// SPDX-License-Identifier: GPL-2.0-only #ifndef KVM_X86_MMU_SPTE_H #define KVM_X86_MMU_SPTE_H #include "mmu_internal.h" #define PT_FIRST_AVAIL_BITS_SHIFT 10 #define PT64_SECOND_AVAIL_BITS_SHIFT 54 /* * The mask used to denote special SPTEs, which can be either MMIO SPTEs or * Access Tracking SPTEs. */ #define SPTE_SPECIAL_MASK (3ULL << 52) #define SPTE_AD_ENABLED_MASK (0ULL << 52) #define SPTE_AD_DISABLED_MASK (1ULL << 52) #define SPTE_AD_WRPROT_ONLY_MASK (2ULL << 52) #define SPTE_MMIO_MASK (3ULL << 52) #ifdef CONFIG_DYNAMIC_PHYSICAL_MASK #define PT64_BASE_ADDR_MASK (physical_mask & ~(u64)(PAGE_SIZE-1)) #else #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1)) #endif #define PT64_LVL_ADDR_MASK(level) \ (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \ * PT64_LEVEL_BITS))) - 1)) #define PT64_LVL_OFFSET_MASK(level) \ (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \ * PT64_LEVEL_BITS))) - 1)) #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \ | shadow_x_mask | shadow_nx_mask | shadow_me_mask) #define ACC_EXEC_MASK 1 #define ACC_WRITE_MASK PT_WRITABLE_MASK #define ACC_USER_MASK PT_USER_MASK #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK) /* The mask for the R/X bits in EPT PTEs */ #define PT64_EPT_READABLE_MASK 0x1ull #define PT64_EPT_EXECUTABLE_MASK 0x4ull #define PT64_LEVEL_BITS 9 #define PT64_LEVEL_SHIFT(level) \ (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS) #define PT64_INDEX(address, level)\ (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1)) #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level) #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT) #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1)) /* * Due to limited space in PTEs, the MMIO generation is a 19 bit subset of * the memslots generation and is derived as follows: * * Bits 0-8 of the MMIO generation are propagated to spte bits 3-11 * Bits 9-18 of the MMIO generation are propagated to spte bits 52-61 * * The KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS flag is intentionally not included in * the MMIO generation number, as doing so would require stealing a bit from * the "real" generation number and thus effectively halve the maximum number * of MMIO generations that can be handled before encountering a wrap (which * requires a full MMU zap). The flag is instead explicitly queried when * checking for MMIO spte cache hits. */ #define MMIO_SPTE_GEN_MASK GENMASK_ULL(17, 0) #define MMIO_SPTE_GEN_LOW_START 3 #define MMIO_SPTE_GEN_LOW_END 11 #define MMIO_SPTE_GEN_LOW_MASK GENMASK_ULL(MMIO_SPTE_GEN_LOW_END, \ MMIO_SPTE_GEN_LOW_START) #define MMIO_SPTE_GEN_HIGH_START PT64_SECOND_AVAIL_BITS_SHIFT #define MMIO_SPTE_GEN_HIGH_END 62 #define MMIO_SPTE_GEN_HIGH_MASK GENMASK_ULL(MMIO_SPTE_GEN_HIGH_END, \ MMIO_SPTE_GEN_HIGH_START) extern u64 __read_mostly shadow_nx_mask; extern u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */ extern u64 __read_mostly shadow_user_mask; extern u64 __read_mostly shadow_accessed_mask; extern u64 __read_mostly shadow_dirty_mask; extern u64 __read_mostly shadow_mmio_value; extern u64 __read_mostly shadow_mmio_access_mask; extern u64 __read_mostly shadow_present_mask; extern u64 __read_mostly shadow_me_mask; /* * SPTEs used by MMUs without A/D bits are marked with SPTE_AD_DISABLED_MASK; * shadow_acc_track_mask is the set of bits to be cleared in non-accessed * pages. */ extern u64 __read_mostly shadow_acc_track_mask; /* * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order * to guard against L1TF attacks. */ extern u64 __read_mostly shadow_nonpresent_or_rsvd_mask; /* * The mask/shift to use for saving the original R/X bits when marking the PTE * as not-present for access tracking purposes. We do not save the W bit as the * PTEs being access tracked also need to be dirty tracked, so the W bit will be * restored only when a write is attempted to the page. */ static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK | PT64_EPT_EXECUTABLE_MASK; static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT; /* * The number of high-order 1 bits to use in the mask above. */ static const u64 shadow_nonpresent_or_rsvd_mask_len = 5; /* * In some cases, we need to preserve the GFN of a non-present or reserved * SPTE when we usurp the upper five bits of the physical address space to * defend against L1TF, e.g. for MMIO SPTEs. To preserve the GFN, we'll * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask * left into the reserved bits, i.e. the GFN in the SPTE will be split into * high and low parts. This mask covers the lower bits of the GFN. */ extern u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask; /* * The number of non-reserved physical address bits irrespective of features * that repurpose legal bits, e.g. MKTME. */ extern u8 __read_mostly shadow_phys_bits; static inline bool is_mmio_spte(u64 spte) { return (spte & SPTE_SPECIAL_MASK) == SPTE_MMIO_MASK; } static inline bool sp_ad_disabled(struct kvm_mmu_page *sp) { return sp->role.ad_disabled; } static inline bool spte_ad_enabled(u64 spte) { MMU_WARN_ON(is_mmio_spte(spte)); return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_DISABLED_MASK; } static inline bool spte_ad_need_write_protect(u64 spte) { MMU_WARN_ON(is_mmio_spte(spte)); return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_ENABLED_MASK; } static inline u64 spte_shadow_accessed_mask(u64 spte) { MMU_WARN_ON(is_mmio_spte(spte)); return spte_ad_enabled(spte) ? shadow_accessed_mask : 0; } static inline u64 spte_shadow_dirty_mask(u64 spte) { MMU_WARN_ON(is_mmio_spte(spte)); return spte_ad_enabled(spte) ? shadow_dirty_mask : 0; } static inline bool is_access_track_spte(u64 spte) { return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0; } static inline int is_shadow_present_pte(u64 pte) { return (pte != 0) && !is_mmio_spte(pte); } static inline int is_large_pte(u64 pte) { return pte & PT_PAGE_SIZE_MASK; } static inline int is_last_spte(u64 pte, int level) { if (level == PG_LEVEL_4K) return 1; if (is_large_pte(pte)) return 1; return 0; } static inline bool is_executable_pte(u64 spte) { return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask; } static inline kvm_pfn_t spte_to_pfn(u64 pte) { return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT; } static inline bool is_accessed_spte(u64 spte) { u64 accessed_mask = spte_shadow_accessed_mask(spte); return accessed_mask ? spte & accessed_mask : !is_access_track_spte(spte); } static inline bool is_dirty_spte(u64 spte) { u64 dirty_mask = spte_shadow_dirty_mask(spte); return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK; } static inline bool spte_can_locklessly_be_made_writable(u64 spte) { return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) == (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE); } static inline u64 get_mmio_spte_generation(u64 spte) { u64 gen; gen = (spte & MMIO_SPTE_GEN_LOW_MASK) >> MMIO_SPTE_GEN_LOW_START; gen |= (spte & MMIO_SPTE_GEN_HIGH_MASK) >> MMIO_SPTE_GEN_HIGH_START; return gen; } /* Bits which may be returned by set_spte() */ #define SET_SPTE_WRITE_PROTECTED_PT BIT(0) #define SET_SPTE_NEED_REMOTE_TLB_FLUSH BIT(1) #define SET_SPTE_SPURIOUS BIT(2) int make_spte(struct kvm_vcpu *vcpu, unsigned int pte_access, int level, gfn_t gfn, kvm_pfn_t pfn, u64 old_spte, bool speculative, bool can_unsync, bool host_writable, bool ad_disabled, u64 *new_spte); u64 make_nonleaf_spte(u64 *child_pt, bool ad_disabled); u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access); u64 mark_spte_for_access_track(u64 spte); u64 kvm_mmu_changed_pte_notifier_make_spte(u64 old_spte, kvm_pfn_t new_pfn); void kvm_mmu_reset_all_pte_masks(void); #endif