/* * Glue Code for 3-way parallel assembler optimized version of Twofish * * Copyright (c) 2011 Jussi Kivilinna * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 * USA * */ #include #include #include #include #include #include #include #include #include #include #include #include EXPORT_SYMBOL_GPL(__twofish_enc_blk_3way); EXPORT_SYMBOL_GPL(twofish_dec_blk_3way); static inline void twofish_enc_blk_3way(struct twofish_ctx *ctx, u8 *dst, const u8 *src) { __twofish_enc_blk_3way(ctx, dst, src, false); } static inline void twofish_enc_blk_xor_3way(struct twofish_ctx *ctx, u8 *dst, const u8 *src) { __twofish_enc_blk_3way(ctx, dst, src, true); } void twofish_dec_blk_cbc_3way(void *ctx, u128 *dst, const u128 *src) { u128 ivs[2]; ivs[0] = src[0]; ivs[1] = src[1]; twofish_dec_blk_3way(ctx, (u8 *)dst, (u8 *)src); u128_xor(&dst[1], &dst[1], &ivs[0]); u128_xor(&dst[2], &dst[2], &ivs[1]); } EXPORT_SYMBOL_GPL(twofish_dec_blk_cbc_3way); void twofish_enc_blk_ctr(void *ctx, u128 *dst, const u128 *src, le128 *iv) { be128 ctrblk; if (dst != src) *dst = *src; le128_to_be128(&ctrblk, iv); le128_inc(iv); twofish_enc_blk(ctx, (u8 *)&ctrblk, (u8 *)&ctrblk); u128_xor(dst, dst, (u128 *)&ctrblk); } EXPORT_SYMBOL_GPL(twofish_enc_blk_ctr); void twofish_enc_blk_ctr_3way(void *ctx, u128 *dst, const u128 *src, le128 *iv) { be128 ctrblks[3]; if (dst != src) { dst[0] = src[0]; dst[1] = src[1]; dst[2] = src[2]; } le128_to_be128(&ctrblks[0], iv); le128_inc(iv); le128_to_be128(&ctrblks[1], iv); le128_inc(iv); le128_to_be128(&ctrblks[2], iv); le128_inc(iv); twofish_enc_blk_xor_3way(ctx, (u8 *)dst, (u8 *)ctrblks); } EXPORT_SYMBOL_GPL(twofish_enc_blk_ctr_3way); static const struct common_glue_ctx twofish_enc = { .num_funcs = 2, .fpu_blocks_limit = -1, .funcs = { { .num_blocks = 3, .fn_u = { .ecb = GLUE_FUNC_CAST(twofish_enc_blk_3way) } }, { .num_blocks = 1, .fn_u = { .ecb = GLUE_FUNC_CAST(twofish_enc_blk) } } } }; static const struct common_glue_ctx twofish_ctr = { .num_funcs = 2, .fpu_blocks_limit = -1, .funcs = { { .num_blocks = 3, .fn_u = { .ecb = GLUE_FUNC_CAST(twofish_enc_blk_ctr_3way) } }, { .num_blocks = 1, .fn_u = { .ecb = GLUE_FUNC_CAST(twofish_enc_blk_ctr) } } } }; static const struct common_glue_ctx twofish_dec = { .num_funcs = 2, .fpu_blocks_limit = -1, .funcs = { { .num_blocks = 3, .fn_u = { .ecb = GLUE_FUNC_CAST(twofish_dec_blk_3way) } }, { .num_blocks = 1, .fn_u = { .ecb = GLUE_FUNC_CAST(twofish_dec_blk) } } } }; static const struct common_glue_ctx twofish_dec_cbc = { .num_funcs = 2, .fpu_blocks_limit = -1, .funcs = { { .num_blocks = 3, .fn_u = { .cbc = GLUE_CBC_FUNC_CAST(twofish_dec_blk_cbc_3way) } }, { .num_blocks = 1, .fn_u = { .cbc = GLUE_CBC_FUNC_CAST(twofish_dec_blk) } } } }; static int ecb_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) { return glue_ecb_crypt_128bit(&twofish_enc, desc, dst, src, nbytes); } static int ecb_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) { return glue_ecb_crypt_128bit(&twofish_dec, desc, dst, src, nbytes); } static int cbc_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) { return glue_cbc_encrypt_128bit(GLUE_FUNC_CAST(twofish_enc_blk), desc, dst, src, nbytes); } static int cbc_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) { return glue_cbc_decrypt_128bit(&twofish_dec_cbc, desc, dst, src, nbytes); } static int ctr_crypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) { return glue_ctr_crypt_128bit(&twofish_ctr, desc, dst, src, nbytes); } static void encrypt_callback(void *priv, u8 *srcdst, unsigned int nbytes) { const unsigned int bsize = TF_BLOCK_SIZE; struct twofish_ctx *ctx = priv; int i; if (nbytes == 3 * bsize) { twofish_enc_blk_3way(ctx, srcdst, srcdst); return; } for (i = 0; i < nbytes / bsize; i++, srcdst += bsize) twofish_enc_blk(ctx, srcdst, srcdst); } static void decrypt_callback(void *priv, u8 *srcdst, unsigned int nbytes) { const unsigned int bsize = TF_BLOCK_SIZE; struct twofish_ctx *ctx = priv; int i; if (nbytes == 3 * bsize) { twofish_dec_blk_3way(ctx, srcdst, srcdst); return; } for (i = 0; i < nbytes / bsize; i++, srcdst += bsize) twofish_dec_blk(ctx, srcdst, srcdst); } int lrw_twofish_setkey(struct crypto_tfm *tfm, const u8 *key, unsigned int keylen) { struct twofish_lrw_ctx *ctx = crypto_tfm_ctx(tfm); int err; err = __twofish_setkey(&ctx->twofish_ctx, key, keylen - TF_BLOCK_SIZE, &tfm->crt_flags); if (err) return err; return lrw_init_table(&ctx->lrw_table, key + keylen - TF_BLOCK_SIZE); } EXPORT_SYMBOL_GPL(lrw_twofish_setkey); static int lrw_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) { struct twofish_lrw_ctx *ctx = crypto_blkcipher_ctx(desc->tfm); be128 buf[3]; struct lrw_crypt_req req = { .tbuf = buf, .tbuflen = sizeof(buf), .table_ctx = &ctx->lrw_table, .crypt_ctx = &ctx->twofish_ctx, .crypt_fn = encrypt_callback, }; return lrw_crypt(desc, dst, src, nbytes, &req); } static int lrw_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) { struct twofish_lrw_ctx *ctx = crypto_blkcipher_ctx(desc->tfm); be128 buf[3]; struct lrw_crypt_req req = { .tbuf = buf, .tbuflen = sizeof(buf), .table_ctx = &ctx->lrw_table, .crypt_ctx = &ctx->twofish_ctx, .crypt_fn = decrypt_callback, }; return lrw_crypt(desc, dst, src, nbytes, &req); } void lrw_twofish_exit_tfm(struct crypto_tfm *tfm) { struct twofish_lrw_ctx *ctx = crypto_tfm_ctx(tfm); lrw_free_table(&ctx->lrw_table); } EXPORT_SYMBOL_GPL(lrw_twofish_exit_tfm); int xts_twofish_setkey(struct crypto_tfm *tfm, const u8 *key, unsigned int keylen) { struct twofish_xts_ctx *ctx = crypto_tfm_ctx(tfm); u32 *flags = &tfm->crt_flags; int err; err = xts_check_key(tfm, key, keylen); if (err) return err; /* first half of xts-key is for crypt */ err = __twofish_setkey(&ctx->crypt_ctx, key, keylen / 2, flags); if (err) return err; /* second half of xts-key is for tweak */ return __twofish_setkey(&ctx->tweak_ctx, key + keylen / 2, keylen / 2, flags); } EXPORT_SYMBOL_GPL(xts_twofish_setkey); static int xts_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) { struct twofish_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm); le128 buf[3]; struct xts_crypt_req req = { .tbuf = buf, .tbuflen = sizeof(buf), .tweak_ctx = &ctx->tweak_ctx, .tweak_fn = XTS_TWEAK_CAST(twofish_enc_blk), .crypt_ctx = &ctx->crypt_ctx, .crypt_fn = encrypt_callback, }; return xts_crypt(desc, dst, src, nbytes, &req); } static int xts_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) { struct twofish_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm); le128 buf[3]; struct xts_crypt_req req = { .tbuf = buf, .tbuflen = sizeof(buf), .tweak_ctx = &ctx->tweak_ctx, .tweak_fn = XTS_TWEAK_CAST(twofish_enc_blk), .crypt_ctx = &ctx->crypt_ctx, .crypt_fn = decrypt_callback, }; return xts_crypt(desc, dst, src, nbytes, &req); } static struct crypto_alg tf_algs[5] = { { .cra_name = "ecb(twofish)", .cra_driver_name = "ecb-twofish-3way", .cra_priority = 300, .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER, .cra_blocksize = TF_BLOCK_SIZE, .cra_ctxsize = sizeof(struct twofish_ctx), .cra_alignmask = 0, .cra_type = &crypto_blkcipher_type, .cra_module = THIS_MODULE, .cra_u = { .blkcipher = { .min_keysize = TF_MIN_KEY_SIZE, .max_keysize = TF_MAX_KEY_SIZE, .setkey = twofish_setkey, .encrypt = ecb_encrypt, .decrypt = ecb_decrypt, }, }, }, { .cra_name = "cbc(twofish)", .cra_driver_name = "cbc-twofish-3way", .cra_priority = 300, .