/* * Copyright 2010 Tilera Corporation. All Rights Reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, version 2. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or * NON INFRINGEMENT. See the GNU General Public License for * more details. */ /** * @file drv_xgbe_intf.h * Interface to the hypervisor XGBE driver. */ #ifndef __DRV_XGBE_INTF_H__ #define __DRV_XGBE_INTF_H__ /** * An object for forwarding VAs and PAs to the hypervisor. * @ingroup types * * This allows the supervisor to specify a number of areas of memory to * store packet buffers. */ typedef struct { /** The physical address of the memory. */ HV_PhysAddr pa; /** Page table entry for the memory. This is only used to derive the * memory's caching mode; the PA bits are ignored. */ HV_PTE pte; /** The virtual address of the memory. */ HV_VirtAddr va; /** Size (in bytes) of the memory area. */ int size; } netio_ipp_address_t; /** The various pread/pwrite offsets into the hypervisor-level driver. * @ingroup types */ typedef enum { /** Inform the Linux driver of the address of the NetIO arena memory. * This offset is actually only used to convey information from netio * to the Linux driver; it never makes it from there to the hypervisor. * Write-only; takes a uint32_t specifying the VA address. */ NETIO_FIXED_ADDR = 0x5000000000000000ULL, /** Inform the Linux driver of the size of the NetIO arena memory. * This offset is actually only used to convey information from netio * to the Linux driver; it never makes it from there to the hypervisor. * Write-only; takes a uint32_t specifying the VA size. */ NETIO_FIXED_SIZE = 0x5100000000000000ULL, /** Register current tile with IPP. Write then read: write, takes a * netio_input_config_t, read returns a pointer to a netio_queue_impl_t. */ NETIO_IPP_INPUT_REGISTER_OFF = 0x6000000000000000ULL, /** Unregister current tile from IPP. Write-only, takes a dummy argument. */ NETIO_IPP_INPUT_UNREGISTER_OFF = 0x6100000000000000ULL, /** Start packets flowing. Write-only, takes a dummy argument. */ NETIO_IPP_INPUT_INIT_OFF = 0x6200000000000000ULL, /** Stop packets flowing. Write-only, takes a dummy argument. */ NETIO_IPP_INPUT_UNINIT_OFF = 0x6300000000000000ULL, /** Configure group (typically we group on VLAN). Write-only: takes an * array of netio_group_t's, low 24 bits of the offset is the base group * number times the size of a netio_group_t. */ NETIO_IPP_INPUT_GROUP_CFG_OFF = 0x6400000000000000ULL, /** Configure bucket. Write-only: takes an array of netio_bucket_t's, low * 24 bits of the offset is the base bucket number times the size of a * netio_bucket_t. */ NETIO_IPP_INPUT_BUCKET_CFG_OFF = 0x6500000000000000ULL, /** Get/set a parameter. Read or write: read or write data is the parameter * value, low 32 bits of the offset is a __netio_getset_offset_t. */ NETIO_IPP_PARAM_OFF = 0x6600000000000000ULL, /** Get fast I/O index. Read-only; returns a 4-byte base index value. */ NETIO_IPP_GET_FASTIO_OFF = 0x6700000000000000ULL, /** Configure hijack IP address. Packets with this IPv4 dest address * go to bucket NETIO_NUM_BUCKETS - 1. Write-only: takes an IP address * in some standard form. FIXME: Define the form! */ NETIO_IPP_INPUT_HIJACK_CFG_OFF = 0x6800000000000000ULL, /** * Offsets beyond this point are reserved for the supervisor (although that * enforcement must be done by the supervisor driver itself). */ NETIO_IPP_USER_MAX_OFF = 0x6FFFFFFFFFFFFFFFULL, /** Register I/O memory. Write-only, takes a netio_ipp_address_t. */ NETIO_IPP_IOMEM_REGISTER_OFF = 0x7000000000000000ULL, /** Unregister I/O memory. Write-only, takes a netio_ipp_address_t. */ NETIO_IPP_IOMEM_UNREGISTER_OFF = 0x7100000000000000ULL, /* Offsets greater than 0x7FFFFFFF can't be used directly from Linux * userspace code due to limitations in the pread/pwrite syscalls. */ /** Drain LIPP buffers. */ NETIO_IPP_DRAIN_OFF = 0xFA00000000000000ULL, /** Supply a netio_ipp_address_t to be used as shared memory for the * LEPP command queue. */ NETIO_EPP_SHM_OFF = 0xFB00000000000000ULL, /* 0xFC... is currently unused. */ /** Stop IPP/EPP tiles. Write-only, takes a dummy argument. */ NETIO_IPP_STOP_SHIM_OFF = 0xFD00000000000000ULL, /** Start IPP/EPP tiles. Write-only, takes a dummy argument. */ NETIO_IPP_START_SHIM_OFF = 0xFE00000000000000ULL, /** Supply packet arena. Write-only, takes an array of * netio_ipp_address_t values. */ NETIO_IPP_ADDRESS_OFF = 0xFF00000000000000ULL, } netio_hv_offset_t; /** Extract the base offset from an offset */ #define NETIO_BASE_OFFSET(off) ((off) & 0xFF00000000000000ULL) /** Extract the local offset from an offset */ #define NETIO_LOCAL_OFFSET(off) ((off) & 0x00FFFFFFFFFFFFFFULL) /** * Get/set offset. */ typedef union { struct { uint64_t addr:48; /**< Class-specific address */ unsigned int class:8; /**< Class (e.g., NETIO_PARAM) */ unsigned int opcode:8; /**< High 8 bits of NETIO_IPP_PARAM_OFF */ } bits; /**< Bitfields */ uint64_t word; /**< Aggregated value to use as the offset */ } __netio_getset_offset_t; /** * Fast I/O index offsets (must be contiguous). */ typedef enum { NETIO_FASTIO_ALLOCATE = 0, /**< Get empty packet buffer */ NETIO_FASTIO_FREE_BUFFER = 1, /**< Give buffer back to IPP */ NETIO_FASTIO_RETURN_CREDITS = 2, /**< Give credits to IPP */ NETIO_FASTIO_SEND_PKT_NOCK = 3, /**< Send a packet, no checksum */ NETIO_FASTIO_SEND_PKT_CK = 4, /**< Send a packet, with checksum */ NETIO_FASTIO_SEND_PKT_VEC = 5, /**< Send a vector of packets */ NETIO_FASTIO_SENDV_PKT = 6, /**< Sendv one packet */ NETIO_FASTIO_NUM_INDEX = 7, /**< Total number of fast I/O indices */ } netio_fastio_index_t; /** 3-word return type for Fast I/O call. */ typedef struct { int err; /**< Error code. */ uint32_t val0; /**< Value. Meaning depends upon the specific call. */ uint32_t val1; /**< Value. Meaning depends upon the specific call. */ } netio_fastio_rv3_t; /** 0-argument fast I/O call */ int __netio_fastio0(uint32_t fastio_index); /** 1-argument fast I/O call */ int __netio_fastio1(uint32_t fastio_index, uint32_t arg0); /** 3-argument fast I/O call, 2-word return value */ netio_fastio_rv3_t __netio_fastio3_rv3(uint32_t fastio_index, uint32_t arg0, uint32_t arg1, uint32_t arg2); /** 4-argument fast I/O call */ int __netio_fastio4(uint32_t fastio_index, uint32_t arg0, uint32_t arg1, uint32_t arg2, uint32_t arg3); /** 6-argument fast I/O call */ int __netio_fastio6(uint32_t fastio_index, uint32_t arg0, uint32_t arg1, uint32_t arg2, uint32_t arg3, uint32_t arg4, uint32_t arg5); /** 9-argument fast I/O call */ int __netio_fastio9(uint32_t fastio_index, uint32_t arg0, uint32_t arg1, uint32_t arg2, uint32_t arg3, uint32_t arg4, uint32_t arg5, uint32_t arg6, uint32_t arg7, uint32_t arg8); /** Allocate an empty packet. * @param fastio_index Fast I/O index. * @param size Size of the packet to allocate. */ #define __netio_fastio_allocate(fastio_index, size) \ __netio_fastio1((fastio_index) + NETIO_FASTIO_ALLOCATE, size) /** Free a buffer. * @param fastio_index Fast I/O index. * @param handle Handle for the packet to free. */ #define __netio_fastio_free_buffer(fastio_index, handle) \ __netio_fastio1((fastio_index) + NETIO_FASTIO_FREE_BUFFER, handle) /** Increment our receive credits. * @param fastio_index Fast I/O index. * @param credits Number of credits to add. */ #define __netio_fastio_return_credits(fastio_index, credits) \ __netio_fastio1((fastio_index) + NETIO_FASTIO_RETURN_CREDITS, credits) /** Send packet, no checksum. * @param fastio_index Fast I/O index. * @param ackflag Nonzero if we want an ack. * @param size Size of the packet. * @param va Virtual address of start of packet. * @param handle Packet handle. */ #define __netio_fastio_send_pkt_nock(fastio_index, ackflag, size, va, handle) \ __netio_fastio4((fastio_index) + NETIO_FASTIO_SEND_PKT_NOCK, ackflag, \ size, va, handle) /** Send packet, calculate checksum. * @param fastio_index Fast I/O index. * @param ackflag Nonzero if we want an ack. * @param size Size of the packet. * @param va Virtual address of start of packet. * @param handle Packet handle. * @param csum0 Shim checksum header. * @param csum1 Checksum seed. */ #define __netio_fastio_send_pkt_ck(fastio_index, ackflag, size, va, handle, \ csum0, csum1) \ __netio_fastio6((fastio_index) + NETIO_FASTIO_SEND_PKT_CK, ackflag, \ size, va, handle, csum0, csum1) /** Format for the "csum0" argument to the __netio_fastio_send routines * and LEPP. Note that this is currently exactly identical to the * ShimProtocolOffloadHeader. */ typedef union { struct { unsigned int start_byte:7; /**< The first byte to be checksummed */ unsigned int count:14; /**< Number of bytes to be checksummed. */ unsigned int destination_byte:7; /**< The byte to write the checksum to. */ unsigned int reserved:4; /**< Reserved. */ } bits; /**< Decomposed method of access. */ unsigned int word; /**< To send out the IDN. */ } __netio_checksum_header_t; /** Sendv packet with 1 or 2 segments. * @param fastio_index Fast I/O index. * @param flags Ack/csum/notify flags in low 3 bits; number of segments minus * 1 in next 2 bits; expected checksum in high 16 bits. * @param confno Confirmation number to request, if notify flag set. * @param csum0 Checksum descriptor; if zero, no checksum. * @param va_F Virtual address of first segment. * @param va_L Virtual address of last segment, if 2 segments. * @param len_F_L Length of first segment in low 16 bits; length of last * segment, if 2 segments, in high 16 bits. */ #define __netio_fastio_sendv_pkt_1_2(fastio_index, flags, confno, csum0, \ va_F, va_L, len_F_L) \ __netio_fastio6((fastio_index) + NETIO_FASTIO_SENDV_PKT, flags, confno, \ csum0, va_F, va_L, len_F_L) /** Send packet on PCIe interface. * @param fastio_index Fast I/O index. * @param flags Ack/csum/notify flags in low 3 bits. * @param confno Confirmation number to request, if notify flag set. * @param csum0 Checksum descriptor; Hard wired 0, not needed for PCIe. * @param va_F Virtual address of the packet buffer. * @param va_L Virtual address of last segment, if 2 segments. Hard wired 0. * @param len_F_L Length of the packet buffer in low 16 bits. */ #define __netio_fastio_send_pcie_pkt(fastio_index, flags, confno, csum0, \ va_F, va_L, len_F_L) \ __netio_fastio6((fastio_index) + PCIE_FASTIO_SENDV_PKT, flags, confno, \ csum0, va_F, va_L, len_F_L) /** Sendv packet with 3 or 4 segments. * @param fastio_index Fast I/O index. * @param flags Ack/csum/notify flags in low 3 bits; number of segments minus * 1 in next 2 bits; expected checksum in high 16 bits. * @param confno Confirmation number to request, if notify flag set. * @param csum0 Checksum descriptor; if zero, no checksum. * @param va_F Virtual address of first segment. * @param va_L Virtual address of last segment (third segment if 3 segments, * fourth segment if 4 segments). * @param len_F_L Length of first segment in low 16 bits; length of last * segment in high 16 bits. * @param va_M0 Virtual address of "middle 0" segment; this segment is sent * second when there are three segments, and third if there are four. * @param va_M1 Virtual address of "middle 1" segment; this segment is sent * second when there are four segments. * @param len_M0_M1 Length of middle 0 segment in low 16 bits; length of middle * 1 segment, if 4 segments, in high 16 bits. */ #define __netio_fastio_sendv_pkt_3_4(fastio_index, flags, confno, csum0, va_F, \ va_L, len_F_L, va_M0, va_M1, len_M0_M1) \ __netio_fastio9((fastio_index) + NETIO_FASTIO_SENDV_PKT, flags, confno, \ csum0, va_F, va_L, len_F_L, va_M0, va_M1, len_M0_M1) /** Send vector of packets. * @param fastio_index Fast I/O index. * @param seqno Number of packets transmitted so far on this interface; * used to decide which packets should be acknowledged. * @param nentries Number of entries in vector. * @param va Virtual address of start of vector entry array. * @return 3-word netio_fastio_rv3_t structure. The structure's err member * is an error code, or zero if no error. The val0 member is the * updated value of seqno; it has been incremented by 1 for each * packet sent. That increment may be less than nentries if an * error occurred, or if some of the entries in the vector contain * handles equal to NETIO_PKT_HANDLE_NONE. The val1 member is the * updated value of nentries; it has been decremented by 1 for each * vector entry processed. Again, that decrement may be less than * nentries (leaving the returned value positive) if an error * occurred. */ #define __netio_fastio_send_pkt_vec(fastio_index, seqno, nentries, va) \ __netio_fastio3_rv3((fastio_index) + NETIO_FASTIO_SEND_PKT_VEC, seqno, \ nentries, va) /** An egress DMA command for LEPP. */ typedef struct { /** Is this a TSO transfer? * * NOTE: This field is always 0, to distinguish it from * lepp_tso_cmd_t. It must come first! */ uint8_t tso : 1; /** Unused padding bits. */ uint8_t _unused : 3; /** Should this packet be sent directly from caches instead of DRAM, * using hash-for-home to locate the packet data? */ uint8_t hash_for_home : 1; /** Should we compute a checksum? */ uint8_t compute_checksum : 1; /** Is this the final buffer for this packet? * * A single packet can be split over several input buffers (a "gather" * operation). This flag indicates that this is the last buffer * in a packet. */ uint8_t end_of_packet : 1; /** Should LEPP advance 'comp_busy' when this DMA is fully finished? */ uint8_t send_completion : 1; /** High bits of Client Physical Address of the start of the buffer * to be egressed. * * NOTE: Only 6 bits are actually needed here, as CPAs are * currently 38 bits. So two bits could be scavenged from this. */ uint8_t cpa_hi; /** The number of bytes to be egressed. */ uint16_t length; /** Low 32 bits of Client Physical Address of the start of the buffer * to be egressed. */ uint32_t cpa_lo; /** Checksum information (only used if 'compute_checksum'). */ __netio_checksum_header_t checksum_data; } lepp_cmd_t; /** A chunk of physical memory for a TSO egress. */ typedef struct { /** The low bits of the CPA. */ uint32_t cpa_lo; /** The high bits of the CPA. */ uint16_t cpa_hi : 15; /** Should this packet be sent directly from caches instead of DRAM, * using hash-for-home to locate the packet data? */ uint16_t hash_for_home : 1; /** The length in bytes. */ uint16_t length; } lepp_frag_t; /** An LEPP command that handles TSO. */ typedef struct { /** Is this a TSO transfer? * * NOTE: This field is always 1, to distinguish it from * lepp_cmd_t. It must come first! */ uint8_t tso : 1; /** Unused padding bits. */ uint8_t _unused : 7; /** Size of the header[] array in bytes. It must be in the range * [40, 127], which are the smallest header for a TCP packet over * Ethernet and the maximum possible prepend size supported by * hardware, respectively. Note that the array storage must be * padded out to a multiple of four bytes so that the following * LEPP command is aligned properly. */ uint8_t header_size; /** Byte offset of the IP header in header[]. */ uint8_t ip_offset; /** Byte offset of the TCP header in header[]. */ uint8_t tcp_offset; /** The number of bytes to use for the payload of each packet, * except of course the last one, which may not have enough bytes. * This means that each Ethernet packet except the last will have a * size of header_size + payload_size. */ uint16_t payload_size; /** The length of the 'frags' array that follows this struct. */ uint16_t num_frags; /** The actual frags. */ lepp_frag_t frags[0 /* Variable-sized; num_frags entries. */]; /* * The packet header template logically follows frags[], * but you can't declare that in C. * * uint32_t header[header_size_in_words_rounded_up]; */ } lepp_tso_cmd_t; /** An LEPP completion ring entry. */ typedef void* lepp_comp_t; /** Maximum number of frags for one TSO command. This is adapted from * linux's "MAX_SKB_FRAGS", and presumably over-estimates by one, for * our page size of exactly 65536. We add one for a "body" fragment. */ #define LEPP_MAX_FRAGS (65536 / HV_DEFAULT_PAGE_SIZE_SMALL + 2 + 1) /** Total number of bytes needed for an lepp_tso_cmd_t. */ #define LEPP_TSO_CMD_SIZE(num_frags, header_size) \ (sizeof(lepp_tso_cmd_t) + \ (num_frags) * sizeof(lepp_frag_t) + \ (((header_size) + 3) & -4)) /** The size of the lepp "cmd" queue. */ #define LEPP_CMD_QUEUE_BYTES \ (((CHIP_L2_CACHE_SIZE() - 2 * CHIP_L2_LINE_SIZE()) / \ (sizeof(lepp_cmd_t) + sizeof(lepp_comp_t))) * sizeof(lepp_cmd_t)) /** The largest possible command that can go in lepp_queue_t::cmds[]. */ #define LEPP_MAX_CMD_SIZE LEPP_TSO_CMD_SIZE(LEPP_MAX_FRAGS, 128) /** The largest possible