/* bpf_jit_comp.c : BPF JIT compiler * * Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com) * Internal BPF Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; version 2 * of the License. */ #include #include #include #include #include #include int bpf_jit_enable __read_mostly; /* * assembly code in arch/x86/net/bpf_jit.S */ extern u8 sk_load_word[], sk_load_half[], sk_load_byte[]; extern u8 sk_load_word_positive_offset[], sk_load_half_positive_offset[]; extern u8 sk_load_byte_positive_offset[]; extern u8 sk_load_word_negative_offset[], sk_load_half_negative_offset[]; extern u8 sk_load_byte_negative_offset[]; static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len) { if (len == 1) *ptr = bytes; else if (len == 2) *(u16 *)ptr = bytes; else { *(u32 *)ptr = bytes; barrier(); } return ptr + len; } #define EMIT(bytes, len) \ do { prog = emit_code(prog, bytes, len); cnt += len; } while (0) #define EMIT1(b1) EMIT(b1, 1) #define EMIT2(b1, b2) EMIT((b1) + ((b2) << 8), 2) #define EMIT3(b1, b2, b3) EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3) #define EMIT4(b1, b2, b3, b4) EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4) #define EMIT1_off32(b1, off) \ do {EMIT1(b1); EMIT(off, 4); } while (0) #define EMIT2_off32(b1, b2, off) \ do {EMIT2(b1, b2); EMIT(off, 4); } while (0) #define EMIT3_off32(b1, b2, b3, off) \ do {EMIT3(b1, b2, b3); EMIT(off, 4); } while (0) #define EMIT4_off32(b1, b2, b3, b4, off) \ do {EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0) static bool is_imm8(int value) { return value <= 127 && value >= -128; } static bool is_simm32(s64 value) { return value == (s64) (s32) value; } /* mov dst, src */ #define EMIT_mov(DST, SRC) \ do {if (DST != SRC) \ EMIT3(add_2mod(0x48, DST, SRC), 0x89, add_2reg(0xC0, DST, SRC)); \ } while (0) static int bpf_size_to_x86_bytes(int bpf_size) { if (bpf_size == BPF_W) return 4; else if (bpf_size == BPF_H) return 2; else if (bpf_size == BPF_B) return 1; else if (bpf_size == BPF_DW) return 4; /* imm32 */ else return 0; } /* list of x86 cond jumps opcodes (. + s8) * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32) */ #define X86_JB 0x72 #define X86_JAE 0x73 #define X86_JE 0x74 #define X86_JNE 0x75 #define X86_JBE 0x76 #define X86_JA 0x77 #define X86_JL 0x7C #define X86_JGE 0x7D #define X86_JLE 0x7E #define X86_JG 0x7F static void bpf_flush_icache(void *start, void *end) { mm_segment_t old_fs = get_fs(); set_fs(KERNEL_DS); smp_wmb(); flush_icache_range((unsigned long)start, (unsigned long)end); set_fs(old_fs); } #define CHOOSE_LOAD_FUNC(K, func) \ ((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset) /* pick a register outside of BPF range for JIT internal work */ #define AUX_REG (MAX_BPF_JIT_REG + 1) /* The following table maps BPF registers to x64 registers. * * x64 register r12 is unused, since if used as base address * register in load/store instructions, it always needs an * extra byte of encoding and is callee saved. * * r9 caches skb->len - skb->data_len * r10 caches skb->data, and used for blinding (if enabled) */ static const int reg2hex[] = { [BPF_REG_0] = 0, /* rax */ [BPF_REG_1] = 7, /* rdi */ [BPF_REG_2] = 6, /* rsi */ [BPF_REG_3] = 2, /* rdx */ [BPF_REG_4] = 1, /* rcx */ [BPF_REG_5] = 0, /* r8 */ [BPF_REG_6] = 3, /* rbx callee saved */ [BPF_REG_7] = 5, /* r13 callee saved */ [BPF_REG_8] = 6, /* r14 callee saved */ [BPF_REG_9] = 7, /* r15 callee saved */ [BPF_REG_FP] = 5, /* rbp readonly */ [BPF_REG_AX] = 2, /* r10 temp register */ [AUX_REG] = 3, /* r11 temp register */ }; /* is_ereg() == true if BPF register 'reg' maps to x64 r8..r15 * which need