// SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2019 HiSilicon Limited. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "qm.h" /* eq/aeq irq enable */ #define QM_VF_AEQ_INT_SOURCE 0x0 #define QM_VF_AEQ_INT_MASK 0x4 #define QM_VF_EQ_INT_SOURCE 0x8 #define QM_VF_EQ_INT_MASK 0xc #define QM_IRQ_NUM_V1 1 #define QM_IRQ_NUM_PF_V2 4 #define QM_IRQ_NUM_VF_V2 2 #define QM_EQ_EVENT_IRQ_VECTOR 0 #define QM_AEQ_EVENT_IRQ_VECTOR 1 #define QM_ABNORMAL_EVENT_IRQ_VECTOR 3 /* mailbox */ #define QM_MB_CMD_SQC 0x0 #define QM_MB_CMD_CQC 0x1 #define QM_MB_CMD_EQC 0x2 #define QM_MB_CMD_AEQC 0x3 #define QM_MB_CMD_SQC_BT 0x4 #define QM_MB_CMD_CQC_BT 0x5 #define QM_MB_CMD_SQC_VFT_V2 0x6 #define QM_MB_CMD_STOP_QP 0x8 #define QM_MB_CMD_SEND_BASE 0x300 #define QM_MB_EVENT_SHIFT 8 #define QM_MB_BUSY_SHIFT 13 #define QM_MB_OP_SHIFT 14 #define QM_MB_CMD_DATA_ADDR_L 0x304 #define QM_MB_CMD_DATA_ADDR_H 0x308 /* sqc shift */ #define QM_SQ_HOP_NUM_SHIFT 0 #define QM_SQ_PAGE_SIZE_SHIFT 4 #define QM_SQ_BUF_SIZE_SHIFT 8 #define QM_SQ_SQE_SIZE_SHIFT 12 #define QM_SQ_PRIORITY_SHIFT 0 #define QM_SQ_ORDERS_SHIFT 4 #define QM_SQ_TYPE_SHIFT 8 #define QM_QC_PASID_ENABLE 0x1 #define QM_QC_PASID_ENABLE_SHIFT 7 #define QM_SQ_TYPE_MASK GENMASK(3, 0) #define QM_SQ_TAIL_IDX(sqc) ((le16_to_cpu((sqc)->w11) >> 6) & 0x1) /* cqc shift */ #define QM_CQ_HOP_NUM_SHIFT 0 #define QM_CQ_PAGE_SIZE_SHIFT 4 #define QM_CQ_BUF_SIZE_SHIFT 8 #define QM_CQ_CQE_SIZE_SHIFT 12 #define QM_CQ_PHASE_SHIFT 0 #define QM_CQ_FLAG_SHIFT 1 #define QM_CQE_PHASE(cqe) (le16_to_cpu((cqe)->w7) & 0x1) #define QM_QC_CQE_SIZE 4 #define QM_CQ_TAIL_IDX(cqc) ((le16_to_cpu((cqc)->w11) >> 6) & 0x1) /* eqc shift */ #define QM_EQE_AEQE_SIZE (2UL << 12) #define QM_EQC_PHASE_SHIFT 16 #define QM_EQE_PHASE(eqe) ((le32_to_cpu((eqe)->dw0) >> 16) & 0x1) #define QM_EQE_CQN_MASK GENMASK(15, 0) #define QM_AEQE_PHASE(aeqe) ((le32_to_cpu((aeqe)->dw0) >> 16) & 0x1) #define QM_AEQE_TYPE_SHIFT 17 #define QM_DOORBELL_CMD_SQ 0 #define QM_DOORBELL_CMD_CQ 1 #define QM_DOORBELL_CMD_EQ 2 #define QM_DOORBELL_CMD_AEQ 3 #define QM_DOORBELL_BASE_V1 0x340 #define QM_DB_CMD_SHIFT_V1 16 #define QM_DB_INDEX_SHIFT_V1 32 #define QM_DB_PRIORITY_SHIFT_V1 48 #define QM_DOORBELL_SQ_CQ_BASE_V2 0x1000 #define QM_DOORBELL_EQ_AEQ_BASE_V2 0x2000 #define QM_QUE_ISO_CFG_V 0x0030 #define QM_QUE_ISO_EN 0x100154 #define QM_CAPBILITY 0x100158 #define QM_QP_NUN_MASK GENMASK(10, 0) #define QM_QP_DB_INTERVAL 0x10000 #define QM_QP_MAX_NUM_SHIFT 11 #define QM_DB_CMD_SHIFT_V2 12 #define QM_DB_RAND_SHIFT_V2 16 #define QM_DB_INDEX_SHIFT_V2 32 #define QM_DB_PRIORITY_SHIFT_V2 48 #define QM_MEM_START_INIT 0x100040 #define QM_MEM_INIT_DONE 0x100044 #define QM_VFT_CFG_RDY 0x10006c #define QM_VFT_CFG_OP_WR 0x100058 #define QM_VFT_CFG_TYPE 0x10005c #define QM_SQC_VFT 0x0 #define QM_CQC_VFT 0x1 #define QM_VFT_CFG 0x100060 #define QM_VFT_CFG_OP_ENABLE 0x100054 #define QM_VFT_CFG_DATA_L 0x100064 #define QM_VFT_CFG_DATA_H 0x100068 #define QM_SQC_VFT_BUF_SIZE (7ULL << 8) #define QM_SQC_VFT_SQC_SIZE (5ULL << 12) #define QM_SQC_VFT_INDEX_NUMBER (1ULL << 16) #define QM_SQC_VFT_START_SQN_SHIFT 28 #define QM_SQC_VFT_VALID (1ULL << 44) #define QM_SQC_VFT_SQN_SHIFT 45 #define QM_CQC_VFT_BUF_SIZE (7ULL << 8) #define QM_CQC_VFT_SQC_SIZE (5ULL << 12) #define QM_CQC_VFT_INDEX_NUMBER (1ULL << 16) #define QM_CQC_VFT_VALID (1ULL << 28) #define QM_SQC_VFT_BASE_SHIFT_V2 28 #define QM_SQC_VFT_BASE_MASK_V2 GENMASK(15, 0) #define QM_SQC_VFT_NUM_SHIFT_V2 45 #define QM_SQC_VFT_NUM_MASK_v2 GENMASK(9, 0) #define QM_DFX_CNT_CLR_CE 0x100118 #define QM_ABNORMAL_INT_SOURCE 0x100000 #define QM_ABNORMAL_INT_SOURCE_CLR GENMASK(14, 0) #define QM_ABNORMAL_INT_MASK 0x100004 #define QM_ABNORMAL_INT_MASK_VALUE 0x7fff #define QM_ABNORMAL_INT_STATUS 0x100008 #define QM_ABNORMAL_INT_SET 0x10000c #define QM_ABNORMAL_INF00 0x100010 #define QM_FIFO_OVERFLOW_TYPE 0xc0 #define QM_FIFO_OVERFLOW_TYPE_SHIFT 6 #define QM_FIFO_OVERFLOW_VF 0x3f #define QM_ABNORMAL_INF01 0x100014 #define QM_DB_TIMEOUT_TYPE 0xc0 #define QM_DB_TIMEOUT_TYPE_SHIFT 6 #define QM_DB_TIMEOUT_VF 0x3f #define QM_RAS_CE_ENABLE 0x1000ec #define QM_RAS_FE_ENABLE 0x1000f0 #define QM_RAS_NFE_ENABLE 0x1000f4 #define QM_RAS_CE_THRESHOLD 0x1000f8 #define QM_RAS_CE_TIMES_PER_IRQ 1 #define QM_RAS_MSI_INT_SEL 0x1040f4 #define QM_RESET_WAIT_TIMEOUT 400 #define QM_PEH_VENDOR_ID 0x1000d8 #define ACC_VENDOR_ID_VALUE 0x5a5a #define QM_PEH_DFX_INFO0 0x1000fc #define ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT 3 #define ACC_PEH_MSI_DISABLE GENMASK(31, 0) #define ACC_MASTER_GLOBAL_CTRL_SHUTDOWN 0x1 #define ACC_MASTER_TRANS_RETURN_RW 3 #define ACC_MASTER_TRANS_RETURN 0x300150 #define ACC_MASTER_GLOBAL_CTRL 0x300000 #define ACC_AM_CFG_PORT_WR_EN 0x30001c #define QM_RAS_NFE_MBIT_DISABLE ~QM_ECC_MBIT #define ACC_AM_ROB_ECC_INT_STS 0x300104 #define ACC_ROB_ECC_ERR_MULTPL BIT(1) #define QM_DFX_MB_CNT_VF 0x104010 #define QM_DFX_DB_CNT_VF 0x104020 #define QM_DFX_SQE_CNT_VF_SQN 0x104030 #define QM_DFX_CQE_CNT_VF_CQN 0x104040 #define QM_DFX_QN_SHIFT 16 #define CURRENT_FUN_MASK GENMASK(5, 0) #define CURRENT_Q_MASK GENMASK(31, 16) #define POLL_PERIOD 10 #define POLL_TIMEOUT 1000 #define WAIT_PERIOD_US_MAX 200 #define WAIT_PERIOD_US_MIN 100 #define MAX_WAIT_COUNTS 1000 #define QM_CACHE_WB_START 0x204 #define QM_CACHE_WB_DONE 0x208 #define PCI_BAR_2 2 #define PCI_BAR_4 4 #define QM_SQE_DATA_ALIGN_MASK GENMASK(6, 0) #define QMC_ALIGN(sz) ALIGN(sz, 32) #define QM_DBG_READ_LEN 256 #define QM_DBG_WRITE_LEN 1024 #define QM_DBG_TMP_BUF_LEN 22 #define QM_PCI_COMMAND_INVALID ~0 #define WAIT_PERIOD 20 #define REMOVE_WAIT_DELAY 10 #define QM_SQE_ADDR_MASK GENMASK(7, 0) #define QM_EQ_DEPTH (1024 * 2) #define QM_DRIVER_REMOVING 0 #define QM_RST_SCHED 1 #define QM_RESETTING 2 #define QM_MK_CQC_DW3_V1(hop_num, pg_sz, buf_sz, cqe_sz) \ (((hop_num) << QM_CQ_HOP_NUM_SHIFT) | \ ((pg_sz) << QM_CQ_PAGE_SIZE_SHIFT) | \ ((buf_sz) << QM_CQ_BUF_SIZE_SHIFT) | \ ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT)) #define QM_MK_CQC_DW3_V2(cqe_sz) \ ((QM_Q_DEPTH - 1) | ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT)) #define QM_MK_SQC_W13(priority, orders, alg_type) \ (((priority) << QM_SQ_PRIORITY_SHIFT) | \ ((orders) << QM_SQ_ORDERS_SHIFT) | \ (((alg_type) & QM_SQ_TYPE_MASK) << QM_SQ_TYPE_SHIFT)) #define QM_MK_SQC_DW3_V1(hop_num, pg_sz, buf_sz, sqe_sz) \ (((hop_num) << QM_SQ_HOP_NUM_SHIFT) | \ ((pg_sz) << QM_SQ_PAGE_SIZE_SHIFT) | \ ((buf_sz) << QM_SQ_BUF_SIZE_SHIFT) | \ ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT)) #define QM_MK_SQC_DW3_V2(sqe_sz) \ ((QM_Q_DEPTH - 1) | ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT)) #define INIT_QC_COMMON(qc, base, pasid) do { \ (qc)->head = 0; \ (qc)->tail = 0; \ (qc)->base_l = cpu_to_le32(lower_32_bits(base)); \ (qc)->base_h = cpu_to_le32(upper_32_bits(base)); \ (qc)->dw3 = 0; \ (qc)->w8 = 0; \ (qc)->rsvd0 = 0; \ (qc)->pasid = cpu_to_le16(pasid); \ (qc)->w11 = 0; \ (qc)->rsvd1 = 0; \ } while (0) enum vft_type { SQC_VFT = 0, CQC_VFT, }; enum