres; struct resource *res; char *tack; int tlen; void __iomem *va; /* P3 diag */ if (name == NULL) name = "???"; if ((xres = xres_alloc()) != NULL) { tack = xres->xname; res = &xres->xres; } else { if (!printed_full) { printk("ioremap: done with statics, switching to malloc\n"); printed_full = 1; } tlen = strlen(name); tack = kmalloc(sizeof (struct resource) + tlen + 1, GFP_KERNEL); if (tack == NULL) return NULL; memset(tack, 0, sizeof(struct resource)); res = (struct resource *) tack; tack += sizeof (struct resource); } strlcpy(tack, name, XNMLN+1); res->name = tack; va = _sparc_ioremap(res, busno, phys, size); /* printk("ioremap(0x%x:%08lx[0x%lx])=%p\n", busno, phys, size, va); */ /* P3 diag */ return va; } /* */ static void __iomem * _sparc_ioremap(struct resource *res, u32 bus, u32 pa, int sz) { unsigned long offset = ((unsigned long) pa) & (~PAGE_MASK); if (allocate_resource(&sparc_iomap, res, (offset + sz + PAGE_SIZE-1) & PAGE_MASK, sparc_iomap.start, sparc_iomap.end, PAGE_SIZE, NULL, NULL) != 0) { /* Usually we cannot see printks in this case. */ prom_printf("alloc_io_res(%s): cannot occupy\n", (res->name != NULL)? res->name: "???"); prom_halt(); } pa &= PAGE_MASK; srmmu_mapiorange(bus, pa, res->start, resource_size(res)); return (void __iomem *)(unsigned long)(res->start + offset); } /* * Complementary to _sparc_ioremap(). */ static void _sparc_free_io(struct resource *res) { unsigned long plen; plen = resource_size(res); BUG_ON((plen & (PAGE_SIZE-1)) != 0); srmmu_unmapiorange(res->start, plen); release_resource(res); } unsigned long sparc_dma_alloc_resource(struct device *dev, size_t len) { struct resource *res; res = kzalloc(sizeof(*res), GFP_KERNEL); if (!res) return 0; res->name = dev->of_node->full_name; if (allocate_resource(&_sparc_dvma, res, len, _sparc_dvma.start, _sparc_dvma.end, PAGE_SIZE, NULL, NULL) != 0) { printk("%s: cannot occupy 0x%zx", __func__, len); kfree(res); return 0; } return res->start; } bool sparc_dma_free_resource(void *cpu_addr, size_t size) { unsigned long addr = (unsigned long)cpu_addr; struct resource *res; res = lookup_resource(&_sparc_dvma, addr); if (!res) { printk("%s: cannot free %p\n", __func__, cpu_addr); return false; } if ((addr & (PAGE_SIZE - 1)) != 0) { printk("%s: unaligned va %p\n", __func__, cpu_addr); return false; } size = PAGE_ALIGN(size); if (resource_size(res) != size) { printk("%s: region 0x%lx asked 0x%zx\n", __func__, (long)resource_size(res), size); return false; } release_resource(res); kfree(res); return true; } #ifdef CONFIG_SBUS void sbus_set_sbus64(struct device *dev, int x) { printk("sbus_set_sbus64: unsupported\n"); } EXPORT_SYMBOL(sbus_set_sbus64); static int __init sparc_register_ioport(void) { register_proc_sparc_ioport(); return 0; } arch_initcall(sparc_register_ioport); #endif /* CONFIG_SBUS */ /* Allocate and map kernel buffer using consistent mode DMA for a device. * hwdev should be valid struct pci_dev pointer for PCI devices. */ void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs) { unsigned long addr; void *va; if (!size || size > 256 * 1024) /* __get_free_pages() limit */ return NULL; size = PAGE_ALIGN(size); va = (void *) __get_free_pages(gfp | __GFP_ZERO, get_order(size)); if (!va) { printk("%s: no %zd pages\n", __func__, size >> PAGE_SHIFT); return NULL; } addr = sparc_dma_alloc_resource(dev, size); if (!addr) goto err_nomem; srmmu_mapiorange(0, virt_to_phys(va), addr, size); *dma_handle = virt_to_phys(va); return (void *)addr; err_nomem: free_pages((unsigned long)va, get_order(size)); return NULL; } /* Free and unmap a consistent DMA buffer. * cpu_addr is what was returned arch_dma_alloc, size must be the same as what * was passed into arch_dma_alloc, and likewise dma_addr must be the same as * what *dma_ndler was set to. * * References to the memory and mappings associated with cpu_addr/dma_addr * past this call are illegal. */ void arch_dma_free(struct device *dev, size_t size, void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs) { if (!sparc_dma_free_resource(cpu_addr, PAGE_ALIGN(size))) return; dma_make_coherent(dma_addr, size); srmmu_unmapiorange((unsigned long)cpu_addr, size); free_pages((unsigned long)phys_to_virt(dma_addr), get_order(size)); } /* IIep is write-through, not flushing on cpu to device transfer. */ void arch_sync_dma_for_cpu(struct device *dev, phys_addr_t paddr, size_t size, enum dma_data_direction dir) { if (dir != PCI_DMA_TODEVICE) dma_make_coherent(paddr, PAGE_ALIGN(size)); } const struct dma_map_ops *dma_ops; EXPORT_SYMBOL(dma_ops); #ifdef CONFIG_PROC_FS static int sparc_io_proc_show(struct seq_file *m, void *v) { struct resource *root = m->private, *r; const char *nm; for (r = root->child; r != NULL; r = r->sibling) { if ((nm = r->name) == NULL) nm = "???"; seq_printf(m, "%016llx-%016llx: %s\n", (unsigned long long)r->start, (unsigned long long)r->end, nm); } return 0; } #endif /* CONFIG_PROC_FS */ static void register_proc_sparc_ioport(void) { #ifdef CONFIG_PROC_FS proc_create_single_data("io_map", 0, NULL, sparc_io_proc_show, &sparc_iomap); proc_create_single_data("dvma_map", 0, NULL, sparc_io_proc_show, &_sparc_dvma); #endif }