/* SPDX-License-Identifier: GPL-2.0 */ /* * x86 TSC related functions */ #ifndef _ASM_X86_TSC_H #define _ASM_X86_TSC_H #include #include #include #include /** * rdtsc() - returns the current TSC without ordering constraints * * rdtsc() returns the result of RDTSC as a 64-bit integer. The * only ordering constraint it supplies is the ordering implied by * "asm volatile": it will put the RDTSC in the place you expect. The * CPU can and will speculatively execute that RDTSC, though, so the * results can be non-monotonic if compared on different CPUs. */ static __always_inline u64 rdtsc(void) { EAX_EDX_DECLARE_ARGS(val, low, high); asm volatile("rdtsc" : EAX_EDX_RET(val, low, high)); return EAX_EDX_VAL(val, low, high); } /** * rdtsc_ordered() - read the current TSC in program order * * rdtsc_ordered() returns the result of RDTSC as a 64-bit integer. * It is ordered like a load to a global in-memory counter. It should * be impossible to observe non-monotonic rdtsc_unordered() behavior * across multiple CPUs as long as the TSC is synced. */ static __always_inline u64 rdtsc_ordered(void) { EAX_EDX_DECLARE_ARGS(val, low, high); /* * The RDTSC instruction is not ordered relative to memory * access. The Intel SDM and the AMD APM are both vague on this * point, but empirically an RDTSC instruction can be * speculatively executed before prior loads. An RDTSC * immediately after an appropriate barrier appears to be * ordered as a normal load, that is, it provides the same * ordering guarantees as reading from a global memory location * that some other imaginary CPU is updating continuously with a * time stamp. * * Thus, use the preferred barrier on the respective CPU, aiming for * RDTSCP as the default. */ asm volatile(ALTERNATIVE_2("rdtsc", "lfence; rdtsc", X86_FEATURE_LFENCE_RDTSC, "rdtscp", X86_FEATURE_RDTSCP) : EAX_EDX_RET(val, low, high) /* RDTSCP clobbers ECX with MSR_TSC_AUX. */ :: "ecx"); return EAX_EDX_VAL(val, low, high); } /* * Standard way to access the cycle counter. */ typedef unsigned long long cycles_t; extern unsigned int cpu_khz; extern unsigned int tsc_khz; extern void disable_TSC(void); static inline cycles_t get_cycles(void) { if (!IS_ENABLED(CONFIG_X86_TSC) && !cpu_feature_enabled(X86_FEATURE_TSC)) return 0; return rdtsc(); } #define get_cycles get_cycles extern void tsc_early_init(void); extern void tsc_init(void); extern void mark_tsc_unstable(char *reason); extern int unsynchronized_tsc(void); extern int check_tsc_unstable(void); extern void mark_tsc_async_resets(char *reason); extern unsigned long native_calibrate_cpu_early(void); extern unsigned long native_calibrate_tsc(void); extern unsigned long long native_sched_clock_from_tsc(u64 tsc); extern int tsc_clocksource_reliable; #ifdef CONFIG_X86_TSC extern bool tsc_async_resets; #else # define tsc_async_resets false #endif /* * Boot-time check whether the TSCs are synchronized across * all CPUs/cores: */ #ifdef CONFIG_X86_TSC extern bool tsc_store_and_check_tsc_adjust(bool bootcpu); extern void tsc_verify_tsc_adjust(bool resume); extern void check_tsc_sync_target(void); #else static inline bool tsc_store_and_check_tsc_adjust(bool bootcpu) { return false; } static inline void tsc_verify_tsc_adjust(bool resume) { } static inline void check_tsc_sync_target(void) { } #endif extern int notsc_setup(char *); extern void tsc_save_sched_clock_state(void); extern void tsc_restore_sched_clock_state(void); unsigned long cpu_khz_from_msr(void); #endif /* _ASM_X86_TSC_H */