acc_err_result { ACC_ERR_NONE, ACC_ERR_NEED_RESET, ACC_ERR_RECOVERED, }; struct qm_cqe { __le32 rsvd0; __le16 cmd_id; __le16 rsvd1; __le16 sq_head; __le16 sq_num; __le16 rsvd2; __le16 w7; }; struct qm_eqe { __le32 dw0; }; struct qm_aeqe { __le32 dw0; }; struct qm_sqc { __le16 head; __le16 tail; __le32 base_l; __le32 base_h; __le32 dw3; __le16 w8; __le16 rsvd0; __le16 pasid; __le16 w11; __le16 cq_num; __le16 w13; __le32 rsvd1; }; struct qm_cqc { __le16 head; __le16 tail; __le32 base_l; __le32 base_h; __le32 dw3; __le16 w8; __le16 rsvd0; __le16 pasid; __le16 w11; __le32 dw6; __le32 rsvd1; }; struct qm_eqc { __le16 head; __le16 tail; __le32 base_l; __le32 base_h; __le32 dw3; __le32 rsvd[2]; __le32 dw6; }; struct qm_aeqc { __le16 head; __le16 tail; __le32 base_l; __le32 base_h; __le32 dw3; __le32 rsvd[2]; __le32 dw6; }; struct qm_mailbox { __le16 w0; __le16 queue_num; __le32 base_l; __le32 base_h; __le32 rsvd; }; struct qm_doorbell { __le16 queue_num; __le16 cmd; __le16 index; __le16 priority; }; struct hisi_qm_resource { struct hisi_qm *qm; int distance; struct list_head list; }; struct hisi_qm_hw_ops { int (*get_vft)(struct hisi_qm *qm, u32 *base, u32 *number); void (*qm_db)(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority); u32 (*get_irq_num)(struct hisi_qm *qm); int (*debug_init)(struct hisi_qm *qm); void (*hw_error_init)(struct hisi_qm *qm, u32 ce, u32 nfe, u32 fe); void (*hw_error_uninit)(struct hisi_qm *qm); enum acc_err_result (*hw_error_handle)(struct hisi_qm *qm); int (*stop_qp)(struct hisi_qp *qp); }; struct qm_dfx_item { const char *name; u32 offset; }; static struct qm_dfx_item qm_dfx_files[] = { {"err_irq", offsetof(struct qm_dfx, err_irq_cnt)}, {"aeq_irq", offsetof(struct qm_dfx, aeq_irq_cnt)}, {"abnormal_irq", offsetof(struct qm_dfx, abnormal_irq_cnt)}, {"create_qp_err", offsetof(struct qm_dfx, create_qp_err_cnt)}, {"mb_err", offsetof(struct qm_dfx, mb_err_cnt)}, }; static const char * const qm_debug_file_name[] = { [CURRENT_QM] = "current_qm", [CURRENT_Q] = "current_q", [CLEAR_ENABLE] = "clear_enable", }; struct hisi_qm_hw_error { u32 int_msk; const char *msg; }; static const struct hisi_qm_hw_error qm_hw_error[] = { { .int_msk = BIT(0), .msg = "qm_axi_rresp" }, { .int_msk = BIT(1), .msg = "qm_axi_bresp" }, { .int_msk = BIT(2), .msg = "qm_ecc_mbit" }, { .int_msk = BIT(3), .msg = "qm_ecc_1bit" }, { .int_msk = BIT(4), .msg = "qm_acc_get_task_timeout" }, { .int_msk = BIT(5), .msg = "qm_acc_do_task_timeout" }, { .int_msk = BIT(6), .msg = "qm_acc_wb_not_ready_timeout" }, { .int_msk = BIT(7), .msg = "qm_sq_cq_vf_invalid" }, { .int_msk = BIT(8), .msg = "qm_cq_vf_invalid" }, { .int_msk = BIT(9), .msg = "qm_sq_vf_invalid" }, { .int_msk = BIT(10), .msg = "qm_db_timeout" }, { .int_msk = BIT(11), .msg = "qm_of_fifo_of" }, { .int_msk = BIT(12), .msg = "qm_db_random_invalid" }, { .int_msk = BIT(13), .msg = "qm_mailbox_timeout" }, { .int_msk = BIT(14), .msg = "qm_flr_timeout" }, { /* sentinel */ } }; static const char * const qm_db_timeout[] = { "sq", "cq", "eq", "aeq", }; static const char * const qm_fifo_overflow[] = { "cq", "eq", "aeq", }; static const char * const qm_s[] = { "init", "start", "close", "stop", }; static const char * const qp_s[] = { "none", "init", "start", "stop", "close", }; static bool qm_avail_state(struct hisi_qm *qm, enum qm_state new) { enum qm_state curr = atomic_read(&qm->status.flags); bool avail = false; switch (curr) { case QM_INIT: if (new == QM_START || new == QM_CLOSE) avail = true; break; case QM_START: if (new == QM_STOP) avail = true; break; case QM_STOP: if (new == QM_CLOSE || new == QM_START) avail = true; break; default: break; } dev_dbg(&qm->pdev->dev, "change qm state from %s to %s\n", qm_s[curr], qm_s[new]); if (!avail) dev_warn(&qm->pdev->dev, "Can not change qm state from %s to %s\n", qm_s[curr], qm_s[new]); return avail; } static bool qm_qp_avail_state(struct hisi_qm *qm, struct hisi_qp *qp, enum qp_state new) { enum qm_state qm_curr = atomic_read(&qm->status.flags); enum qp_state qp_curr = 0; bool avail = false; if (qp) qp_curr = atomic_read(&qp->qp_status.flags); switch (new) { case QP_INIT: if (qm_curr == QM_START || qm_curr == QM_INIT) avail = true; break; case QP_START: if ((qm_curr == QM_START && qp_curr == QP_INIT) || (qm_curr == QM_START && qp_curr == QP_STOP)) avail = true; break; case QP_STOP: if ((qm_curr == QM_START && qp_curr == QP_START) || (qp_curr == QP_INIT)) avail = true; break; case QP_CLOSE: if ((qm_curr == QM_START && qp_curr == QP_INIT) || (qm_curr == QM_START && qp_curr == QP_STOP) || (qm_curr == QM_STOP && qp_curr == QP_STOP) || (qm_curr == QM_STOP && qp_curr == QP_INIT)) avail = true; break; default: break; } dev_dbg(&qm->pdev->dev, "change qp state from %s to %s in QM %s\n", qp_s[qp_curr], qp_s[new], qm_s[qm_curr]); if (!avail) dev_warn(&qm->pdev->dev, "Can not change qp state from %s to %s in QM %s\n", qp_s[qp_curr], qp_s[new], qm_s[qm_curr]); return avail; } /* return 0 mailbox ready, -ETIMEDOUT hardware timeout */ static int qm_wait_mb_ready(struct hisi_qm *qm) { u32 val; return readl_relaxed_poll_timeout(qm->io_base + QM_MB_CMD_SEND_BASE, val, !((val >> QM_MB_BUSY_SHIFT) & 0x1), POLL_PERIOD, POLL_TIMEOUT); } /* 128 bit should be written to hardware at one time to trigger a mailbox */ static void qm_mb_write(struct hisi_qm *qm, const void *src) { void __iomem *fun_base = qm->io_base + QM_MB_CMD_SEND_BASE; unsigned long tmp0 = 0, tmp1 = 0; if (!IS_ENABLED(CONFIG_ARM64)) { memcpy_toio(fun_base, src, 16); wmb(); return; } asm volatile("ldp %0, %1, %3\n" "stp %0, %1, %2\n" "dsb sy\n" : "=&r" (tmp0), "=&r" (tmp1), "+Q" (*((char __iomem *)fun_base)) : "Q" (*((char *)src)) : "memory"); } static int qm_mb(struct hisi_qm *qm, u8 cmd, dma_addr_t dma_addr, u16 queue, bool op) { struct qm_mailbox mailbox; int ret = 0; dev_dbg(&qm->pdev->dev, "QM mailbox request to q%u: %u-%llx\n", queue, cmd, (unsigned long long)dma_addr); mailbox.w0 = cpu_to_le16(cmd | (op ? 0x1 << QM_MB_OP_SHIFT : 0) | (0x1 << QM_MB_BUSY_SHIFT)); mailbox.queue_num = cpu_to_le16(queue); mailbox.base_l = cpu_to_le32(lower_32_bits(dma_addr)); mailbox.base_h = cpu_to_le32(upper_32_bits(dma_addr)); mailbox.rsvd = 0; mutex_lock(&qm->mailbox_lock); if (unlikely(qm_wait_mb_ready(qm))) { ret = -EBUSY; dev_err(&qm->pdev->dev, "QM mailbox is busy to start!\n"); goto busy_unlock; } qm_mb_write(qm, &mailbox); if (unlikely(qm_wait_mb_ready(qm))) { ret = -EBUSY; dev_err(&qm->pdev->dev, "QM mailbox operation timeout!