// SPDX-License-Identifier: GPL-2.0 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * per-CPU TSS segments. Threads are completely 'soft' on Linux, * no more per-task TSS's. The TSS size is kept cacheline-aligned * so they are allowed to end up in the .data..cacheline_aligned * section. Since TSS's are completely CPU-local, we want them * on exact cacheline boundaries, to eliminate cacheline ping-pong. */ __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss) = { .x86_tss = { /* * .sp0 is only used when entering ring 0 from a lower * privilege level. Since the init task never runs anything * but ring 0 code, there is no need for a valid value here. * Poison it. */ .sp0 = (1UL << (BITS_PER_LONG-1)) + 1, #ifdef CONFIG_X86_32 .ss0 = __KERNEL_DS, .ss1 = __KERNEL_CS, .io_bitmap_base = INVALID_IO_BITMAP_OFFSET, #endif }, #ifdef CONFIG_X86_32 /* * Note that the .io_bitmap member must be extra-big. This is because * the CPU will access an additional byte beyond the end of the IO * permission bitmap. The extra byte must be all 1 bits, and must * be within the limit. */ .io_bitmap = { [0 ... IO_BITMAP_LONGS] = ~0 }, #endif #ifdef CONFIG_X86_32 .SYSENTER_stack_canary = STACK_END_MAGIC, #endif }; EXPORT_PER_CPU_SYMBOL(cpu_tss); DEFINE_PER_CPU(bool, __tss_limit_invalid); EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid); /* * this gets called so that we can store lazy state into memory and copy the * current task into the new thread. */ int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) { memcpy(dst, src, arch_task_struct_size); #ifdef CONFIG_VM86 dst->thread.vm86 = NULL; #endif return fpu__copy(&dst->thread.fpu, &src->thread.fpu); } /* * Free current thread data structures etc.. */ void exit_thread(struct task_struct *tsk) { struct thread_struct *t = &tsk->thread; unsigned long *bp = t->io_bitmap_ptr; struct fpu *fpu = &t->fpu; if (bp) { struct tss_struct *tss = &per_cpu(cpu_tss, get_cpu()); t->io_bitmap_ptr = NULL; clear_thread_flag(TIF_IO_BITMAP); /* * Careful, clear this in the TSS too: */ memset(tss->io_bitmap, 0xff, t->io_bitmap_max); t->io_bitmap_max = 0; put_cpu(); kfree(bp); } free_vm86(t); fpu__drop(fpu); } void flush_thread(void) { struct task_struct *tsk = current; flush_ptrace_hw_breakpoint(tsk); memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array)); fpu__clear(&tsk->thread.fpu); } void disable_TSC(void) { preempt_disable(); if (!test_and_set_thread_flag(TIF_NOTSC)) /* * Must flip the CPU state synchronously with * TIF_NOTSC in the current running context. */ cr4_set_bits(X86_CR4_TSD); preempt_enable(); } static void enable_TSC(void) { preempt_disable(); if (test_and_clear_thread_flag(TIF_NOTSC)) /* * Must flip the CPU state synchronously with * TIF_NOTSC in the current running context. */ cr4_clear_bits(X86_CR4_TSD); preempt_enable(); } int get_tsc_mode(unsigned long adr) { unsigned int val; if (test_thread_flag(TIF_NOTSC)) val = PR_TSC_SIGSEGV; else val = PR_TSC_ENABLE; return put_user(val, (unsigned int __user *)adr); } int set_tsc_mode(unsigned int val) { if (val == PR_TSC_SIGSEGV) disable_TSC(); else if (val == PR_TSC_ENABLE) enable_TSC(); else return -EINVAL; return 0; } DEFINE_PER_CPU(u64, msr_misc_features_shadow); static void set_cpuid_faulting(bool on) { u64 msrval; msrval = this_cpu_read(msr_misc_features_shadow); msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT; msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT); this_cpu_write(msr_misc_features_shadow, msrval); wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval); } static void disable_cpuid(void) { preempt_disable(); if (!test_and_set_thread_flag(TIF_NOCPUID)) { /* * Must flip the CPU state synchronously with * TIF_NOCPUID in the current running context. */ set_cpuid_faulting(true); } preempt_enable(); } static void enable_cpuid(void) { preempt_disable(); if (test_and_clear_thread_flag(TIF_NOCPUID)) { /* * Must flip the CPU state synchronously with * TIF_NOCPUID in the current running context. */ set_cpuid_faulting(false); } preempt_enable(); } static int get_cpuid_mode(void) { return !test_thread_flag(TIF_NOCPUID); } static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled) { if (!static_cpu_has(X86_FEATURE_CPUID_FAULT)) return -ENODEV; if (cpuid_enabled) enable_cpuid(); else disable_cpuid(); return 0; } /* * Called immediately after a successful exec. */ void arch_setup_new_exec(void) { /* If cpuid was previously disabled for this task, re-enable it. */ if (test_thread_flag(TIF_NOCPUID)) enable_cpuid(); } static inline void switch_to_bitmap(struct