/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_FPU_SCHED_H #define _ASM_X86_FPU_SCHED_H #include #include #include #include extern void save_fpregs_to_fpstate(struct fpu *fpu); extern void fpu__drop(struct task_struct *tsk); extern int fpu_clone(struct task_struct *dst, unsigned long clone_flags, bool minimal, unsigned long shstk_addr); extern void fpu_flush_thread(void); /* * FPU state switching for scheduling. * * switch_fpu() saves the old state and sets TIF_NEED_FPU_LOAD if * TIF_NEED_FPU_LOAD is not set. This is done within the context * of the old process. * * Once TIF_NEED_FPU_LOAD is set, it is required to load the * registers before returning to userland or using the content * otherwise. * * The FPU context is only stored/restored for a user task and * PF_KTHREAD is used to distinguish between kernel and user threads. */ static inline void switch_fpu(struct task_struct *old, int cpu) { if (!test_tsk_thread_flag(old, TIF_NEED_FPU_LOAD) && cpu_feature_enabled(X86_FEATURE_FPU) && !(old->flags & (PF_KTHREAD | PF_USER_WORKER))) { struct fpu *old_fpu = x86_task_fpu(old); set_tsk_thread_flag(old, TIF_NEED_FPU_LOAD); save_fpregs_to_fpstate(old_fpu); /* * The save operation preserved register state, so the * fpu_fpregs_owner_ctx is still @old_fpu. Store the * current CPU number in @old_fpu, so the next return * to user space can avoid the FPU register restore * when is returns on the same CPU and still owns the * context. See fpregs_restore_userregs(). */ old_fpu->last_cpu = cpu; trace_x86_fpu_regs_deactivated(old_fpu); } } #endif /* _ASM_X86_FPU_SCHED_H */