// SPDX-License-Identifier: GPL-2.0-only /* * Kernel-based Virtual Machine driver for Linux * * Macros and functions to access KVM PTEs (also known as SPTEs) * * Copyright (C) 2006 Qumranet, Inc. * Copyright 2020 Red Hat, Inc. and/or its affiliates. */ #include #include "mmu.h" #include "mmu_internal.h" #include "x86.h" #include "spte.h" #include #include static bool __read_mostly enable_mmio_caching = true; module_param_named(mmio_caching, enable_mmio_caching, bool, 0444); u64 __read_mostly shadow_host_writable_mask; u64 __read_mostly shadow_mmu_writable_mask; u64 __read_mostly shadow_nx_mask; u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */ u64 __read_mostly shadow_user_mask; u64 __read_mostly shadow_accessed_mask; u64 __read_mostly shadow_dirty_mask; u64 __read_mostly shadow_mmio_value; u64 __read_mostly shadow_mmio_mask; u64 __read_mostly shadow_mmio_access_mask; u64 __read_mostly shadow_present_mask; u64 __read_mostly shadow_me_mask; u64 __read_mostly shadow_acc_track_mask; u64 __read_mostly shadow_nonpresent_or_rsvd_mask; u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask; u8 __read_mostly shadow_phys_bits; static u64 generation_mmio_spte_mask(u64 gen) { u64 mask; WARN_ON(gen & ~MMIO_SPTE_GEN_MASK); mask = (gen << MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_SPTE_GEN_LOW_MASK; mask |= (gen << MMIO_SPTE_GEN_HIGH_SHIFT) & MMIO_SPTE_GEN_HIGH_MASK; return mask; } u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access) { u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK; u64 spte = generation_mmio_spte_mask(gen); u64 gpa = gfn << PAGE_SHIFT; WARN_ON_ONCE(!shadow_mmio_value); access &= shadow_mmio_access_mask; spte |= shadow_mmio_value | access; spte |= gpa | shadow_nonpresent_or_rsvd_mask; spte |= (gpa & shadow_nonpresent_or_rsvd_mask) << SHADOW_NONPRESENT_OR_RSVD_MASK_LEN; return spte; } static bool kvm_is_mmio_pfn(kvm_pfn_t pfn) { if (pfn_valid(pfn)) return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) && /* * Some reserved pages, such as those from NVDIMM * DAX devices, are not for MMIO, and can be mapped * with cached memory type for better performance. * However, the above check misconceives those pages * as MMIO, and results in KVM mapping them with UC * memory type, which would hurt the performance. * Therefore, we check the host memory type in addition * and only treat UC/UC-/WC pages as MMIO. */ (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn)); return !e820__mapped_raw_any(pfn_to_hpa(pfn), pfn_to_hpa(pfn + 1) - 1, E820_TYPE_RAM); } int make_spte(struct kvm_vcpu *vcpu, unsigned int pte_access, int level, gfn_t gfn, kvm_pfn_t pfn, u64 old_spte, bool speculative, bool can_unsync, bool host_writable, bool ad_disabled, u64 *new_spte) { u64 spte = SPTE_MMU_PRESENT_MASK; int ret = 0; if (ad_disabled) spte |= SPTE_TDP_AD_DISABLED_MASK; else if (kvm_vcpu_ad_need_write_protect(vcpu)) spte |= SPTE_TDP_AD_WRPROT_ONLY_MASK; /* * For the EPT case, shadow_present_mask is 0 if hardware * supports exec-only page table entries. In that case, * ACC_USER_MASK and shadow_user_mask are used to represent * read access. See FNAME(gpte_access) in paging_tmpl.h. */ spte |= shadow_present_mask; if (!speculative) spte |= spte_shadow_accessed_mask(spte); if (level > PG_LEVEL_4K && (pte_access & ACC_EXEC_MASK) && is_nx_huge_page_enabled()) { pte_access &= ~ACC_EXEC_MASK; } if (pte_access & ACC_EXEC_MASK) spte |= shadow_x_mask; else spte |= shadow_nx_mask; if (pte_access & ACC_USER_MASK) spte |= shadow_user_mask; if (level > PG_LEVEL_4K) spte |= PT_PAGE_SIZE_MASK; if (tdp_enabled) spte |= static_call(kvm_x86_get_mt_mask)(vcpu, gfn, kvm_is_mmio_pfn(pfn)); if (host_writable) spte |= shadow_host_writable_mask; else