extra byte of encoding. * rax,rcx,...,rbp have simpler encoding */ static bool is_ereg(u32 reg) { return (1 << reg) & (BIT(BPF_REG_5) | BIT(AUX_REG) | BIT(BPF_REG_7) | BIT(BPF_REG_8) | BIT(BPF_REG_9) | BIT(BPF_REG_AX)); } /* add modifiers if 'reg' maps to x64 registers r8..r15 */ static u8 add_1mod(u8 byte, u32 reg) { if (is_ereg(reg)) byte |= 1; return byte; } static u8 add_2mod(u8 byte, u32 r1, u32 r2) { if (is_ereg(r1)) byte |= 1; if (is_ereg(r2)) byte |= 4; return byte; } /* encode 'dst_reg' register into x64 opcode 'byte' */ static u8 add_1reg(u8 byte, u32 dst_reg) { return byte + reg2hex[dst_reg]; } /* encode 'dst_reg' and 'src_reg' registers into x64 opcode 'byte' */ static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg) { return byte + reg2hex[dst_reg] + (reg2hex[src_reg] << 3); } static void jit_fill_hole(void *area, unsigned int size) { /* fill whole space with int3 instructions */ memset(area, 0xcc, size); } struct jit_context { int cleanup_addr; /* epilogue code offset */ bool seen_ld_abs; bool seen_ax_reg; }; /* maximum number of bytes emitted while JITing one eBPF insn */ #define BPF_MAX_INSN_SIZE 128 #define BPF_INSN_SAFETY 64 #define AUX_STACK_SPACE \ (32 /* space for rbx, r13, r14, r15 */ + \ 8 /* space for skb_copy_bits() buffer */) #define PROLOGUE_SIZE 37 /* emit x64 prologue code for BPF program and check it's size. * bpf_tail_call helper will skip it while jumping into another program */ static void emit_prologue(u8 **pprog, u32 stack_depth) { u8 *prog = *pprog; int cnt = 0; EMIT1(0x55); /* push rbp */ EMIT3(0x48, 0x89, 0xE5); /* mov rbp,rsp */ /* sub rsp, rounded_stack_depth + AUX_STACK_SPACE */ EMIT3_off32(0x48, 0x81, 0xEC, round_up(stack_depth, 8) + AUX_STACK_SPACE); /* sub rbp, AUX_STACK_SPACE */ EMIT4(0x48, 0x83, 0xED, AUX_STACK_SPACE); /* all classic BPF filters use R6(rbx) save it */ /* mov qword ptr [rbp+0],rbx */ EMIT4(0x48, 0x89, 0x5D, 0); /* bpf_convert_filter() maps classic BPF register X to R7 and uses R8 * as temporary, so all tcpdump filters need to spill/fill R7(r13) and * R8(r14). R9(r15) spill could be made conditional, but there is only * one 'bpf_error' return path out of helper functions inside bpf_jit.S * The overhead of extra spill is negligible for any filter other * than synthetic ones. Therefore not worth adding complexity. */ /* mov qword ptr [rbp+8],r13 */ EMIT4(0x4C, 0x89, 0x6D, 8); /* mov qword ptr [rbp+16],r14 */ EMIT4(0x4C, 0x89, 0x75, 16); /* mov qword ptr [rbp+24],r15 */ EMIT4(0x4C, 0x89, 0x7D, 24); /* Clear the tail call counter (tail_call_cnt): for eBPF tail calls * we need to reset the counter to 0. It's done in two instructions, * resetting rax register to 0 (xor on eax gets 0 extended), and * moving it to the counter location. */ /* xor eax, eax */ EMIT2(0x31, 0xc0); /* mov qword ptr [rbp+32], rax */ EMIT4(0x48, 0x89, 0x45, 32); BUILD_BUG_ON(cnt != PROLOGUE_SIZE); *pprog = prog; } /* generate the following code: * ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ... * if (index >= array->map.max_entries) * goto out; * if (++tail_call_cnt > MAX_TAIL_CALL_CNT) * goto out; * prog = array->ptrs[index]; * if (prog == NULL) * goto out; * goto *(prog->bpf_func + prologue_size); * out: */ static void emit_bpf_tail_call(u8 **pprog) { u8 *prog = *pprog; int label1, label2, label3; int cnt = 0; /* rdi - pointer to ctx * rsi - pointer to bpf_array * rdx - index in bpf_array */ /* if (index >= array->map.max_entries) * goto out; */ EMIT2(0x89, 0xD2); /* mov edx, edx */ EMIT3(0x39, 0x56, /* cmp dword ptr [rsi + 16], edx */ offsetof(struct bpf_array, map.max_entries)); #define OFFSET1 43 /* number of bytes to jump */ EMIT2(X86_JBE, OFFSET1); /* jbe out */ label1 = cnt; /* if (tail_call_cnt > MAX_TAIL_CALL_CNT) * goto out; */ EMIT2_off32(0x8B, 0x85, 36); /* mov eax, dword ptr [rbp + 36] */ EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT); /* cmp eax, MAX_TAIL_CALL_CNT */ #define OFFSET2 32 EMIT2(X86_JA, OFFSET2); /* ja out */ label2 = cnt; EMIT3(0x83, 0xC0, 0x01); /* add eax, 1 */ EMIT2_off32(0x89, 0x85, 36); /* mov dword ptr [rbp + 36], eax */ /* prog = array->ptrs[index]; */ EMIT4_off32(0x48, 0x8B, 0x84, 0xD6, /* mov rax, [rsi + rdx * 8 + offsetof(...)] */ offsetof(struct bpf_array, ptrs)); /* if (prog == NULL) * goto out; */ EMIT3(0x48, 0x85, 0xC0); /* test rax,rax */ #define OFFSET3 10 EMIT2(X86_JE, OFFSET3); /* je out */ label3 = cnt; /* goto *(prog->bpf_func + prologue_size); */ EMIT4(0x48, 0x8B, 0x40, /* mov rax, qword ptr [rax + 32] */ offsetof(struct bpf_prog, bpf_func)); EMIT4(0x48, 0x83, 0xC0, PROLOGUE_SIZE); /* add rax, prologue_size */ /* now we're ready to jump into next BPF program * rdi == ctx (1st arg) * rax == prog->bpf_func + prologue_size */ EMIT2(0xFF, 0xE0); /* jmp rax */ /* out: */ BUILD_BUG_ON(cnt - label1 != OFFSET1); BUILD_BUG_ON(cnt - label2 != OFFSET2); BUILD_BUG_ON(cnt - label3 != OFFSET3); *pprog = prog; } static void emit_load_skb_data_hlen(u8 **pprog) { u8 *prog = *pprog; int cnt = 0; /* r9d = skb->len - skb->data_len (headlen) * r10 = skb->data */ /* mov %r9d, off32(%rdi) */ EMIT3_off32(0x44, 0x8b, 0x8f, offsetof(struct sk_buff, len)); /* sub %r9d, off32(%rdi) */ EMIT3_off32(0x44, 0x2b, 0x8f, offsetof(struct sk_buff, data_len)); /* mov %r10, off32(%rdi) */ EMIT3_off32(0x4c, 0x8b, 0x97, offsetof(struct sk_buff, data)); *pprog = prog; } static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image, int oldproglen, struct jit_context *ctx) { struct bpf_insn *insn = bpf_prog->insnsi; int insn_cnt = bpf_prog->len; bool seen_ld_abs = ctx->seen_ld_abs | (oldproglen == 0); bool seen_ax_reg = ctx->seen_ax_reg | (oldproglen == 0); bool seen_exit = false; u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY]; int i, cnt = 0; int proglen = 0; u8 *prog = temp; emit_prologue(&prog, bpf_prog->aux->stack_depth); if (seen_ld_abs) emit_load_skb_data_hlen(&prog); for (i = 0; i < insn_cnt; i++, insn++) { const s32 imm32 = insn->imm; u32 dst_reg = insn->dst_reg; u32 src_reg = insn->src_reg; u8 b1 = 0, b2 = 0, b3 = 0; s64 jmp_offset; u8 jmp_cond; bool reload_skb_data; int ilen; u8 *func; if (dst_reg == BPF_REG_AX || src_reg == BPF_REG_AX) ctx->seen_ax_reg = seen_ax_reg = true; switch (insn->code) { /* ALU */ case BPF_ALU | BPF_ADD | BPF_X: case BPF_ALU | BPF_SUB | BPF_X: case BPF_ALU | BPF_AND | BPF_X: case BPF_ALU | BPF_OR | BPF_X: case BPF_ALU | BPF_XOR | BPF_X: case BPF_ALU64 | BPF_ADD | BPF_X: case BPF_ALU64 | BPF_SUB | BPF_X: case BPF_ALU64 | BPF_AND | BPF_X: case BPF_ALU64 | BPF_OR | BPF_X: case BPF_ALU64 | BPF_XOR | BPF_X: switch (BPF_OP(insn->code)) { case BPF_ADD: b2 = 0x01; break; case BPF_SUB: b2 = 0x29; break; case BPF_AND: b2 = 0x21; break; case BPF_OR: b2 = 0x09; break; case BPF_XOR: b2 = 0x31; break; } if (BPF_CLASS(insn->code) == BPF_ALU64) EMIT1(add_2mod(0x48, dst_reg, src_reg)); else if (is_ereg(dst_reg) || is_ereg(src_reg)) EMIT1(add_2mod(0x40, dst_reg, src_reg)); EMIT2(b2, add_2reg(0xC0, dst_reg, src_reg)); break; /* mov dst, src */ case BPF_ALU64 | BPF_MOV | BPF_X: EMIT_mov(dst_reg, src_reg); break; /* mov32 dst, src */ case BPF_ALU | BPF_MOV | BPF_X: if (is_ereg(dst_reg) || is_ereg(src_reg)) EMIT1(add_2mod(0x40, dst_reg, src_reg)); EMIT2(0x89, add_2reg(0xC0, dst_reg, src_reg)); break; /* neg