tss_struct *tss, struct thread_struct *prev, struct thread_struct *next, unsigned long tifp, unsigned long tifn) { if (tifn & _TIF_IO_BITMAP) { /* * Copy the relevant range of the IO bitmap. * Normally this is 128 bytes or less: */ memcpy(tss->io_bitmap, next->io_bitmap_ptr, max(prev->io_bitmap_max, next->io_bitmap_max)); /* * Make sure that the TSS limit is correct for the CPU * to notice the IO bitmap. */ refresh_tss_limit(); } else if (tifp & _TIF_IO_BITMAP) { /* * Clear any possible leftover bits: */ memset(tss->io_bitmap, 0xff, prev->io_bitmap_max); } } void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p, struct tss_struct *tss) { struct thread_struct *prev, *next; unsigned long tifp, tifn; prev = &prev_p->thread; next = &next_p->thread; tifn = READ_ONCE(task_thread_info(next_p)->flags); tifp = READ_ONCE(task_thread_info(prev_p)->flags); switch_to_bitmap(tss, prev, next, tifp, tifn); propagate_user_return_notify(prev_p, next_p); if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) && arch_has_block_step()) { unsigned long debugctl, msk; rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); debugctl &= ~DEBUGCTLMSR_BTF; msk = tifn & _TIF_BLOCKSTEP; debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT; wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); } if ((tifp ^ tifn) & _TIF_NOTSC) cr4_toggle_bits(X86_CR4_TSD); if ((tifp ^ tifn) & _TIF_NOCPUID) set_cpuid_faulting(!!(tifn & _TIF_NOCPUID)); } /* * Idle related variables and functions */ unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE; EXPORT_SYMBOL(boot_option_idle_override); static void (*x86_idle)(void); #ifndef CONFIG_SMP static inline void play_dead(void) { BUG(); } #endif void arch_cpu_idle_enter(void) { tsc_verify_tsc_adjust(false); local_touch_nmi(); } void arch_cpu_idle_dead(void) { play_dead(); } /* * Called from the generic idle code. */ void arch_cpu_idle(void) { x86_idle(); } /* * We use this if we don't have any better idle routine.. */ void __cpuidle default_idle(void) { trace_cpu_idle_rcuidle(1, smp_processor_id()); safe_halt(); trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id()); } #ifdef CONFIG_APM_MODULE EXPORT_SYMBOL(default_idle); #endif #ifdef CONFIG_XEN bool xen_set_default_idle(void) { bool ret = !!x86_idle; x86_idle = default_idle; return ret; } #endif void stop_this_cpu(void *dummy) { local_irq_disable(); /* * Remove this CPU: */ set_cpu_online(smp_processor_id(), false); disable_local_APIC(); mcheck_cpu_clear(this_cpu_ptr(&cpu_info)); for (;;) { /* * Use wbinvd followed by hlt to stop the processor. This * provides support for kexec on a processor that supports * SME. With kexec, going from SME inactive to SME active * requires clearing cache entries so that addresses without * the encryption bit set don't corrupt the same physical * address that has the encryption bit set when caches are * flushed. To achieve this a wbinvd is performed followed by * a hlt. Even if the processor is not in the kexec/SME * scenario this only adds a wbinvd to a halting processor. */ asm volatile("wbinvd; hlt" : : : "memory"); } } /* * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power * states (local apic timer and TSC stop). */ static void amd_e400_idle(void) { /* * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E * gets set after static_cpu_has() places have been converted via * alternatives. */ if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) { default_idle(); return; } tick_broadcast_enter(); default_idle(); /* * The switch back from broadcast mode needs to be called with * interrupts disabled. */ local_irq_disable(); tick_broadcast_exit(); local_irq_enable(); } /* * Intel Core2 and older machines prefer MWAIT over HALT for C1. * We can't rely on cpuidle installing MWAIT, because it will not load * on systems that support only C1 -- so the boot default must be MWAIT. * * Some AMD machines are the opposite, they depend on using HALT. * * So for default C1, which is used during boot until cpuidle loads, * use MWAIT-C1 on Intel HW that has it, else use HALT. */ static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c) { if (c->x86_vendor != X86_VENDOR_INTEL) return 0; if (!cpu_has(c, X86_FEATURE_MWAIT) || static_cpu_has_bug(X86_BUG_MONITOR)) return 0; return 1; } /* * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT * with interrupts enabled and no flags, which is backwards compatible with the * original MWAIT implementation. */ static __cpuidle void mwait_idle(void) { if (!current_set_polling_and_test()) { trace_cpu_idle_rcuidle(1, smp_processor_id()); if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) { mb(); /* quirk */ clflush((void *)¤t_thread_info()->flags); mb(); /* quirk */ } __monitor((void *)¤t_thread_info()->flags, 0, 0); if (!need_resched()) __sti_mwait(0, 0); else local_irq_enable(); trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id()); } else { local_irq_enable(); } __current_clr_polling(); } void select_idle_routine(const struct cpuinfo_x86 *c) { #ifdef CONFIG_SMP if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1) pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n"); #endif if (x86_idle || boot_option_idle_override == IDLE_POLL) return; if (boot_cpu_has_bug(X86_BUG_AMD_E400)) { pr_info("using AMD E400 aware idle routine\n"); x86_idle = amd_e400_idle; } else if (prefer_mwait_c1_over_halt(c)) { pr_info("using mwait in idle threads\n"); x86_idle = mwait_idle; } else x86_idle = default_idle; } void amd_e400_c1e_apic_setup(void) { if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) { pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id()); local_irq_disable(); tick_broadcast_force(); local_irq_enable(); } } void __init arch_post_acpi_subsys_init(void) { u32 lo, hi; if (!boot_cpu_has_bug(X86_BUG_AMD_E400)) return; /* * AMD E400 detection needs to happen after ACPI has been enabled. If * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in * MSR_K8_INT_PENDING_MSG. */ rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi); if (!(lo & K8_INTP_C1E_ACTIVE_MASK)) return; boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E); if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC)) mark_tsc_unstable("TSC halt in AMD C1E"); pr_info("System has AMD C1E enabled\n"); } static int __init idle_setup(char *str) { if (!str) return -EINVAL; if (!strcmp(str, "poll")) { pr_info("using polling idle threads\n"); boot_option_idle_override = IDLE_POLL; cpu_idle_poll_ctrl(true); } else if (!strcmp(str, "halt")) { /* * When the boot option of idle=halt is added, halt is * forced to be used for CPU idle. In such case CPU C2/C3 * won't be used again. * To continue to load the CPU idle driver, don't touch * the boot_option_idle_override. */ x86_idle = default_idle; boot_option_idle_override = IDLE_HALT; } else if (!strcmp(str, "nomwait")) { /* * If the boot option of "idle=nomwait" is added, * it means that mwait will be disabled for CPU C2/C3 * states. In such case it won't touch the variable * of boot_option_idle_override. */ boot_option_idle_override = IDLE_NOMWAIT; } else return -1; return 0; } early_param("idle", idle_setup); unsigned long arch_align_stack(unsigned long sp) { if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) sp -= get_random_int() % 8192; return sp & ~0xf; } unsigned long arch_randomize_brk(struct mm_struct *mm) { return randomize_page(mm->brk, 0x02000000); } /* * Called from fs/proc with a reference on @p to find the function * which called into schedule(). This needs to be done carefully * because the task might wake up and we might look at a stack * changing under us. */ unsigned long get_wchan(struct task_struct *p) { unsigned long start, bottom, top, sp, fp, ip, ret = 0; int count = 0; if (!p || p == current || p->state == TASK_RUNNING) return 0; if (!try_get_task_stack(p)) return 0; start = (unsigned long)task_stack_page(p); if (!start) goto out; /* * Layout of the stack page: * * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long) * PADDING * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING * stack * ----------- bottom = start * * The tasks stack pointer points at the location where the * framepointer is stored. The data on the stack is: * ... IP FP ... IP FP * * We need to read FP and IP, so we need to adjust the upper * bound by another unsigned long. */ top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING; top -= 2 * sizeof(unsigned long); bottom = start; sp = READ_ONCE(p->thread.sp); if (sp < bottom || sp > top) goto out; fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp); do { if (fp < bottom || fp > top) goto out; ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long))); if (!in_sched_functions(ip)) { ret = ip; goto out; } fp = READ_ONCE_NOCHECK(*(unsigned long *)fp); } while (count++ < 16 && p->state != TASK_RUNNING); out: put_task_stack(p); return ret; } long do_arch_prctl_common(struct task_struct *task, int option, unsigned long cpuid_enabled) { switch (option) { case ARCH_GET_CPUID: return get_cpuid_mode(); case ARCH_SET_CPUID: return set_cpuid_mode(task, cpuid_enabled); } return -EINVAL; }