pte_access &= ~ACC_WRITE_MASK; if (!kvm_is_mmio_pfn(pfn)) spte |= shadow_me_mask; spte |= (u64)pfn << PAGE_SHIFT; if (pte_access & ACC_WRITE_MASK) { spte |= PT_WRITABLE_MASK | shadow_mmu_writable_mask; /* * Optimization: for pte sync, if spte was writable the hash * lookup is unnecessary (and expensive). Write protection * is responsibility of kvm_mmu_get_page / kvm_mmu_sync_roots. * Same reasoning can be applied to dirty page accounting. */ if (!can_unsync && is_writable_pte(old_spte)) goto out; /* * Unsync shadow pages that are reachable by the new, writable * SPTE. Write-protect the SPTE if the page can't be unsync'd, * e.g. it's write-tracked (upper-level SPs) or has one or more * shadow pages and unsync'ing pages is not allowed. */ if (mmu_try_to_unsync_pages(vcpu, gfn, can_unsync)) { pgprintk("%s: found shadow page for %llx, marking ro\n", __func__, gfn); ret |= SET_SPTE_WRITE_PROTECTED_PT; pte_access &= ~ACC_WRITE_MASK; spte &= ~(PT_WRITABLE_MASK | shadow_mmu_writable_mask); } } if (pte_access & ACC_WRITE_MASK) spte |= spte_shadow_dirty_mask(spte); if (speculative) spte = mark_spte_for_access_track(spte); out: WARN_ONCE(is_rsvd_spte(&vcpu->arch.mmu->shadow_zero_check, spte, level), "spte = 0x%llx, level = %d, rsvd bits = 0x%llx", spte, level, get_rsvd_bits(&vcpu->arch.mmu->shadow_zero_check, spte, level)); *new_spte = spte; return ret; } u64 make_nonleaf_spte(u64 *child_pt, bool ad_disabled) { u64 spte = SPTE_MMU_PRESENT_MASK; spte |= __pa(child_pt) | shadow_present_mask | PT_WRITABLE_MASK | shadow_user_mask | shadow_x_mask | shadow_me_mask; if (ad_disabled) spte |= SPTE_TDP_AD_DISABLED_MASK; else spte |= shadow_accessed_mask; return spte; } u64 kvm_mmu_changed_pte_notifier_make_spte(u64 old_spte, kvm_pfn_t new_pfn) { u64 new_spte; new_spte = old_spte & ~PT64_BASE_ADDR_MASK; new_spte |= (u64)new_pfn << PAGE_SHIFT; new_spte &= ~PT_WRITABLE_MASK; new_spte &= ~shadow_host_writable_mask; new_spte = mark_spte_for_access_track(new_spte); return new_spte; } static u8 kvm_get_shadow_phys_bits(void) { /* * boot_cpu_data.x86_phys_bits is reduced when MKTME or SME are detected * in CPU detection code, but the processor treats those reduced bits as * 'keyID' thus they are not reserved bits. Therefore KVM needs to look at * the physical address bits reported by CPUID. */ if (likely(boot_cpu_data.extended_cpuid_level >= 0x80000008)) return cpuid_eax(0x80000008) & 0xff; /* * Quite weird to have VMX or SVM but not MAXPHYADDR; probably a VM with * custom CPUID. Proceed with whatever the kernel found since these features * aren't virtualizable (SME/SEV also require CPUIDs higher than 0x80000008). */ return boot_cpu_data.x86_phys_bits; } u64 mark_spte_for_access_track(u64 spte) { if (spte_ad_enabled(spte)) return spte & ~shadow_accessed_mask; if (is_access_track_spte(spte)) return spte; /* * Making an Access Tracking PTE will result in removal of write access * from the PTE. So, verify that we will be able to restore the write * access in the fast page fault path later on. */ WARN_ONCE((spte & PT_WRITABLE_MASK) && !spte_can_locklessly_be_made_writable(spte), "kvm: Writable SPTE is not locklessly dirty-trackable\n"); WARN_ONCE(spte & (SHADOW_ACC_TRACK_SAVED_BITS_MASK << SHADOW_ACC_TRACK_SAVED_BITS_SHIFT), "kvm: Access Tracking saved bit locations are not zero\n"); spte |= (spte & SHADOW_ACC_TRACK_SAVED_BITS_MASK) << SHADOW_ACC_TRACK_SAVED_BITS_SHIFT; spte &= ~shadow_acc_track_mask; return spte; } void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 mmio_mask, u64 access_mask) { BUG_ON((u64)(unsigned)access_mask != access_mask); WARN_ON(mmio_value & shadow_nonpresent_or_rsvd_lower_gfn_mask); if (!enable_mmio_caching) mmio_value = 0; /* * Disable