// SPDX-License-Identifier: GPL-2.0 /* * Split spinlock implementation out into its own file, so it can be * compiled in a FTRACE-compatible way. */ #include #include #include #include #include #include #include #include #include #include #include "xen-ops.h" #include "debugfs.h" static DEFINE_PER_CPU(int, lock_kicker_irq) = -1; static DEFINE_PER_CPU(char *, irq_name); static bool xen_pvspin = true; #include static void xen_qlock_kick(int cpu) { int irq = per_cpu(lock_kicker_irq, cpu); /* Don't kick if the target's kicker interrupt is not initialized. */ if (irq == -1) return; xen_send_IPI_one(cpu, XEN_SPIN_UNLOCK_VECTOR); } /* * Halt the current CPU & release it back to the host */ static void xen_qlock_wait(u8 *byte, u8 val) { int irq = __this_cpu_read(lock_kicker_irq); /* If kicker interrupts not initialized yet, just spin */ if (irq == -1) return; /* clear pending */ xen_clear_irq_pending(irq); barrier(); /* * We check the byte value after clearing pending IRQ to make sure * that we won't miss a wakeup event because of the clearing. * * The sync_clear_bit() call in xen_clear_irq_pending() is atomic. * So it is effectively a memory barrier for x86. */ if (READ_ONCE(*byte) != val) return; /* * If an interrupt happens here, it will leave the wakeup irq * pending, which will cause xen_poll_irq() to return * immediately. */ /* Block until irq becomes pending (or perhaps a spurious wakeup) */ xen_poll_irq(irq); } static irqreturn_t dummy_handler(int irq, void *dev_id) { BUG(); return IRQ_HANDLED; } void xen_init_lock_cpu(int cpu) { int irq; char *name; if (!xen_pvspin) { if (cpu == 0) static_branch_disable(&virt_spin_lock_key); return; } WARN(per_cpu(lock_kicker_irq, cpu) >= 0, "spinlock on CPU%d exists on IRQ%d!\n", cpu, per_cpu(lock_kicker_irq, cpu)); name = kasprintf(GFP_KERNEL, "spinlock%d", cpu); irq = bind_ipi_to_irqhandler(XEN_SPIN_UNLOCK_VECTOR, cpu, dummy_handler, IRQF_PERCPU|IRQF_NOBALANCING, name, NULL); if (irq >= 0) { disable_irq(irq); /* make sure it's never delivered */ per_cpu(lock_kicker_irq, cpu) = irq; per_cpu(irq_name, cpu) = name; } printk("cpu %d spinlock event irq %d\n", cpu, irq); } void xen_uninit_lock_cpu(int cpu) { if (!xen_pvspin) return; unbind_from_irqhandler(per_cpu(lock_kicker_irq, cpu), NULL); per_cpu(lock_kicker_irq, cpu) = -1; kfree(per_cpu(irq_name, cpu)); per_cpu(irq_name, cpu) = NULL; } PV_CALLEE_SAVE_REGS_THUNK(xen_vcpu_stolen); /* * Our init of PV spinlocks is split in two init functions due to us * using paravirt patching and jump labels patching and having to do * all of this before SMP code is invoked. * * The paravirt patching needs to be done _before_ the alternative asm code * is started, otherwise we would not patch the core kernel code. */ void __init xen_init_spinlocks(void) { if (!xen_pvspin) { printk(KERN_DEBUG "xen: PV spinlocks disabled\n"); return; } printk(KERN_DEBUG "xen: PV spinlocks enabled\n"); __pv_init_lock_hash(); pv_lock_ops.queued_spin_lock_slowpath = __pv_queued_spin_lock_slowpath; pv_lock_ops.queued_spin_unlock = PV_CALLEE_SAVE(__pv_queued_spin_unlock); pv_lock_ops.wait = xen_qlock_wait; pv_lock_ops.kick = xen_qlock_kick; pv_lock_ops.vcpu_is_preempted = PV_CALLEE_SAVE(xen_vcpu_stolen); } static __init int xen_parse_nopvspin(char *arg) { xen_pvspin = false; return 0; } early_param("xen_nopvspin", xen_parse_nopvspin);