dst */ case BPF_ALU | BPF_NEG: case BPF_ALU64 | BPF_NEG: if (BPF_CLASS(insn->code) == BPF_ALU64) EMIT1(add_1mod(0x48, dst_reg)); else if (is_ereg(dst_reg)) EMIT1(add_1mod(0x40, dst_reg)); EMIT2(0xF7, add_1reg(0xD8, dst_reg)); break; case BPF_ALU | BPF_ADD | BPF_K: case BPF_ALU | BPF_SUB | BPF_K: case BPF_ALU | BPF_AND | BPF_K: case BPF_ALU | BPF_OR | BPF_K: case BPF_ALU | BPF_XOR | BPF_K: case BPF_ALU64 | BPF_ADD | BPF_K: case BPF_ALU64 | BPF_SUB | BPF_K: case BPF_ALU64 | BPF_AND | BPF_K: case BPF_ALU64 | BPF_OR | BPF_K: case BPF_ALU64 | BPF_XOR | BPF_K: if (BPF_CLASS(insn->code) == BPF_ALU64) EMIT1(add_1mod(0x48, dst_reg)); else if (is_ereg(dst_reg)) EMIT1(add_1mod(0x40, dst_reg)); switch (BPF_OP(insn->code)) { case BPF_ADD: b3 = 0xC0; break; case BPF_SUB: b3 = 0xE8; break; case BPF_AND: b3 = 0xE0; break; case BPF_OR: b3 = 0xC8; break; case BPF_XOR: b3 = 0xF0; break; } if (is_imm8(imm32)) EMIT3(0x83, add_1reg(b3, dst_reg), imm32); else EMIT2_off32(0x81, add_1reg(b3, dst_reg), imm32); break; case BPF_ALU64 | BPF_MOV | BPF_K: /* optimization: if imm32 is positive, * use 'mov eax, imm32' (which zero-extends imm32) * to save 2 bytes */ if (imm32 < 0) { /* 'mov rax, imm32' sign extends imm32 */ b1 = add_1mod(0x48, dst_reg); b2 = 0xC7; b3 = 0xC0; EMIT3_off32(b1, b2, add_1reg(b3, dst_reg), imm32); break; } case BPF_ALU | BPF_MOV | BPF_K: /* optimization: if imm32 is zero, use 'xor ,' * to save 3 bytes. */ if (imm32 == 0) { if (is_ereg(dst_reg)) EMIT1(add_2mod(0x40, dst_reg, dst_reg)); b2 = 0x31; /* xor */ b3 = 0xC0; EMIT2(b2, add_2reg(b3, dst_reg, dst_reg)); break; } /* mov %eax, imm32 */ if (is_ereg(dst_reg)) EMIT1(add_1mod(0x40, dst_reg)); EMIT1_off32(add_1reg(0xB8, dst_reg), imm32); break; case BPF_LD | BPF_IMM | BPF_DW: /* optimization: if imm64 is zero, use 'xor ,' * to save 7 bytes. */ if (insn[0].imm == 0 && insn[1].imm == 0) { b1 = add_2mod(0x48, dst_reg, dst_reg); b2 = 0x31; /* xor */ b3 = 0xC0; EMIT3(b1, b2, add_2reg(b3, dst_reg, dst_reg)); insn++; i++; break; } /* movabsq %rax, imm64 */ EMIT2(add_1mod(0x48, dst_reg), add_1reg(0xB8, dst_reg)); EMIT(insn[0].imm, 4); EMIT(insn[1].imm, 4); insn++; i++; break; /* dst %= src, dst /= src, dst %= imm32, dst /= imm32 */ case BPF_ALU | BPF_MOD | BPF_X: case BPF_ALU | BPF_DIV | BPF_X: case BPF_ALU | BPF_MOD | BPF_K: case BPF_ALU | BPF_DIV | BPF_K: case BPF_ALU64 | BPF_MOD | BPF_X: case BPF_ALU64 | BPF_DIV | BPF_X: case BPF_ALU64 | BPF_MOD | BPF_K: case BPF_ALU64 | BPF_DIV | BPF_K: EMIT1(0x50); /* push rax */ EMIT1(0x52); /* push rdx */ if (BPF_SRC(insn->code) == BPF_X) /* mov r11, src_reg */ EMIT_mov(AUX_REG, src_reg); else /* mov r11, imm32 */ EMIT3_off32(0x49, 0xC7, 0xC3, imm32); /* mov rax, dst_reg */ EMIT_mov(BPF_REG_0, dst_reg); /* xor edx, edx * equivalent to 'xor rdx, rdx', but one byte less */ EMIT2(0x31, 0xd2); if (BPF_SRC(insn->code) == BPF_X) { /* if (src_reg == 0) return 0 */ /* cmp r11, 0 */ EMIT4(0x49, 0x83, 0xFB, 0x00); /* jne .+9 (skip over pop, pop, xor and jmp) */ EMIT2(X86_JNE, 1 + 1 + 2 + 5); EMIT1(0x5A); /* pop rdx */ EMIT1(0x58); /* pop rax */ EMIT2(0x31, 0xc0); /* xor eax, eax */ /* jmp cleanup_addr * addrs[i] - 11, because there are 11 bytes * after this insn: div, mov, pop, pop, mov */ jmp_offset = ctx->cleanup_addr - (addrs[i] - 11); EMIT1_off32(0xE9, jmp_offset); } if (BPF_CLASS(insn->code) == BPF_ALU64) /* div r11 */ EMIT3(0x49, 0xF7, 0xF3); else /* div r11d */ EMIT3(0x41, 0xF7, 0xF3); if (BPF_OP(insn->code) == BPF_MOD) /* mov r11, rdx */ EMIT3(0x49, 0x89, 0xD3); else /* mov r11, rax */ EMIT3(0x49, 0x89, 0xC3); EMIT1(0x5A); /* pop rdx */ EMIT1(0x58); /* pop rax */ /* mov dst_reg, r11 */ EMIT_mov(dst_reg, AUX_REG); break; case BPF_ALU | BPF_MUL | BPF_K: case BPF_ALU | BPF_MUL | BPF_X: case BPF_ALU64 | BPF_MUL | BPF_K: case BPF_ALU64 | BPF_MUL | BPF_X: EMIT1(0x50); /* push rax */ EMIT1(0x52); /* push rdx */ /* mov r11, dst_reg */ EMIT_mov(AUX_REG, dst_reg); if (BPF_SRC(insn->code) == BPF_X) /* mov rax, src_reg */ EMIT_mov(BPF_REG_0, src_reg); else /* mov rax, imm32 */ EMIT3_off32(0x48, 0xC7, 0xC0, imm32); if (BPF_CLASS(insn->code) == BPF_ALU64) EMIT1(add_1mod(0x48, AUX_REG)); else if (is_ereg(AUX_REG)) EMIT1(add_1mod(0x40, AUX_REG)); /* mul(q) r11 */ EMIT2(0xF7, add_1reg(0xE0, AUX_REG)); /* mov r11, rax */ EMIT_mov(AUX_REG, BPF_REG_0); EMIT1(0x5A); /* pop rdx */ EMIT1(0x58); /* pop rax */ /* mov dst_reg, r11 */ EMIT_mov(dst_reg, AUX_REG); break; /* shifts */ case BPF_ALU | BPF_LSH | BPF_K: case BPF_ALU | BPF_RSH | BPF_K: case BPF_ALU | BPF_ARSH | BPF_K: case BPF_ALU64 | BPF_LSH | BPF_K: case BPF_ALU64 | BPF_RSH | BPF_K: case BPF_ALU64 | BPF_ARSH | BPF_K: if (BPF_CLASS(insn->code) == BPF_ALU64) EMIT1(add_1mod(0x48, dst_reg)); else if (is_ereg(dst_reg)) EMIT1(add_1mod(0x40, dst_reg)); switch (BPF_OP(insn->code)) { case BPF_LSH: b3 = 0xE0; break; case BPF_RSH: b3 = 0xE8; break; case BPF_ARSH: b3 = 0xF8; break; } EMIT3(0xC1, add_1reg(b3, dst_reg), imm32); break; case BPF_ALU | BPF_LSH | BPF_X: case BPF_ALU | BPF_RSH | BPF_X: case BPF_ALU | BPF_ARSH | BPF_X: case BPF_ALU64 | BPF_LSH | BPF_X: case BPF_ALU64 | BPF_RSH | BPF_X: case BPF_ALU64 | BPF_ARSH | BPF_X: /* check for bad case when dst_reg == rcx */ if (dst_reg == BPF_REG_4) { /* mov r11, dst_reg */ EMIT_mov(AUX_REG, dst_reg); dst_reg = AUX_REG; } if (src_reg != BPF_REG_4) { /* common case */ EMIT1(0x51); /* push rcx */ /* mov rcx, src_reg */ EMIT_mov(BPF_REG_4, src_reg); } /* shl %rax, %cl | shr %rax, %cl | sar %rax, %cl */ if (BPF_CLASS(insn->code) == BPF_ALU64) EMIT1(add_1mod(0x48, dst_reg)); else if (is_ereg(dst_reg)) EMIT1(add_1mod(0x40, dst_reg)); switch (BPF_OP(insn->code)) { case BPF_LSH: b3 = 0xE0; break; case BPF_RSH: b3 = 0xE8; break; case BPF_ARSH: b3 = 0xF8; break; } EMIT2(0xD3, add_1reg(b3, dst_reg)); if (src_reg != BPF_REG_4) EMIT1(0x59); /* pop rcx */ if (insn->dst_reg == BPF_REG_4) /* mov dst_reg, r11 */ EMIT_mov(insn->dst_reg, AUX_REG); break; case BPF_ALU | BPF_END | BPF_FROM_BE: switch (imm32) { case 16: /* emit 'ror %ax, 8' to swap lower 2 bytes */ EMIT1(0x66); if (is_ereg(dst_reg)) EMIT1(0x41); EMIT3(0xC1, add_1reg(0xC8, dst_reg), 8); /* emit 'movzwl eax, ax' */ if (is_ereg(dst_reg)) EMIT3(0x45, 0x0F, 0xB7); else EMIT2(0x0F, 0xB7); EMIT1(add_2reg(0xC0, dst_reg, dst_reg)); break; case 32: /* emit 'bswap eax' to swap lower 4 bytes */ if (is_ereg(dst_reg)) EMIT2(0x41, 0x0F); else EMIT1(0x0F); EMIT1(add_1reg(0xC8, dst_reg)); break; case 64: /* emit 'bswap rax' to swap 8 bytes */ EMIT3(add_1mod(0x48, dst_reg), 0x0F, add_1reg(0xC8, dst_reg)); break; } break; case BPF_ALU | BPF_END | BPF_FROM_LE: switch (imm32) { case 16: /* emit 'movzwl eax, ax' to zero extend 16-bit * into 64 bit */ if (is_ereg(dst_reg)) EMIT3(0x45, 0x0F, 0xB7); else EMIT2(0x0F, 0xB7); EMIT1(add_2reg(0xC0, dst_reg, dst_reg)); break; case 32: /* emit 'mov eax, eax' to clear upper 32-bits */ if (is_ereg(dst_reg)) EMIT1(0x45); EMIT2(0x89, add_2reg(0xC0, dst_reg, dst_reg)); break; case 64: /* nop */ break; } break; /* ST: *(u8*)(dst_reg + off) = imm */ case BPF_ST | BPF_MEM | BPF_B: if (is_ereg(dst_reg)) EMIT2(0x41, 0xC6); else EMIT1(0xC6); goto st; case BPF_ST | BPF_MEM | BPF_H: if (is_ereg(dst_reg)) EMIT3(0x66, 0x41, 0xC7); else EMIT2(0x66, 0xC7); goto st; case BPF_ST | BPF_MEM | BPF_W: if (is_ereg(dst_reg)) EMIT2(0x41, 0xC7); else EMIT1(0xC7); goto st; case BPF_ST | BPF_MEM | BPF_DW: EMIT2(add_1mod(0x48, dst_reg), 0xC7); st: if (is_imm8(insn->off)) EMIT2(add_1reg(0x40, dst_reg), insn->off); else EMIT1_off32(add_1reg(0x80, dst_reg), insn->off); EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(insn->code))); break; /* STX: *(u8*)(dst_reg + off) = src_reg */ case BPF_STX | BPF_MEM | BPF_B: /* emit 'mov byte ptr [rax + off], al' */ if (is_ereg(dst_reg) || is_ereg(src_reg) || /* have to add extra byte for x86 SIL, DIL regs */ src_reg == BPF_REG_1 || src_reg == BPF_REG_2) EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x88); else EMIT1(0x88); goto stx; case BPF_STX | BPF_MEM | BPF_H: if (is_ereg(dst_reg) || is_ereg(src_reg)) EMIT3(0x66, add_2mod(0x40, dst_reg, src_reg), 0x89); else EMIT2(0x66, 0x89); goto stx; case BPF_STX | BPF_MEM | BPF_W: if (is_ereg(dst_reg) || is_ereg(src_reg)) EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x89); else EMIT1(0x89); goto stx; case BPF_STX | BPF_MEM | BPF_DW: EMIT2(add_2mod(0x48, dst_reg, src_reg), 0x89); stx: if (is_imm8(insn->off)) EMIT2(add_2reg(0x40, dst_reg, src_reg), insn->off); else EMIT1_off32(add_2reg(0x80, dst_reg, src_reg), insn->off); break; /* LDX: dst_reg = *(u8*)(src_reg + off) */ case BPF_LDX | BPF_MEM | BPF_B: /* emit 'movzx rax, byte ptr [rax + off]' */ EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB6); goto ldx; case BPF_LDX | BPF_MEM | BPF_H: /* emit 'movzx rax, word ptr [rax + off]' */ EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB7); goto ldx; case BPF_LDX | BPF_MEM | BPF_W: /* emit 'mov eax, dword ptr [rax+0x14]' */ if (is_ereg(dst_reg) || is_ereg(src_reg)) EMIT2(add_2mod(0x40, src_reg, dst_reg), 0x8B); else EMIT1(0x8B); goto ldx; case BPF_LDX | BPF_MEM | BPF_DW: /* emit 'mov rax, qword ptr [rax+0x14]' */ EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x8B); ldx: /* if insn->off == 0 we can save one extra byte, but * special case of x86 r13 which always needs an offset * is not worth the hassle */ if (is_imm8(insn->off)) EMIT2(add_2reg(0x40, src_reg, dst_reg), insn->off); else EMIT1_off32(add_2reg(0x80, src_reg, dst_reg), insn->off); break; /* STX XADD: lock *(u32*)(dst_reg + off) += src_reg */ case BPF_STX | BPF_XADD | BPF_W: /* emit 'lock add dword ptr [rax + off], eax' */ if (is_ereg(dst_reg) || is_ereg(src_reg)) EMIT3(0xF0, add_2mod(0x40, dst_reg, src_reg), 0x01); else EMIT2(0xF0, 0x01); goto xadd; case BPF_STX | BPF_XADD | BPF_DW: EMIT3(0xF0, add_2mod(0x48, dst_reg, src_reg), 0x01); xadd: if (is_imm8(insn->off)) EMIT2(add_2reg(0x40, dst_reg, src_reg), insn->off); else EMIT1_off32(add_2reg(0x80, dst_reg, src_reg), insn->off); break; /* call */ case BPF_JMP | BPF_CALL: func = (u8 *) __bpf_call_base + imm32; jmp_offset = func - (image + addrs[i]); if (seen_ld_abs) { reload_skb_data = bpf_helper_changes_pkt_data(func); if (reload_skb_data) { EMIT1(0x57); /* push %rdi */ jmp_offset += 22; /* pop, mov, sub, mov */ } else { EMIT2(0x41, 0x52); /* push %r10 */ EMIT2(0x41, 0x51); /* push %r9 */ /* need to adjust jmp offset, since * pop %r9, pop %r10 take 4 bytes after call insn */ jmp_offset += 4; } } if (!imm32 || !is_simm32(jmp_offset)) { pr_err("unsupported bpf func %d addr %p image %p\n", imm32, func, image); return -EINVAL; } EMIT1_off32(0xE8, jmp_offset); if (seen_ld_abs) { if (reload_skb_data) { EMIT1(0x5F); /* pop %rdi */ emit_load_skb_data_hlen(&prog); } else { EMIT2(0x41, 0x59); /* pop %r9 */ EMIT2(0x41, 0x5A); /* pop %r10 */ } } break; case BPF_JMP | BPF_TAIL_CALL: emit_bpf_tail_call(&prog); break; /* cond