MMIO caching if the MMIO value collides with the bits that * are used to hold the relocated GFN when the L1TF mitigation is * enabled. This should never fire as there is no known hardware that * can trigger this condition, e.g. SME/SEV CPUs that require a custom * MMIO value are not susceptible to L1TF. */ if (WARN_ON(mmio_value & (shadow_nonpresent_or_rsvd_mask << SHADOW_NONPRESENT_OR_RSVD_MASK_LEN))) mmio_value = 0; /* * The masked MMIO value must obviously match itself and a removed SPTE * must not get a false positive. Removed SPTEs and MMIO SPTEs should * never collide as MMIO must set some RWX bits, and removed SPTEs must * not set any RWX bits. */ if (WARN_ON((mmio_value & mmio_mask) != mmio_value) || WARN_ON(mmio_value && (REMOVED_SPTE & mmio_mask) == mmio_value)) mmio_value = 0; shadow_mmio_value = mmio_value; shadow_mmio_mask = mmio_mask; shadow_mmio_access_mask = access_mask; } EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask); void kvm_mmu_set_ept_masks(bool has_ad_bits, bool has_exec_only) { shadow_user_mask = VMX_EPT_READABLE_MASK; shadow_accessed_mask = has_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull; shadow_dirty_mask = has_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull; shadow_nx_mask = 0ull; shadow_x_mask = VMX_EPT_EXECUTABLE_MASK; shadow_present_mask = has_exec_only ? 0ull : VMX_EPT_READABLE_MASK; shadow_acc_track_mask = VMX_EPT_RWX_MASK; shadow_me_mask = 0ull; shadow_host_writable_mask = EPT_SPTE_HOST_WRITABLE; shadow_mmu_writable_mask = EPT_SPTE_MMU_WRITABLE; /* * EPT Misconfigurations are generated if the value of bits 2:0 * of an EPT paging-structure entry is 110b (write/execute). */ kvm_mmu_set_mmio_spte_mask(VMX_EPT_MISCONFIG_WX_VALUE, VMX_EPT_RWX_MASK, 0); } EXPORT_SYMBOL_GPL(kvm_mmu_set_ept_masks); void kvm_mmu_reset_all_pte_masks(void) { u8 low_phys_bits; u64 mask; shadow_phys_bits = kvm_get_shadow_phys_bits(); /* * If the CPU has 46 or less physical address bits, then set an * appropriate mask to guard against L1TF attacks. Otherwise, it is * assumed that the CPU is not vulnerable to L1TF. * * Some Intel CPUs address the L1 cache using more PA bits than are * reported by CPUID. Use the PA width of the L1 cache when possible * to achieve more effective mitigation, e.g. if system RAM overlaps * the most significant bits of legal physical address space. */ shadow_nonpresent_or_rsvd_mask = 0; low_phys_bits = boot_cpu_data.x86_phys_bits; if (boot_cpu_has_bug(X86_BUG_L1TF) && !WARN_ON_ONCE(boot_cpu_data.x86_cache_bits >= 52 - SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)) { low_phys_bits = boot_cpu_data.x86_cache_bits - SHADOW_NONPRESENT_OR_RSVD_MASK_LEN; shadow_nonpresent_or_rsvd_mask = rsvd_bits(low_phys_bits, boot_cpu_data.x86_cache_bits - 1); } shadow_nonpresent_or_rsvd_lower_gfn_mask = GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT); shadow_user_mask = PT_USER_MASK; shadow_accessed_mask = PT_ACCESSED_MASK; shadow_dirty_mask = PT_DIRTY_MASK; shadow_nx_mask = PT64_NX_MASK; shadow_x_mask = 0; shadow_present_mask = PT_PRESENT_MASK; shadow_acc_track_mask = 0; shadow_me_mask = sme_me_mask; shadow_host_writable_mask = DEFAULT_SPTE_HOST_WRITEABLE; shadow_mmu_writable_mask = DEFAULT_SPTE_MMU_WRITEABLE; /* * Set a reserved PA bit in MMIO SPTEs to generate page faults with * PFEC.RSVD=1 on MMIO accesses. 64-bit PTEs (PAE, x86-64, and EPT * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports * 52-bit physical addresses then there are no reserved PA bits in the * PTEs and so the reserved PA approach must be disabled. */ if (shadow_phys_bits < 52) mask = BIT_ULL(51) | PT_PRESENT_MASK; else mask = 0; kvm_mmu_set_mmio_spte_mask(mask, mask, ACC_WRITE_MASK | ACC_USER_MASK); }