\n"); goto busy_unlock; } busy_unlock: mutex_unlock(&qm->mailbox_lock); if (ret) atomic64_inc(&qm->debug.dfx.mb_err_cnt); return ret; } static void qm_db_v1(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority) { u64 doorbell; doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V1) | ((u64)index << QM_DB_INDEX_SHIFT_V1) | ((u64)priority << QM_DB_PRIORITY_SHIFT_V1); writeq(doorbell, qm->io_base + QM_DOORBELL_BASE_V1); } static void qm_db_v2(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority) { void __iomem *io_base = qm->io_base; u16 randata = 0; u64 doorbell; if (cmd == QM_DOORBELL_CMD_SQ || cmd == QM_DOORBELL_CMD_CQ) io_base = qm->db_io_base + (u64)qn * qm->db_interval + QM_DOORBELL_SQ_CQ_BASE_V2; else io_base += QM_DOORBELL_EQ_AEQ_BASE_V2; doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V2) | ((u64)randata << QM_DB_RAND_SHIFT_V2) | ((u64)index << QM_DB_INDEX_SHIFT_V2) | ((u64)priority << QM_DB_PRIORITY_SHIFT_V2); writeq(doorbell, io_base); } static void qm_db(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority) { dev_dbg(&qm->pdev->dev, "QM doorbell request: qn=%u, cmd=%u, index=%u\n", qn, cmd, index); qm->ops->qm_db(qm, qn, cmd, index, priority); } static int qm_dev_mem_reset(struct hisi_qm *qm) { u32 val; writel(0x1, qm->io_base + QM_MEM_START_INIT); return readl_relaxed_poll_timeout(qm->io_base + QM_MEM_INIT_DONE, val, val & BIT(0), POLL_PERIOD, POLL_TIMEOUT); } static u32 qm_get_irq_num_v1(struct hisi_qm *qm) { return QM_IRQ_NUM_V1; } static u32 qm_get_irq_num_v2(struct hisi_qm *qm) { if (qm->fun_type == QM_HW_PF) return QM_IRQ_NUM_PF_V2; else return QM_IRQ_NUM_VF_V2; } static struct hisi_qp *qm_to_hisi_qp(struct hisi_qm *qm, struct qm_eqe *eqe) { u16 cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK; return &qm->qp_array[cqn]; } static void qm_cq_head_update(struct hisi_qp *qp) { if (qp->qp_status.cq_head == QM_Q_DEPTH - 1) { qp->qp_status.cqc_phase = !qp->qp_status.cqc_phase; qp->qp_status.cq_head = 0; } else { qp->qp_status.cq_head++; } } static void qm_poll_qp(struct hisi_qp *qp, struct hisi_qm *qm) { if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP)) return; if (qp->event_cb) { qp->event_cb(qp); return; } if (qp->req_cb) { struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head; while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) { dma_rmb(); qp->req_cb(qp, qp->sqe + qm->sqe_size * le16_to_cpu(cqe->sq_head)); qm_cq_head_update(qp); cqe = qp->cqe + qp->qp_status.cq_head; qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ, qp->qp_status.cq_head, 0); atomic_dec(&qp->qp_status.used); } /* set c_flag */ qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ, qp->qp_status.cq_head, 1); } } static void qm_work_process(struct work_struct *work) { struct hisi_qm *qm = container_of(work, struct hisi_qm, work); struct qm_eqe *eqe = qm->eqe + qm->status.eq_head; struct hisi_qp *qp; int eqe_num = 0; while (QM_EQE_PHASE(eqe) == qm->status.eqc_phase) { eqe_num++; qp = qm_to_hisi_qp(qm, eqe); qm_poll_qp(qp, qm); if (qm->status.eq_head == QM_EQ_DEPTH - 1) { qm->status.eqc_phase = !qm->status.eqc_phase; eqe = qm->eqe; qm->status.eq_head = 0; } else { eqe++; qm->status.eq_head++; } if (eqe_num == QM_EQ_DEPTH / 2 - 1) { eqe_num = 0; qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0); } } qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0); } static irqreturn_t do_qm_irq(int irq, void *data) { struct hisi_qm *qm = (struct hisi_qm *)data; /* the workqueue created by device driver of QM */ if (qm->wq) queue_work(qm->wq, &qm->work); else schedule_work(&qm->work); return IRQ_HANDLED; } static irqreturn_t qm_irq(int irq, void *data) { struct hisi_qm *qm = data; if (readl(qm->io_base + QM_VF_EQ_INT_SOURCE)) return do_qm_irq(irq, data); atomic64_inc(&qm->debug.dfx.err_irq_cnt); dev_err(&qm->pdev->dev, "invalid int source\n"); qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0); return IRQ_NONE; } static irqreturn_t qm_aeq_irq(int irq, void *data) { struct hisi_qm *qm = data; struct qm_aeqe *aeqe = qm->aeqe + qm->status.aeq_head; u32 type; atomic64_inc(&qm->debug.dfx.aeq_irq_cnt); if (!readl(qm->io_base + QM_VF_AEQ_INT_SOURCE)) return IRQ_NONE; while (QM_AEQE_PHASE(aeqe) == qm->status.aeqc_phase) { type = le32_to_cpu(aeqe->dw0) >> QM_AEQE_TYPE_SHIFT; if (type < ARRAY_SIZE(qm_fifo_overflow)) dev_err(&qm->pdev->dev, "%s overflow\n", qm_fifo_overflow[type]); else dev_err(&qm->pdev->dev, "unknown error type %u\n", type); if (qm->status.aeq_head == QM_Q_DEPTH - 1) { qm->status.aeqc_phase = !qm->status.aeqc_phase; aeqe = qm->aeqe; qm->status.aeq_head = 0; } else { aeqe++; qm->status.aeq_head++; } qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0); } return IRQ_HANDLED; } static void qm_irq_unregister(struct hisi_qm *qm) { struct pci_dev *pdev = qm->pdev; free_irq(pci_irq_vector(pdev, QM_EQ_EVENT_IRQ_VECTOR), qm); if (qm->ver == QM_HW_V1) return; free_irq(pci_irq_vector(pdev, QM_AEQ_EVENT_IRQ_VECTOR), qm); if (qm->fun_type == QM_HW_PF) free_irq(pci_irq_vector(pdev, QM_ABNORMAL_EVENT_IRQ_VECTOR), qm); } static void qm_init_qp_status(struct hisi_qp *qp) { struct hisi_qp_status *qp_status = &qp->qp_status; qp_status->sq_tail = 0; qp_status->cq_head = 0; qp_status->cqc_phase = true; atomic_set(&qp_status->used, 0); } static void qm_vft_data_cfg(struct hisi_qm *qm, enum vft_type type, u32 base, u32 number) { u64 tmp = 0; if (number > 0) { switch (type) { case SQC_VFT: if (qm->ver == QM_HW_V1) { tmp = QM_SQC_VFT_BUF_SIZE | QM_SQC_VFT_SQC_SIZE | QM_SQC_VFT_INDEX_NUMBER | QM_SQC_VFT_VALID | (u64)base << QM_SQC_VFT_START_SQN_SHIFT; } else { tmp = (u64)base << QM_SQC_VFT_START_SQN_SHIFT | QM_SQC_VFT_VALID | (u64)(number - 1) << QM_SQC_VFT_SQN_SHIFT; } break; case CQC_VFT: if (qm->ver == QM_HW_V1) { tmp = QM_CQC_VFT_BUF_SIZE | QM_CQC_VFT_SQC_SIZE | QM_CQC_VFT_INDEX_NUMBER | QM_CQC_VFT_VALID; } else { tmp = QM_CQC_VFT_VALID; } break; } } writel(lower_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_L); writel(upper_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_H); } static int qm_set_vft_common(struct hisi_qm *qm, enum vft_type type, u32 fun_num, u32 base, u32 number) { unsigned int val; int ret; ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, val & BIT(0), POLL_PERIOD, POLL_TIMEOUT); if (ret) return ret; writel(0x0, qm->io_base + QM_VFT_CFG_OP_WR); writel(type, qm->io_base + QM_VFT_CFG_TYPE); writel(fun_num, qm->io_base + QM_VFT_CFG); qm_vft_data_cfg(qm, type, base, number); writel(0x0, qm->io_base + QM_VFT_CFG_RDY); writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE); return readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, val & BIT(0), POLL_PERIOD, POLL_TIMEOUT); } /* The config should be conducted after qm_dev_mem_reset() */ static int qm_set_sqc_cqc_vft(struct hisi_qm *qm, u32 fun_num, u32 base, u32 number) { int ret, i; for (i = SQC_VFT; i <= CQC_VFT; i++) { ret = qm_set_vft_common(qm, i, fun_num, base, number); if (ret) return ret; } return 0; } static int qm_get_vft_v2(struct hisi_qm *qm, u32 *base, u32 *number) { u64 sqc_vft; int ret; ret = qm_mb(qm, QM_MB_CMD_SQC_VFT_V2, 0, 0, 1); if (ret) return ret; sqc_vft = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) | ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32); *base = QM_SQC_VFT_BASE_MASK_V2 & (sqc_vft >> QM_SQC_VFT_BASE_SHIFT_V2); *number = (QM_SQC_VFT_NUM_MASK_v2 & (sqc_vft >> QM_SQC_VFT_NUM_SHIFT_V2)) + 1; return 0; } static int qm_get_vf_qp_num(struct hisi_qm *qm, u32 