jump */ case BPF_JMP | BPF_JEQ | BPF_X: case BPF_JMP | BPF_JNE | BPF_X: case BPF_JMP | BPF_JGT | BPF_X: case BPF_JMP | BPF_JLT | BPF_X: case BPF_JMP | BPF_JGE | BPF_X: case BPF_JMP | BPF_JLE | BPF_X: case BPF_JMP | BPF_JSGT | BPF_X: case BPF_JMP | BPF_JSLT | BPF_X: case BPF_JMP | BPF_JSGE | BPF_X: case BPF_JMP | BPF_JSLE | BPF_X: /* cmp dst_reg, src_reg */ EMIT3(add_2mod(0x48, dst_reg, src_reg), 0x39, add_2reg(0xC0, dst_reg, src_reg)); goto emit_cond_jmp; case BPF_JMP | BPF_JSET | BPF_X: /* test dst_reg, src_reg */ EMIT3(add_2mod(0x48, dst_reg, src_reg), 0x85, add_2reg(0xC0, dst_reg, src_reg)); goto emit_cond_jmp; case BPF_JMP | BPF_JSET | BPF_K: /* test dst_reg, imm32 */ EMIT1(add_1mod(0x48, dst_reg)); EMIT2_off32(0xF7, add_1reg(0xC0, dst_reg), imm32); goto emit_cond_jmp; case BPF_JMP | BPF_JEQ | BPF_K: case BPF_JMP | BPF_JNE | BPF_K: case BPF_JMP | BPF_JGT | BPF_K: case BPF_JMP | BPF_JLT | BPF_K: case BPF_JMP | BPF_JGE | BPF_K: case BPF_JMP | BPF_JLE | BPF_K: case BPF_JMP | BPF_JSGT | BPF_K: case BPF_JMP | BPF_JSLT | BPF_K: case BPF_JMP | BPF_JSGE | BPF_K: case BPF_JMP | BPF_JSLE | BPF_K: /* cmp dst_reg, imm8/32 */ EMIT1(add_1mod(0x48, dst_reg)); if (is_imm8(imm32)) EMIT3(0x83, add_1reg(0xF8, dst_reg), imm32); else EMIT2_off32(0x81, add_1reg(0xF8, dst_reg), imm32); emit_cond_jmp: /* convert BPF opcode to x86 */ switch (BPF_OP(insn->code)) { case BPF_JEQ: jmp_cond = X86_JE; break; case BPF_JSET: case BPF_JNE: jmp_cond = X86_JNE; break; case BPF_JGT: /* GT is unsigned '>', JA in x86 */ jmp_cond = X86_JA; break; case BPF_JLT: /* LT is unsigned '<', JB in x86 */ jmp_cond = X86_JB; break; case BPF_JGE: /* GE is unsigned '>=', JAE in x86 */ jmp_cond = X86_JAE; break; case BPF_JLE: /* LE is unsigned '<=', JBE in x86 */ jmp_cond = X86_JBE; break; case BPF_JSGT: /* signed '>', GT in x86 */ jmp_cond = X86_JG; break; case BPF_JSLT: /* signed '<', LT in x86 */ jmp_cond = X86_JL; break; case BPF_JSGE: /* signed '>=', GE in x86 */ jmp_cond = X86_JGE; break; case BPF_JSLE: /* signed '<=', LE in x86 */ jmp_cond = X86_JLE; break; default: /* to silence gcc warning */ return -EFAULT; } jmp_offset = addrs[i + insn->off] - addrs[i]; if (is_imm8(jmp_offset)) { EMIT2(jmp_cond, jmp_offset); } else if (is_simm32(jmp_offset)) { EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset); } else { pr_err("cond_jmp gen bug %llx\n", jmp_offset); return -EFAULT; } break; case BPF_JMP | BPF_JA: jmp_offset = addrs[i + insn->off] - addrs[i]; if (!jmp_offset) /* optimize out nop jumps */ break; emit_jmp: if (is_imm8(jmp_offset)) { EMIT2(0xEB, jmp_offset); } else if (is_simm32(jmp_offset)) { EMIT1_off32(0xE9, jmp_offset); } else { pr_err("jmp gen bug %llx\n", jmp_offset); return -EFAULT; } break; case BPF_LD | BPF_IND | BPF_W: func = sk_load_word; goto common_load; case BPF_LD | BPF_ABS | BPF_W: func = CHOOSE_LOAD_FUNC(imm32, sk_load_word); common_load: ctx->seen_ld_abs = seen_ld_abs = true; jmp_offset = func - (image + addrs[i]); if (!func || !is_simm32(jmp_offset)) { pr_err("unsupported bpf func %d addr %p image %p\n", imm32, func, image); return -EINVAL; } if (BPF_MODE(insn->code) == BPF_ABS) { /* mov %esi, imm32 */ EMIT1_off32(0xBE, imm32); } else { /* mov %rsi, src_reg */ EMIT_mov(BPF_REG_2, src_reg); if (imm32) { if (is_imm8(imm32)) /* add %esi, imm8 */ EMIT3(0x83, 0xC6, imm32); else /* add %esi, imm32 */ EMIT2_off32(0x81, 0xC6, imm32); } } /* skb pointer is in R6 (%rbx), it will be copied into * %rdi if skb_copy_bits() call is necessary. * sk_load_* helpers also use %r10 and %r9d. * See bpf_jit.S */ if (seen_ax_reg) /* r10 = skb->data, mov %r10, off32(%rbx) */ EMIT3_off32(0x4c, 