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER, .cra_blocksize = TF_BLOCK_SIZE, .cra_ctxsize = sizeof(struct twofish_ctx), .cra_alignmask = 0, .cra_type = &crypto_blkcipher_type, .cra_module = THIS_MODULE, .cra_u = { .blkcipher = { .min_keysize = TF_MIN_KEY_SIZE, .max_keysize = TF_MAX_KEY_SIZE, .ivsize = TF_BLOCK_SIZE, .setkey = twofish_setkey, .encrypt = cbc_encrypt, .decrypt = cbc_decrypt, }, }, }, { .cra_name = "ctr(twofish)", .cra_driver_name = "ctr-twofish-3way", .cra_priority = 300, .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct twofish_ctx), .cra_alignmask = 0, .cra_type = &crypto_blkcipher_type, .cra_module = THIS_MODULE, .cra_u = { .blkcipher = { .min_keysize = TF_MIN_KEY_SIZE, .max_keysize = TF_MAX_KEY_SIZE, .ivsize = TF_BLOCK_SIZE, .setkey = twofish_setkey, .encrypt = ctr_crypt, .decrypt = ctr_crypt, }, }, }, { .cra_name = "lrw(twofish)", .cra_driver_name = "lrw-twofish-3way", .cra_priority = 300, .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER, .cra_blocksize = TF_BLOCK_SIZE, .cra_ctxsize = sizeof(struct twofish_lrw_ctx), .cra_alignmask = 0, .cra_type = &crypto_blkcipher_type, .cra_module = THIS_MODULE, .cra_exit = lrw_twofish_exit_tfm, .cra_u = { .blkcipher = { .min_keysize = TF_MIN_KEY_SIZE + TF_BLOCK_SIZE, .max_keysize = TF_MAX_KEY_SIZE + TF_BLOCK_SIZE, .ivsize = TF_BLOCK_SIZE, .setkey = lrw_twofish_setkey, .encrypt = lrw_encrypt, .decrypt = lrw_decrypt, }, }, }, { .cra_name = "xts(twofish)", .cra_driver_name = "xts-twofish-3way", .cra_priority = 300, .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER, .cra_blocksize = TF_BLOCK_SIZE, .cra_ctxsize = sizeof(struct twofish_xts_ctx), .cra_alignmask = 0, .cra_type = &crypto_blkcipher_type, .cra_module = THIS_MODULE, .cra_u = { .blkcipher = { .min_keysize = TF_MIN_KEY_SIZE * 2, .max_keysize = TF_MAX_KEY_SIZE * 2, .ivsize = TF_BLOCK_SIZE, .setkey = xts_twofish_setkey, .encrypt = xts_encrypt, .decrypt = xts_decrypt, }, }, } }; static bool is_blacklisted_cpu(void) { if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) return false; if (boot_cpu_data.x86 == 0x06 && (boot_cpu_data.x86_model == 0x1c || boot_cpu_data.x86_model == 0x26 || boot_cpu_data.x86_model == 0x36)) { /* * On Atom, twofish-3way is slower than original assembler * implementation. Twofish-3way trades off some performance in * storing blocks in 64bit registers to allow three blocks to * be processed parallel. Parallel operation then allows gaining * more performance than was trade off, on out-of-order CPUs. * However Atom does not benefit from this parallellism and * should be blacklisted. */ return true; } if (boot_cpu_data.x86 == 0x0f) { /* * On Pentium 4, twofish-3way is slower than original assembler * implementation because excessive uses of 64bit rotate and * left-shifts (which are really slow on P4) needed to store and * handle 128bit block in two 64bit registers. */ return true; } return false; } static int force; module_param(force, int, 0); MODULE_PARM_DESC(force, "Force module load, ignore CPU blacklist"); static int __init init(void) { if (!force && is_blacklisted_cpu()) { printk(KERN_INFO "twofish-x86_64-3way: performance on this CPU " "would be suboptimal: disabling " "twofish-x86_64-3way.\n"); return -ENODEV; } return crypto_register_algs(tf_algs, ARRAY_SIZE(tf_algs)); } static void __exit fini(void) { crypto_unregister_algs(tf_algs, ARRAY_SIZE(tf_algs)); } module_init(init); module_exit(fini); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Twofish Cipher Algorithm, 3-way parallel asm optimized"); MODULE_ALIAS_CRYPTO("twofish"); MODULE_ALIAS_CRYPTO("twofish-asm");