fun_num) { u32 remain_q_num, vfq_num; u32 num_vfs = qm->vfs_num; vfq_num = (qm->ctrl_qp_num - qm->qp_num) / num_vfs; if (vfq_num >= qm->max_qp_num) return qm->max_qp_num; remain_q_num = (qm->ctrl_qp_num - qm->qp_num) % num_vfs; if (vfq_num + remain_q_num <= qm->max_qp_num) return fun_num == num_vfs ? vfq_num + remain_q_num : vfq_num; /* * if vfq_num + remain_q_num > max_qp_num, the last VFs, * each with one more queue. */ return fun_num + remain_q_num > num_vfs ? vfq_num + 1 : vfq_num; } static struct hisi_qm *file_to_qm(struct debugfs_file *file) { struct qm_debug *debug = file->debug; return container_of(debug, struct hisi_qm, debug); } static u32 current_q_read(struct debugfs_file *file) { struct hisi_qm *qm = file_to_qm(file); return readl(qm->io_base + QM_DFX_SQE_CNT_VF_SQN) >> QM_DFX_QN_SHIFT; } static int current_q_write(struct debugfs_file *file, u32 val) { struct hisi_qm *qm = file_to_qm(file); u32 tmp; if (val >= qm->debug.curr_qm_qp_num) return -EINVAL; tmp = val << QM_DFX_QN_SHIFT | (readl(qm->io_base + QM_DFX_SQE_CNT_VF_SQN) & CURRENT_FUN_MASK); writel(tmp, qm->io_base + QM_DFX_SQE_CNT_VF_SQN); tmp = val << QM_DFX_QN_SHIFT | (readl(qm->io_base + QM_DFX_CQE_CNT_VF_CQN) & CURRENT_FUN_MASK); writel(tmp, qm->io_base + QM_DFX_CQE_CNT_VF_CQN); return 0; } static u32 clear_enable_read(struct debugfs_file *file) { struct hisi_qm *qm = file_to_qm(file); return readl(qm->io_base + QM_DFX_CNT_CLR_CE); } /* rd_clr_ctrl 1 enable read clear, otherwise 0 disable it */ static int clear_enable_write(struct debugfs_file *file, u32 rd_clr_ctrl) { struct hisi_qm *qm = file_to_qm(file); if (rd_clr_ctrl > 1) return -EINVAL; writel(rd_clr_ctrl, qm->io_base + QM_DFX_CNT_CLR_CE); return 0; } static u32 current_qm_read(struct debugfs_file *file) { struct hisi_qm *qm = file_to_qm(file); return readl(qm->io_base + QM_DFX_MB_CNT_VF); } static int current_qm_write(struct debugfs_file *file, u32 val) { struct hisi_qm *qm = file_to_qm(file); u32 tmp; if (val > qm->vfs_num) return -EINVAL; /* According PF or VF Dev ID to calculation curr_qm_qp_num and store */ if (!val) qm->debug.curr_qm_qp_num = qm->qp_num; else qm->debug.curr_qm_qp_num = qm_get_vf_qp_num(qm, val); writel(val, qm->io_base + QM_DFX_MB_CNT_VF); writel(val, qm->io_base + QM_DFX_DB_CNT_VF); tmp = val | (readl(qm->io_base + QM_DFX_SQE_CNT_VF_SQN) & CURRENT_Q_MASK); writel(tmp, qm->io_base + QM_DFX_SQE_CNT_VF_SQN); tmp = val | (readl(qm->io_base + QM_DFX_CQE_CNT_VF_CQN) & CURRENT_Q_MASK); writel(tmp, qm->io_base + QM_DFX_CQE_CNT_VF_CQN); return 0; } static ssize_t qm_debug_read(struct file *filp, char __user *buf, size_t count, loff_t *pos) { struct debugfs_file *file = filp->private_data; enum qm_debug_file index = file->index; char tbuf[QM_DBG_TMP_BUF_LEN]; u32 val; int ret; mutex_lock(&file->lock); switch (index) { case CURRENT_QM: val = current_qm_read(file); break; case CURRENT_Q: val = current_q_read(file); break; case CLEAR_ENABLE: val = clear_enable_read(file); break; default: mutex_unlock(&file->lock); return -EINVAL; } mutex_unlock(&file->lock); ret = scnprintf(tbuf, QM_DBG_TMP_BUF_LEN, "%u\n", val); return simple_read_from_buffer(buf, count, pos, tbuf, ret); } static ssize_t qm_debug_write(struct file *filp, const char __user *buf, size_t count, loff_t *pos) { struct debugfs_file *file = filp->private_data; enum qm_debug_file index = file->index; unsigned long val; char tbuf[QM_DBG_TMP_BUF_LEN]; int len, ret; if (*pos != 0) return 0; if (count >= QM_DBG_TMP_BUF_LEN) return -ENOSPC; len = simple_write_to_buffer(tbuf, QM_DBG_TMP_BUF_LEN - 1, pos, buf, count); if (len < 0) return len; tbuf[len] = '\0'; if (kstrtoul(tbuf, 0, &val)) return -EFAULT; mutex_lock(&file->lock); switch (index) { case CURRENT_QM: ret = current_qm_write(file, val); break; case CURRENT_Q: ret = current_q_write(file, val); break; case CLEAR_ENABLE: ret = clear_enable_write(file, val); break; default: ret = -EINVAL; } mutex_unlock(&file->lock); if (ret) return ret; return count; } static const struct file_operations qm_debug_fops = { .owner = THIS_MODULE, .open = simple_open, .read = qm_debug_read, .write = qm_debug_write, }; struct qm_dfx_registers { char *reg_name; u64 reg_offset; }; #define CNT_CYC_REGS_NUM 10 static struct qm_dfx_registers qm_dfx_regs[] = { /* XXX_CNT are reading clear register */ {"QM_ECC_1BIT_CNT ", 0x104000ull}, {"QM_ECC_MBIT_CNT ", 0x104008ull}, {"QM_DFX_MB_CNT ", 0x104018ull}, {"QM_DFX_DB_CNT ", 0x104028ull}, {"QM_DFX_SQE_CNT ", 0x104038ull}, {"QM_DFX_CQE_CNT ", 0x104048ull}, {"QM_DFX_SEND_SQE_TO_ACC_CNT ", 0x104050ull}, {"QM_DFX_WB_SQE_FROM_ACC_CNT ", 0x104058ull}, {"QM_DFX_ACC_FINISH_CNT ", 0x104060ull}, {"QM_DFX_CQE_ERR_CNT ", 0x1040b4ull}, {"QM_DFX_FUNS_ACTIVE_ST ", 0x200ull}, {"QM_ECC_1BIT_INF ", 0x104004ull}, {"QM_ECC_MBIT_INF ", 0x10400cull}, {"QM_DFX_ACC_RDY_VLD0 ", 0x1040a0ull}, {"QM_DFX_ACC_RDY_VLD1 ", 0x1040a4ull}, {"QM_DFX_AXI_RDY_VLD ", 0x1040a8ull}, {"QM_DFX_FF_ST0 ", 0x1040c8ull}, {"QM_DFX_FF_ST1 ", 0x1040ccull}, {"QM_DFX_FF_ST2 ", 0x1040d0ull}, {"QM_DFX_FF_ST3 ", 0x1040d4ull}, {"QM_DFX_FF_ST4 ", 0x1040d8ull}, {"QM_DFX_FF_ST5 ", 0x1040dcull}, {"QM_DFX_FF_ST6 ", 0x1040e0ull}, {"QM_IN_IDLE_ST ", 0x1040e4ull}, { NULL, 0} }; static struct qm_dfx_registers qm_vf_dfx_regs[] = { {"QM_DFX_FUNS_ACTIVE_ST ", 0x200ull}, { NULL, 0} }; static int qm_regs_show(struct seq_file *s, void *unused) { struct hisi_qm *qm = s->private; struct qm_dfx_registers *regs; u32 val; if (qm->fun_type == QM_HW_PF) regs = qm_dfx_regs; else regs = qm_vf_dfx_regs; while (regs->reg_name) { val = readl(qm->io_base + regs->reg_offset); seq_printf(s, "%s= 0x%08x\n", regs->reg_name, val); regs++; } return 0; } DEFINE_SHOW_ATTRIBUTE(qm_regs); static ssize_t qm_cmd_read(struct file *filp, char __user *buffer, size_t count, loff_t *pos) { char buf[QM_DBG_READ_LEN]; int len; len = scnprintf(buf, QM_DBG_READ_LEN, "%s\n", "Please echo help to cmd to get help information"); return simple_read_from_buffer(buffer, count, pos, buf, len); } static void *qm_ctx_alloc(struct hisi_qm *qm, size_t ctx_size, dma_addr_t *dma_addr) { struct device *dev = &qm->pdev->dev; void *ctx_addr; ctx_addr = kzalloc(ctx_size, GFP_KERNEL); if (!ctx_addr) return ERR_PTR(-ENOMEM); *dma_addr = dma_map_single(dev, ctx_addr, ctx_size, DMA_FROM_DEVICE); if (dma_mapping_error(dev, *dma_addr)) { dev_err(dev, "DMA mapping error!