0x8b, 0x93, offsetof(struct sk_buff, data)); EMIT1_off32(0xE8, jmp_offset); /* call */ break; case BPF_LD | BPF_IND | BPF_H: func = sk_load_half; goto common_load; case BPF_LD | BPF_ABS | BPF_H: func = CHOOSE_LOAD_FUNC(imm32, sk_load_half); goto common_load; case BPF_LD | BPF_IND | BPF_B: func = sk_load_byte; goto common_load; case BPF_LD | BPF_ABS | BPF_B: func = CHOOSE_LOAD_FUNC(imm32, sk_load_byte); goto common_load; case BPF_JMP | BPF_EXIT: if (seen_exit) { jmp_offset = ctx->cleanup_addr - addrs[i]; goto emit_jmp; } seen_exit = true; /* update cleanup_addr */ ctx->cleanup_addr = proglen; /* mov rbx, qword ptr [rbp+0] */ EMIT4(0x48, 0x8B, 0x5D, 0); /* mov r13, qword ptr [rbp+8] */ EMIT4(0x4C, 0x8B, 0x6D, 8); /* mov r14, qword ptr [rbp+16] */ EMIT4(0x4C, 0x8B, 0x75, 16); /* mov r15, qword ptr [rbp+24] */ EMIT4(0x4C, 0x8B, 0x7D, 24); /* add rbp, AUX_STACK_SPACE */ EMIT4(0x48, 0x83, 0xC5, AUX_STACK_SPACE); EMIT1(0xC9); /* leave */ EMIT1(0xC3); /* ret */ break; default: /* By design x64 JIT should support all BPF instructions * This error will be seen if new instruction was added * to interpreter, but not to JIT * or if there is junk in bpf_prog */ pr_err("bpf_jit: unknown opcode %02x\n", insn->code); return -EINVAL; } ilen = prog - temp; if (ilen > BPF_MAX_INSN_SIZE) { pr_err("bpf_jit: fatal insn size error\n"); return -EFAULT; } if (image) { if (unlikely(proglen + ilen > oldproglen)) { pr_err("bpf_jit: fatal error\n"); return -EFAULT; } memcpy(image + proglen, temp, ilen); } proglen += ilen; addrs[i] = proglen; prog = temp; } return proglen; } struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog) { struct bpf_binary_header *header = NULL; struct bpf_prog *tmp, *orig_prog = prog; int proglen, oldproglen = 0; struct jit_context ctx = {}; bool tmp_blinded = false; u8 *image = NULL; int *addrs; int pass; int i; if (!bpf_jit_enable) return orig_prog; tmp = bpf_jit_blind_constants(prog); /* If blinding was requested and we failed during blinding, * we must fall back to the interpreter. */ if (IS_ERR(tmp)) return orig_prog; if (tmp != prog) { tmp_blinded = true; prog = tmp; } addrs = kmalloc(prog->len * sizeof(*addrs), GFP_KERNEL); if (!addrs) { prog = orig_prog; goto out; } /* Before first pass, make a rough estimation of addrs[] * each bpf instruction is translated to less than 64 bytes */ for (proglen = 0, i = 0; i < prog->len; i++) { proglen += 64; addrs[i] = proglen; } ctx.cleanup_addr = proglen; /* JITed image shrinks with every pass and the loop iterates * until the image stops shrinking. Very large bpf programs * may converge on the last pass. In such case do one more * pass to emit the final image */ for (pass = 0; pass < 10 || image; pass++) { proglen = do_jit(prog, addrs, image, oldproglen, &ctx); if (proglen <= 0) { image = NULL; if (header) bpf_jit_binary_free(header); prog = orig_prog; goto out_addrs; } if (image) { if (proglen != oldproglen) { pr_err("bpf_jit: proglen=%d != oldproglen=%d\n", proglen, oldproglen); prog = orig_prog; goto out_addrs; } break; } if (proglen == oldproglen) { header = bpf_jit_binary_alloc(proglen, &image, 1, jit_fill_hole); if (!header) { prog = orig_prog; goto out_addrs; } } oldproglen = proglen; } if (bpf_jit_enable > 1) bpf_jit_dump(prog->len, proglen, pass + 1, image); if (image) { bpf_flush_icache(header, image + proglen); bpf_jit_binary_lock_ro(header); prog->bpf_func = (void *)image; prog->jited = 1; prog->jited_len = proglen; } else { prog = orig_prog; } out_addrs: kfree(addrs); out: if (tmp_blinded) bpf_jit_prog_release_other(prog, prog == orig_prog ? tmp : orig_prog); return prog; }