value of lepp_queue_t::cmd_{head, tail} (inclusive). */ #define LEPP_CMD_LIMIT \ (LEPP_CMD_QUEUE_BYTES - LEPP_MAX_CMD_SIZE) /** The maximum number of completions in an LEPP queue. */ #define LEPP_COMP_QUEUE_SIZE \ ((LEPP_CMD_LIMIT + sizeof(lepp_cmd_t) - 1) / sizeof(lepp_cmd_t)) /** Increment an index modulo the queue size. */ #define LEPP_QINC(var) \ (var = __insn_mnz(var - (LEPP_COMP_QUEUE_SIZE - 1), var + 1)) /** A queue used to convey egress commands from the client to LEPP. */ typedef struct { /** Index of first completion not yet processed by user code. * If this is equal to comp_busy, there are no such completions. * * NOTE: This is only read/written by the user. */ unsigned int comp_head; /** Index of first completion record not yet completed. * If this is equal to comp_tail, there are no such completions. * This index gets advanced (modulo LEPP_QUEUE_SIZE) whenever * a command with the 'completion' bit set is finished. * * NOTE: This is only written by LEPP, only read by the user. */ volatile unsigned int comp_busy; /** Index of the first empty slot in the completion ring. * Entries from this up to but not including comp_head (in ring order) * can be filled in with completion data. * * NOTE: This is only read/written by the user. */ unsigned int comp_tail; /** Byte index of first command enqueued for LEPP but not yet processed. * * This is always divisible by sizeof(void*) and always <= LEPP_CMD_LIMIT. * * NOTE: LEPP advances this counter as soon as it no longer needs * the cmds[] storage for this entry, but the transfer is not actually * complete (i.e. the buffer pointed to by the command is no longer * needed) until comp_busy advances. * * If this is equal to cmd_tail, the ring is empty. * * NOTE: This is only written by LEPP, only read by the user. */ volatile unsigned int cmd_head; /** Byte index of first empty slot in the command ring. This field can * be incremented up to but not equal to cmd_head (because that would * mean the ring is empty). * * This is always divisible by sizeof(void*) and always <= LEPP_CMD_LIMIT. * * NOTE: This is read/written by the user, only read by LEPP. */ volatile unsigned int cmd_tail; /** A ring of variable-sized egress DMA commands. * * NOTE: Only written by the user, only read by LEPP. */ char cmds[LEPP_CMD_QUEUE_BYTES] __attribute__((aligned(CHIP_L2_LINE_SIZE()))); /** A ring of user completion data. * NOTE: Only read/written by the user. */ lepp_comp_t comps[LEPP_COMP_QUEUE_SIZE] __attribute__((aligned(CHIP_L2_LINE_SIZE()))); } lepp_queue_t; /** An internal helper function for determining the number of entries * available in a ring buffer, given that there is one sentinel. */ static inline unsigned int _lepp_num_free_slots(unsigned int head, unsigned int tail) { /* * One entry is reserved for use as a sentinel, to distinguish * "empty" from "full". So we compute * (head - tail - 1) % LEPP_QUEUE_SIZE, but without using a slow % operation. */ return (head - tail - 1) + ((head <= tail) ? LEPP_COMP_QUEUE_SIZE : 0); } /** Returns how many new comp entries can be enqueued. */ static inline unsigned int lepp_num_free_comp_slots(const lepp_queue_t* q) { return _lepp_num_free_slots(q->comp_head, q->comp_tail); } static inline int lepp_qsub(int v1, int v2) { int delta = v1 - v2; return delta + ((delta >> 31) & LEPP_COMP_QUEUE_SIZE); } /** FIXME: Check this from linux, via a new "pwrite()" call. */ #define LIPP_VERSION 1 /** We use exactly two bytes of alignment padding. */ #define LIPP_PACKET_PADDING 2 /** The minimum size of a "small" buffer (including the padding). */ #define LIPP_SMALL_PACKET_SIZE 128 /* * NOTE: The following two values should total to less than around * 13582, to keep the total size used for "lipp_state_t" below 64K. */ /** The maximum number of "small" buffers. * This is enough for 53 network cpus with 128 credits. Note that * if these are exhausted, we will fall back to using large buffers. */ #define LIPP_SMALL_BUFFERS 6785 /** The maximum number of "large" buffers. * This is enough for 53 network cpus with 128 credits. */ #define LIPP_LARGE_BUFFERS 6785 #endif /* __DRV_XGBE_INTF_H__ */