\n"); kfree(ctx_addr); return ERR_PTR(-ENOMEM); } return ctx_addr; } static void qm_ctx_free(struct hisi_qm *qm, size_t ctx_size, const void *ctx_addr, dma_addr_t *dma_addr) { struct device *dev = &qm->pdev->dev; dma_unmap_single(dev, *dma_addr, ctx_size, DMA_FROM_DEVICE); kfree(ctx_addr); } static int dump_show(struct hisi_qm *qm, void *info, unsigned int info_size, char *info_name) { struct device *dev = &qm->pdev->dev; u8 *info_buf, *info_curr = info; u32 i; #define BYTE_PER_DW 4 info_buf = kzalloc(info_size, GFP_KERNEL); if (!info_buf) return -ENOMEM; for (i = 0; i < info_size; i++, info_curr++) { if (i % BYTE_PER_DW == 0) info_buf[i + 3UL] = *info_curr; else if (i % BYTE_PER_DW == 1) info_buf[i + 1UL] = *info_curr; else if (i % BYTE_PER_DW == 2) info_buf[i - 1] = *info_curr; else if (i % BYTE_PER_DW == 3) info_buf[i - 3] = *info_curr; } dev_info(dev, "%s DUMP\n", info_name); for (i = 0; i < info_size; i += BYTE_PER_DW) { pr_info("DW%u: %02X%02X %02X%02X\n", i / BYTE_PER_DW, info_buf[i], info_buf[i + 1UL], info_buf[i + 2UL], info_buf[i + 3UL]); } kfree(info_buf); return 0; } static int qm_dump_sqc_raw(struct hisi_qm *qm, dma_addr_t dma_addr, u16 qp_id) { return qm_mb(qm, QM_MB_CMD_SQC, dma_addr, qp_id, 1); } static int qm_dump_cqc_raw(struct hisi_qm *qm, dma_addr_t dma_addr, u16 qp_id) { return qm_mb(qm, QM_MB_CMD_CQC, dma_addr, qp_id, 1); } static int qm_sqc_dump(struct hisi_qm *qm, const char *s) { struct device *dev = &qm->pdev->dev; struct qm_sqc *sqc, *sqc_curr; dma_addr_t sqc_dma; u32 qp_id; int ret; if (!s) return -EINVAL; ret = kstrtou32(s, 0, &qp_id); if (ret || qp_id >= qm->qp_num) { dev_err(dev, "Please input qp num (0-%u)", qm->qp_num - 1); return -EINVAL; } sqc = qm_ctx_alloc(qm, sizeof(*sqc), &sqc_dma); if (IS_ERR(sqc)) return PTR_ERR(sqc); ret = qm_dump_sqc_raw(qm, sqc_dma, qp_id); if (ret) { down_read(&qm->qps_lock); if (qm->sqc) { sqc_curr = qm->sqc + qp_id; ret = dump_show(qm, sqc_curr, sizeof(*sqc), "SOFT SQC"); if (ret) dev_info(dev, "Show soft sqc failed!\n"); } up_read(&qm->qps_lock); goto err_free_ctx; } ret = dump_show(qm, sqc, sizeof(*sqc), "SQC"); if (ret) dev_info(dev, "Show hw sqc failed!\n"); err_free_ctx: qm_ctx_free(qm, sizeof(*sqc), sqc, &sqc_dma); return ret; } static int qm_cqc_dump(struct hisi_qm *qm, const char *s) { struct device *dev = &qm->pdev->dev; struct qm_cqc *cqc, *cqc_curr; dma_addr_t cqc_dma; u32 qp_id; int ret; if (!s) return -EINVAL; ret = kstrtou32(s, 0, &qp_id); if (ret || qp_id >= qm->qp_num) { dev_err(dev, "Please input qp num (0-%u)", qm->qp_num - 1); return -EINVAL; } cqc = qm_ctx_alloc(qm, sizeof(*cqc), &cqc_dma); if (IS_ERR(cqc)) return PTR_ERR(cqc); ret = qm_dump_cqc_raw(qm, cqc_dma, qp_id); if (ret) { down_read(&qm->qps_lock); if (qm->cqc) { cqc_curr = qm->cqc + qp_id; ret = dump_show(qm, cqc_curr, sizeof(*cqc), "SOFT CQC"); if (ret) dev_info(dev, "Show soft cqc failed!\n"); } up_read(&qm->qps_lock); goto err_free_ctx; } ret = dump_show(qm, cqc, sizeof(*cqc), "CQC"); if (ret) dev_info(dev, "Show hw cqc failed!\n"); err_free_ctx: qm_ctx_free(qm, sizeof(*cqc), cqc, &cqc_dma); return ret; } static int qm_eqc_aeqc_dump(struct hisi_qm *qm, char *s, size_t size, int cmd, char *name) { struct device *dev = &qm->pdev->dev; dma_addr_t xeqc_dma; void *xeqc; int ret; if (strsep(&s, " ")) { dev_err(dev, "Please do not input extra characters!\n"); return -EINVAL; } xeqc = qm_ctx_alloc(qm, size, &xeqc_dma); if (IS_ERR(xeqc)) return PTR_ERR(xeqc); ret = qm_mb(qm, cmd, xeqc_dma, 0, 1); if (ret) goto err_free_ctx; ret = dump_show(qm, xeqc, size, name); if (ret) dev_info(dev, "Show hw %s failed!\n", name); err_free_ctx: qm_ctx_free(qm, size, xeqc, &xeqc_dma); return ret; } static int q_dump_param_parse(struct hisi_qm *qm, char *s, u32 *e_id, u32 *q_id) { struct device *dev = &qm->pdev->dev; unsigned int qp_num = qm->qp_num; char *presult; int ret; presult = strsep(&s, " "); if (!presult) { dev_err(dev, "Please input qp number!\n"); return -EINVAL; } ret = kstrtou32(presult, 0, q_id); if (ret || *q_id >= qp_num) { dev_err(dev, "Please input qp num (0-%u)", qp_num - 1); return -EINVAL; } presult = strsep(&s, " "); if (!presult) { dev_err(dev, "Please input sqe number!\n"); return -EINVAL; } ret = kstrtou32(presult, 0, e_id); if (ret || *e_id >= QM_Q_DEPTH) { dev_err(dev, "Please input sqe num (0-%d)", QM_Q_DEPTH - 1); return -EINVAL; } if (strsep(&s, " ")) { dev_err(dev, "Please do not input extra characters!\n"); return -EINVAL; } return 0; } static int qm_sq_dump(struct hisi_qm *qm, char *s) { struct device *dev = &qm->pdev->dev; void *sqe, *sqe_curr; struct hisi_qp *qp; u32 qp_id, sqe_id; int ret; ret = q_dump_param_parse(qm, s, &sqe_id, &qp_id); if (ret) return ret; sqe = kzalloc(qm->sqe_size * QM_Q_DEPTH, GFP_KERNEL); if (!sqe) return -ENOMEM; qp = &qm->qp_array[qp_id]; memcpy(sqe, qp->sqe, qm->sqe_size * QM_Q_DEPTH); sqe_curr = sqe + (u32)(sqe_id * qm->sqe_size); memset(sqe_curr + qm->debug.sqe_mask_offset, QM_SQE_ADDR_MASK, qm->debug.sqe_mask_len); ret = dump_show(qm, sqe_curr, qm->sqe_size, "SQE"); if (ret) dev_info(dev, "Show sqe failed!\n"); kfree(sqe); return ret; } static int qm_cq_dump(struct hisi_qm *qm, char *s) { struct device *dev = &qm->pdev->dev; struct qm_cqe *cqe_curr; struct hisi_qp *qp; u32 qp_id, cqe_id; int ret; ret = q_dump_param_parse(qm, s, &cqe_id, &qp_id); if (ret) return ret; qp = &qm->qp_array[qp_id]; cqe_curr = qp->cqe + cqe_id; ret = dump_show(qm, cqe_curr, sizeof(struct qm_cqe), "CQE"); if (ret) dev_info(dev, "Show cqe failed!\n"); return ret; } static int qm_eq_aeq_dump(struct hisi_qm *qm, const char *s, size_t size, char *name) { struct device *dev = &qm->pdev->dev; void *xeqe; u32 xeqe_id; int ret; if (!s) return -EINVAL; ret = kstrtou32(s, 0, &xeqe_id); if (ret) return -EINVAL; if (!strcmp(name, "EQE") && xeqe_id >= QM_EQ_DEPTH) { dev_err(dev, "Please input eqe num (0-%d)", QM_EQ_DEPTH - 1); return -EINVAL; } else if (!strcmp(name, "AEQE") && xeqe_id >= QM_Q_DEPTH) { dev_err(dev, "Please input aeqe num (0-%d)", QM_Q_DEPTH - 1); return -EINVAL; } down_read(&qm->qps_lock); if (qm->eqe && !strcmp(name, "EQE")) { xeqe = qm->eqe + xeqe_id; } else if (qm->aeqe && !strcmp(name, "AEQE")) { xeqe = qm->aeqe + xeqe_id; } else { ret = -EINVAL; goto err_unlock; } ret = dump_show(qm, xeqe, size, name); if (ret) dev_info(dev, "Show %s failed!\n", name); err_unlock: up_read(&qm->qps_lock); return ret; } static int qm_dbg_help(struct hisi_qm *qm, char *s) { struct device *dev = &qm->pdev->dev; if (strsep(&s, " ")) { dev_err(dev, "Please do not input extra characters!\n"); return -EINVAL; } dev_info(dev, "available commands:\n"); dev_info(dev, "sqc \n"); dev_info(dev, "cqc \n"); dev_info(dev, "eqc\n"); dev_info(dev, "aeqc\n"); dev_info(dev, "sq \n"); dev_info(dev, "cq \n"); dev_info(dev, "eq \n"); dev_info(dev, "aeq \n"); return 0; } static int qm_cmd_write_dump(struct hisi_qm *qm, const char *cmd_buf) { struct device *dev = &qm->pdev->dev; char *presult, *s, *s_tmp; int ret; s = kstrdup(cmd_buf, GFP_KERNEL); if (!s) return -ENOMEM; s_tmp = s; presult = strsep(&s, " "); if (!presult) { ret = -EINVAL; goto err_buffer_free; } if (!strcmp(presult, "sqc")) ret = qm_sqc_dump(qm, s); else if (!strcmp(presult, "cqc")) ret = qm_cqc_dump(qm, s); else if (!strcmp(presult, "eqc")) ret = qm_eqc_aeqc_dump(qm, s, sizeof(struct qm_eqc), QM_MB_CMD_EQC, "EQC"); else if (!strcmp(presult, "aeqc")) ret = qm_eqc_aeqc_dump(qm, s, sizeof(struct qm_aeqc), QM_MB_CMD_AEQC, "AEQC"); else if (!strcmp(presult, "sq")) ret = qm_sq_dump(qm, s); else if (!strcmp(presult, "cq")) ret = qm_cq_dump(qm, s); else if (!strcmp(presult, "eq")) ret = qm_eq_aeq_dump(qm, s, sizeof(struct qm_eqe), "EQE"); else if (!strcmp(presult, "aeq")) ret = qm_eq_aeq_dump(qm, s, sizeof(struct qm_aeqe), "AEQE"); else if (!strcmp(presult, "help")) ret = qm_dbg_help(qm, s); else ret = -EINVAL; if (ret) dev_info(dev, "Please echo help\n"); err_buffer_free: kfree(s_tmp); return ret; } static ssize_t qm_cmd_write(struct file *filp, const char __user *buffer, size_t count, loff_t *pos) { struct hisi_qm *qm = filp->private_data; char *cmd_buf, *cmd_buf_tmp; int ret; if (*pos) return 0; /* Judge if the instance is being reset. */ if (unlikely(atomic_read(&qm->status.flags) == QM_STOP)) return 0; if (count > QM_DBG_WRITE_LEN) return -ENOSPC; cmd_buf = kzalloc(count + 1, GFP_KERNEL); if (!cmd_buf) return -ENOMEM; if (copy_from_user(cmd_buf, buffer, count)) { kfree(cmd_buf); return -EFAULT; } cmd_buf[count] = '\0'; cmd_buf_tmp = strchr(cmd_buf, '\n'); if (cmd_buf_tmp) { *cmd_buf_tmp = '\0'; count = cmd_buf_tmp - cmd_buf + 1; } ret = qm_cmd_write_dump(qm, cmd_buf); if (ret) { kfree(cmd_buf); return ret; } kfree(cmd_buf); return count; } static const struct file_operations qm_cmd_fops = { .owner = THIS_MODULE, .open = simple_open, .read = qm_cmd_read, .write = qm_cmd_write, }; static void qm_create_debugfs_file(struct hisi_qm *qm, struct dentry *dir, enum qm_debug_file index) { struct debugfs_file *file = qm->debug.files + index; debugfs_create_file(qm_debug_file_name[index], 0600, dir, file, &qm_debug_fops); file->index = index; mutex_init(&file->lock); file->debug = &qm->debug; } static void qm_hw_error_init_v1(struct hisi_qm *qm, u32 ce, u32 nfe, u32 fe) { writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK); } static void qm_hw_error_init_v2(struct hisi_qm *qm, u32 ce, u32 nfe, u32 fe) { u32 irq_enable = ce | nfe | fe; u32 irq_unmask = ~irq_enable; qm->error_mask = ce | nfe | fe; /* clear QM hw residual error source */ writel(QM_ABNORMAL_INT_SOURCE_CLR, qm->io_base + QM_ABNORMAL_INT_SOURCE); /* configure error type */ writel(ce, qm->io_base + QM_RAS_CE_ENABLE); writel(QM_RAS_CE_TIMES_PER_IRQ, qm->io_base + QM_RAS_CE_THRESHOLD); writel(nfe, qm->io_base + QM_RAS_NFE_ENABLE); writel(fe, qm->io_base + QM_RAS_FE_ENABLE); irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK); writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK); } static void qm_hw_error_uninit_v2(struct hisi_qm *qm) { writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK); } static void qm_log_hw_error(struct hisi_qm *qm, u32 error_status) { const struct hisi_qm_hw_error *err; struct device *dev = &qm->pdev->dev; u32 reg_val, type, vf_num; int i; for (i = 0; i < ARRAY_SIZE(qm_hw_error); i++) { err = &qm_hw_error[i]; if (!(err->int_msk & error_status)) continue; dev_err(dev, "%s [error status=0x%x] found\n", err->msg, err->int_msk); if (err->int_msk & QM_DB_TIMEOUT) { reg_val = readl(qm->io_base + QM_ABNORMAL_INF01); type = (reg_val & QM_DB_TIMEOUT_TYPE) >> QM_DB_TIMEOUT_TYPE_SHIFT; vf_num = reg_val & QM_DB_TIMEOUT_VF; dev_err(dev, "qm %s doorbell timeout in function %u\n", qm_db_timeout[type], vf_num); } else if (err->int_msk & QM_OF_FIFO_OF) { reg_val = readl(qm->io_base + QM_ABNORMAL_INF00); type = (reg_val & QM_FIFO_OVERFLOW_TYPE) >> QM_FIFO_OVERFLOW_TYPE_SHIFT; vf_num = reg_val & QM_FIFO_OVERFLOW_VF; if (type < ARRAY_SIZE(qm_fifo_overflow)) dev_err(dev, "qm %s fifo overflow in function %u\n", qm_fifo_overflow[type], vf_num); else dev_err(dev, "unknown error type\n"); } } } static enum acc_err_result qm_hw_error_handle_v2(struct hisi_qm *qm) { u32 error_status, tmp, val; /* read err sts */ tmp = readl(qm->io_base + QM_ABNORMAL_INT_STATUS); error_status = qm->error_mask & tmp; if (error_status) { if (error_status & QM_ECC_MBIT) qm->err_status.is_qm_ecc_mbit = true; qm_log_hw_error(qm, error_status); val = error_status | QM_DB_RANDOM_INVALID | QM_BASE_CE; /* ce error does not need to be reset */ if (val == (QM_DB_RANDOM_INVALID | QM_BASE_CE)) { writel(error_status, qm->io_base + QM_ABNORMAL_INT_SOURCE); writel(qm->err_info.nfe, qm->io_base + QM_RAS_NFE_ENABLE); return ACC_ERR_RECOVERED; } return ACC_ERR_NEED_RESET; } return ACC_ERR_RECOVERED; } static int qm_stop_qp(struct hisi_qp *qp) { return qm_mb(qp->qm, QM_MB_CMD_STOP_QP, 0, qp->qp_id, 0); } static const struct hisi_qm_hw_ops qm_hw_ops_v1 = { .qm_db = qm_db_v1, .get_irq_num = qm_get_irq_num_v1, .hw_error_init = qm_hw_error_init_v1, }; static const struct hisi_qm_hw_ops qm_hw_ops_v2 = { .get_vft = qm_get_vft_v2, .qm_db = qm_db_v2, .get_irq_num = qm_get_irq_num_v2, .hw_error_init = qm_hw_error_init_v2, .hw_error_uninit = qm_hw_error_uninit_v2, .hw_error_handle = qm_hw_error_handle_v2, }; static const struct hisi_qm_hw_ops qm_hw_ops_v3 = { .get_vft = qm_get_vft_v2, .qm_db = qm_db_v2, .get_irq_num = qm_get_irq_num_v2, .hw_error_init = qm_hw_error_init_v2, .hw_error_uninit = qm_hw_error_uninit_v2, .hw_error_handle = qm_hw_error_handle_v2, .stop_qp = qm_stop_qp, }; static void *qm_get_avail_sqe(struct hisi_qp *qp) { struct hisi_qp_status *qp_status = &qp->qp_status; u16 sq_tail = qp_status->sq_tail; if (unlikely(atomic_read(&qp->qp_status.used) == QM_Q_DEPTH - 1)) return NULL; return qp->sqe + sq_tail * qp->qm->sqe_size; } static struct hisi_qp *qm_create_qp_nolock(struct hisi_qm *qm, u8 alg_type) { struct device *dev = &qm->pdev->dev; struct hisi_qp *qp; int qp_id; if (!qm_qp_avail_state(qm, NULL, QP_INIT)) return ERR_PTR(-EPERM); if (qm->qp_in_used == qm->qp_num) { dev_info_ratelimited(dev, "All %u queues of QM are busy!\n", qm->qp_num); atomic64_inc(&qm->debug.dfx.create_qp_err_cnt); return ERR_PTR(-EBUSY); } qp_id = idr_alloc_cyclic(&qm->qp_idr, NULL, 0, qm->qp_num, GFP_ATOMIC); if (qp_id < 0) { dev_info_ratelimited(dev, "All %u queues of QM are busy!\n", qm->qp_num); atomic64_inc(&qm->debug.dfx.create_qp_err_cnt); return ERR_PTR(-EBUSY); } qp = &qm->qp_array[qp_id]; memset(qp->cqe, 0, sizeof(struct qm_cqe) * QM_Q_DEPTH); qp->event_cb = NULL; qp->req_cb = NULL; qp->qp_id = qp_id; qp->alg_type = alg_type; qp->is_in_kernel = true; qm->qp_in_used++; atomic_set(&qp->qp_status.flags, QP_INIT); return qp; } /** * hisi_qm_create_qp() - Create a queue pair from qm. * @qm: The qm we create a qp from. * @alg_type: Accelerator specific algorithm type in sqc. * * return created qp, -EBUSY if all qps in qm allocated, -ENOMEM if allocating * qp memory fails. */ struct hisi_qp *hisi_qm_create_qp(struct hisi_qm *qm, u8 alg_type) { struct hisi_qp *qp; down_write(&qm->qps_lock); qp = qm_create_qp_nolock(qm, alg_type); up_write(&qm->qps_lock); return qp; } EXPORT_SYMBOL_GPL(hisi_qm_create_qp); /** * hisi_qm_release_qp() - Release a qp back to its qm. * @qp: The qp we want to release. * * This function releases the resource of a qp. */ void hisi_qm_release_qp(struct hisi_qp *qp) { struct hisi_qm *qm = qp->qm; down_write(&qm->qps_lock); if (!qm_qp_avail_state(qm, qp, QP_CLOSE)) { up_write(&qm->qps_lock); return; } qm->qp_in_used--; idr_remove(&qm->qp_idr, qp->qp_id); up_write(&qm->qps_lock); } EXPORT_SYMBOL_GPL(hisi_qm_release_qp); static int qm_sq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid) { struct hisi_qm *qm = qp->qm; struct device *dev = &qm->pdev->dev; enum qm_hw_ver ver = qm->ver; struct qm_sqc *sqc; dma_addr_t sqc_dma; int ret; sqc = kzalloc(sizeof(struct qm_sqc), GFP_KERNEL); if (!sqc) return -ENOMEM; INIT_QC_COMMON(sqc, qp->sqe_dma, pasid); if (ver == QM_HW_V1) { sqc->dw3 = cpu_to_le32(QM_MK_SQC_DW3_V1(0, 0, 0, qm->sqe_size)); sqc->w8 = cpu_to_le16(QM_Q_DEPTH - 1); } else { sqc->dw3 = cpu_to_le32(QM_MK_SQC_DW3_V2(qm->sqe_size)); sqc->w8 = 0; /* rand_qc */ } sqc->cq_num = cpu_to_le16(qp_id); sqc->w13 = cpu_to_le16(QM_MK_SQC_W13(0, 1, qp->alg_type)); if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel) sqc->w11 = cpu_to_le16(QM_QC_PASID_ENABLE << QM_QC_PASID_ENABLE_SHIFT); sqc_dma = dma_map_single(dev, sqc, sizeof(struct qm_sqc), DMA_TO_DEVICE); if (dma_mapping_error(dev, sqc_dma)) { kfree(sqc); return -ENOMEM; } ret = qm_mb(qm, QM_MB_CMD_SQC, sqc_dma, qp_id, 0); dma_unmap_single(dev, sqc_dma, sizeof(struct qm_sqc), DMA_TO_DEVICE); kfree(sqc); return ret; } static int qm_cq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid) { struct hisi_qm *qm = qp->qm; struct device *dev = &qm->pdev->dev; enum qm_hw_ver ver = qm->ver; struct qm_cqc *cqc; dma_addr_t cqc_dma; int ret; cqc = kzalloc(sizeof(struct qm_cqc), GFP_KERNEL); if (!cqc) return -ENOMEM; INIT_QC_COMMON(cqc, qp->cqe_dma, pasid); if (ver == QM_HW_V1) { cqc->dw3 = cpu_to_le32(QM_MK_CQC_DW3_V1(0, 0, 0, QM_QC_CQE_SIZE)); cqc->w8 = cpu_to_le16(QM_Q_DEPTH - 1); } else { cqc->dw3 = cpu_to_le32(QM_MK_CQC_DW3_V2(QM_QC_CQE_SIZE)); cqc->w8 = 0; /* rand_qc */ } cqc->dw6 = cpu_to_le32(1 << QM_CQ_PHASE_SHIFT | 1 << QM_CQ_FLAG_SHIFT); if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel) cqc->w11 = cpu_to_le16(QM_QC_PASID_ENABLE); cqc_dma = dma_map_single(dev, cqc, sizeof(struct qm_cqc), DMA_TO_DEVICE); if (dma_mapping_error(dev, cqc_dma)) { kfree(cqc); return -ENOMEM; } ret = qm_mb(qm, QM_MB_CMD_CQC, cqc_dma, qp_id, 0); dma_unmap_single(dev, cqc_dma, sizeof(struct qm_cqc), DMA_TO_DEVICE); kfree(cqc); return ret; } static int qm_qp_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid) { int ret; qm_init_qp_status(qp); ret = qm_sq_ctx_cfg(qp, qp_id, pasid); if (ret) return ret; return qm_cq_ctx_cfg(qp, qp_id, pasid); } static int qm_start_qp_nolock(struct hisi_qp *qp, unsigned long arg) { struct hisi_qm *qm = qp->qm; struct device *dev = &qm->pdev->dev; int qp_id = qp->qp_id; u32 pasid = arg; int ret; if (!qm_qp_avail_state(qm, qp, QP_START)) return -EPERM; ret = qm_qp_ctx_cfg(qp, qp_id, pasid); if (ret) return ret; atomic_set(&qp->qp_status.flags, QP_START); dev_dbg(dev, "queue %d started\n", qp_id); return 0; } /** * hisi_qm_start_qp() - Start a qp into running. * @qp: The qp we want to start to run. * @arg: Accelerator specific argument. * * After this function, qp can receive request from user. Return 0 if * successful, Return -EBUSY if failed. */ int hisi_qm_start_qp(struct hisi_qp *qp, unsigned long arg) { struct hisi_qm *qm = qp->qm; int ret; down_write(&qm->qps_lock); ret = qm_start_qp_nolock(qp, arg); up_write(&qm->qps_lock); return ret; } EXPORT_SYMBOL_GPL(hisi_qm_start_qp); /** * qp_stop_fail_cb() - call request cb. * @qp: stopped failed qp. * * Callback function should be called whether task completed or not. */ static void qp_stop_fail_cb(struct hisi_qp *qp) { int qp_used = atomic_read(&qp->qp_status.used); u16 cur_tail = qp->qp_status.sq_tail; u16 cur_head = (cur_tail + QM_Q_DEPTH - qp_used) % QM_Q_DEPTH; struct hisi_qm *qm = qp->qm; u16 pos; int i; for (i = 0; i < qp_used; i++) { pos = (i + cur_head) % QM_Q_DEPTH; qp->req_cb(qp, qp->sqe + (u32)(qm->sqe_size * pos)); atomic_dec(&qp->qp_status.used); } } /** * qm_drain_qp() - Drain a qp. * @qp: The qp we want to drain. * * Determine whether the queue is cleared by judging the tail pointers of * sq and cq. */ static int qm_drain_qp(struct hisi_qp *qp) { size_t size = sizeof(struct qm_sqc) + sizeof(struct qm_cqc); struct hisi_qm *qm = qp->qm; struct device *dev = &qm->pdev->dev; struct qm_sqc *sqc; struct qm_cqc *cqc; dma_addr_t dma_addr; int ret = 0, i = 0; void *addr; /* * No need to judge if ECC multi-bit error occurs because the * master OOO will be blocked. */ if (qm->err_status.is_qm_ecc_mbit || qm->err_status.is_dev_ecc_mbit) return 0; /* Kunpeng930 supports drain qp by device */ if (qm->ops->stop_qp) { ret = qm->ops->stop_qp(qp); if (ret) dev_err(dev, "Failed to stop qp(%u)!\n", qp->qp_id); return ret; } addr = qm_ctx_alloc(qm, size, &dma_addr); if (IS_ERR(addr)) { dev_err(dev, "Failed to alloc ctx for sqc and cqc!\n"); return -ENOMEM; } while (++i) { ret = qm_dump_sqc_raw(qm, dma_addr, qp->qp_id); if (ret) { dev_err_ratelimited(dev, "Failed to dump sqc!\n"); break; } sqc = addr; ret = qm_dump_cqc_raw(qm, (dma_addr + sizeof(struct qm_sqc)), qp->qp_id); if (ret) { dev_err_ratelimited(dev, "Failed to dump cqc!\n"); break; } cqc = addr + sizeof(struct qm_sqc); if ((sqc->tail == cqc->tail) && (QM_SQ_TAIL_IDX(sqc) == QM_CQ_TAIL_IDX(cqc))) break; if (i == MAX_WAIT_COUNTS) { dev_err(dev, "Fail to empty queue %u!\n", qp->qp_id); ret = -EBUSY; break; } usleep_range(WAIT_PERIOD_US_MIN, WAIT_PERIOD_US_MAX); } qm_ctx_free(qm, size, addr, &dma_addr); return ret; } static int qm_stop_qp_nolock(struct hisi_qp *qp) { struct device *dev = &qp->qm->pdev->dev; int ret; /* * It is allowed to stop and release qp when reset, If the qp is * stopped when reset but still want to be released then, the * is_resetting flag should be set negative so that this qp will not * be restarted after reset. */ if (atomic_read(&qp->qp_status.flags) == QP_STOP) { qp->is_resetting = false; return 0; } if (!qm_qp_avail_state(qp->qm, qp, QP_STOP)) return -EPERM; atomic_set(&qp->qp_status.flags, QP_STOP); ret = qm_drain_qp(qp); if (ret) dev_err(dev, "Failed to drain out data for stopping!\n"); if (qp->qm->wq) flush_workqueue(qp->qm->wq); else flush_work(&qp->qm->work); if (unlikely(qp->is_resetting && atomic_read(&qp->qp_status.used))) qp_stop_fail_cb(qp); dev_dbg(dev, "stop queue %u!", qp->qp_id); return 0; } /** * hisi_qm_stop_qp() - Stop a qp in qm. * @qp: The qp we want to stop. * * This function is reverse of hisi_qm_start_qp. Return 0 if successful. */ int hisi_qm_stop_qp(struct hisi_qp *qp) { int ret; down_write(&qp->qm->qps_lock); ret = qm_stop_qp_nolock(qp); up_write(&qp->qm->qps_lock); return ret; } EXPORT_SYMBOL_GPL(hisi_qm_stop_qp); /** * hisi_qp_send() - Queue up a task in the hardware queue. * @qp: The qp in which to put the message. * @msg: The message. * * This function will return -EBUSY if qp is currently full, and -EAGAIN * if qp related qm is resetting. * * Note: This function may run with qm_irq_thread and ACC reset at same time. * It has no race with qm_irq_thread. However, during hisi_qp_send, ACC * reset may happen, we have no lock here considering performance. This * causes current qm_db sending fail or can not receive sended sqe. QM * sync/async receive function should handle the error sqe. ACC reset * done function should clear used sqe to 0. */ int hisi_qp_send(struct hisi_qp *qp, const void *msg) { struct hisi_qp_status *qp_status = &qp->qp_status; u16 sq_tail = qp_status->sq_tail; u16 sq_tail_next = (sq_tail + 1) % QM_Q_DEPTH; void *sqe = qm_get_avail_sqe(qp); if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP || atomic_read(&qp->qm->status.flags) == QM_STOP || qp->is_resetting)) { dev_info_ratelimited(&qp->qm->pdev->dev, "QP is stopped or resetting\n"); return -EAGAIN; } if (!sqe) return -EBUSY; memcpy(sqe, msg, qp->qm->sqe_size); qm_db(qp->qm, qp->qp_id, QM_DOORBELL_CMD_SQ, sq_tail_next, 0); atomic_inc(&qp->qp_status.used); qp_status->sq_tail = sq_tail_next; return 0; } EXPORT_SYMBOL_GPL(hisi_qp_send); static void hisi_qm_cache_wb(struct hisi_qm *qm) { unsigned int val; if (qm->ver == QM_HW_V1) return; writel(0x1, qm->io_base + QM_CACHE_WB_START); if (readl_relaxed_poll_timeout(qm->io_base + QM_CACHE_WB_DONE, val, val & BIT(0), POLL_PERIOD, POLL_TIMEOUT)) dev_err(&qm->pdev->dev, "QM writeback sqc cache fail!\n"); } static void qm_qp_event_notifier(struct hisi_qp *qp) { wake_up_interruptible(&qp->uacce_q->wait); } static int hisi_qm_get_available_instances(struct uacce_device *uacce) { return hisi_qm_get_free_qp_num(uacce->priv); } static int hisi_qm_uacce_get_queue(struct uacce_device *uacce, unsigned long arg, struct uacce_queue *q) { struct hisi_qm *qm = uacce->priv; struct hisi_qp *qp; u8 alg_type = 0; qp = hisi_qm_create_qp(qm, alg_type); if (IS_ERR(qp)) return PTR_ERR(qp); q->priv = qp; q->uacce = uacce; qp->uacce_q = q; qp->event_cb = qm_qp_event_notifier; qp->pasid = arg; qp->is_in_kernel = false; return 0; } static void hisi_qm_uacce_put_queue(struct uacce_queue *q) { struct hisi_qp *qp = q->priv; hisi_qm_cache_wb(qp->qm); hisi_qm_release_qp(qp); } /* map sq/cq/doorbell to user space */ static int hisi_qm_uacce_mmap(struct uacce_queue *q, struct vm_area_struct *vma, struct uacce_qfile_region *qfr) { struct hisi_qp *qp = q->priv; struct hisi_qm *qm = qp->qm; resource_size_t phys_base = qm->db_phys_base + qp->qp_id * qm->db_interval; size_t sz = vma->vm_end - vma->vm_start; struct pci_dev *pdev = qm->pdev; struct device *dev = &pdev->dev; unsigned long vm_pgoff; int ret; switch (qfr->type) { case UACCE_QFRT_MMIO: if (qm->ver == QM_HW_V1) { if (sz > PAGE_SIZE * QM_DOORBELL_PAGE_NR) return -EINVAL; } else if (qm->ver == QM_HW_V2 || !qm->use_db_isolation) { if (sz > PAGE_SIZE * (QM_DOORBELL_PAGE_NR + QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE)) return -EINVAL; } else { if (sz > qm->db_interval) return -EINVAL; } vma->vm_flags |= VM_IO; return remap_pfn_range(vma, vma->vm_start, phys_base >> PAGE_SHIFT, sz, pgprot_noncached(vma->vm_page_prot)); case UACCE_QFRT_DUS: if (sz != qp->qdma.size) return -EINVAL; /* * dma_mmap_coherent() requires vm_pgoff as 0 * restore vm_pfoff to initial value for mmap() */ vm_pgoff = vma->vm_pgoff; vma->vm_pgoff = 0; ret = dma_mmap_coherent(dev, vma, qp->qdma.va, qp->qdma.dma, sz); vma->vm_pgoff = vm_pgoff; return ret; default: return -EINVAL; } } static int hisi_qm_uacce_start_queue(struct uacce_queue *q) { struct hisi_qp *qp = q->priv; return hisi_qm_start_qp(qp, qp->pasid); } static void hisi_qm_uacce_stop_queue(struct uacce_queue *q) { hisi_qm_stop_qp(q->priv); } static void qm_set_sqctype(struct uacce_queue *q, u16 type) { struct hisi_qm *qm = q->uacce->priv; struct hisi_qp *qp = q->priv; down_write(&qm->qps_lock); qp->alg_type = type; up_write(&qm->qps_lock); } static long hisi_qm_uacce_ioctl(struct uacce_queue *q, unsigned int cmd, unsigned long arg) { struct hisi_qp *qp = q->priv; struct hisi_qp_ctx qp_ctx; if (cmd == UACCE_CMD_QM_SET_QP_CTX) { if (copy_from_user(&qp_ctx, (void __user *)arg, sizeof(struct hisi_qp_ctx))) return -EFAULT; if (qp_ctx.qc_type != 0 && qp_ctx.qc_type != 1) return -EINVAL; qm_set_sqctype(q, qp_ctx.qc_type); qp_ctx.id = qp->qp_id; if (copy_to_user((void __user *)arg, &qp_ctx, sizeof(struct hisi_qp_ctx))) return -EFAULT; } else { return -EINVAL; } return 0; } static const struct uacce_ops uacce_qm_ops = { .get_available_instances = hisi_qm_get_available_instances, .get_queue = hisi_qm_uacce_get_queue, .put_queue = hisi_qm_uacce_put_queue, .start_queue = hisi_qm_uacce_start_queue, .stop_queue = hisi_qm_uacce_stop_queue, .mmap = hisi_qm_uacce_mmap, .ioctl = hisi_qm_uacce_ioctl, }; static int qm_alloc_uacce(struct hisi_qm *qm) { struct pci_dev *pdev = qm->pdev; struct uacce_device *uacce; unsigned long mmio_page_nr; unsigned long dus_page_nr; struct uacce_interface interface = { .flags = UACCE_DEV_SVA, .ops = &uacce_qm_ops, }; int ret; ret = strscpy(interface.name, pdev->driver->name, sizeof(interface.name)); if (ret < 0) return -ENAMETOOLONG; uacce = uacce_alloc(&pdev->dev, &interface); if (IS_ERR(uacce)) return PTR_ERR(uacce); if (uacce->flags & UACCE_DEV_SVA && qm->mode == UACCE_MODE_SVA) { qm->use_sva = true; } else { /* only consider sva case */ uacce_remove(uacce); qm->uacce = NULL; return -EINVAL; } uacce->is_vf = pdev->is_virtfn; uacce->priv = qm; uacce->algs = qm->algs; if (qm->ver == QM_HW_V1) uacce->api_ver = HISI_QM_API_VER_BASE; else if (qm->ver == QM_HW_V2) uacce->api_ver = HISI_QM_API_VER2_BASE; else uacce->api_ver = HISI_QM_API_VER3_BASE; if (qm->ver == QM_HW_V1) mmio_page_nr = QM_DOORBELL_PAGE_NR; else if (qm->ver == QM_HW_V2 || !qm->use_db_isolation) mmio_page_nr = QM_DOORBELL_PAGE_NR + QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE; else mmio_page_nr = qm->db_interval / PAGE_SIZE; dus_page_nr = (PAGE_SIZE - 1 + qm->sqe_size * QM_Q_DEPTH + sizeof(struct qm_cqe) * QM_Q_DEPTH) >> PAGE_SHIFT; uacce->qf_pg_num[UACCE_QFRT_MMIO] = mmio_page_nr; uacce->qf_pg_num[UACCE_QFRT_DUS] = dus_page_nr; qm->uacce = uacce; return 0; } /** * qm_frozen() - Try to froze QM to cut continuous queue request. If * there is user on the QM, return failure without doing anything. * @qm: The qm needed to be fronzen. * * This function frozes QM, then we can do SRIOV disabling. */ static int qm_frozen(struct hisi_qm *qm) { if (test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl)) return 0; down_write(&qm->qps_lock); if (!qm->qp_in_used) { qm->qp_in_used = qm->qp_num; up_write(&qm->qps_lock); set_bit(QM_DRIVER_REMOVING, &qm->misc_ctl); return 0; } up_write(&qm->qps_lock); return -EBUSY; } static int qm_try_frozen_vfs(struct pci_dev *pdev, struct hisi_qm_list *qm_list) { struct hisi_qm *qm, *vf_qm; struct pci_dev *dev; int ret = 0; if (!qm_list || !pdev) return -EINVAL; /* Try to frozen all the VFs as disable SRIOV */ mutex_lock(&qm_list->lock); list_for_each_entry(qm, &qm_list->list, list) { dev = qm->pdev; if (dev == pdev) continue; if (pci_physfn(dev) == pdev) { vf_qm = pci_get_drvdata(dev); ret = qm_frozen(vf_qm); if (ret) goto frozen_fail; } } frozen_fail: mutex_unlock(&qm_list->lock); return ret; } /** * hisi_qm_wait_task_finish() - Wait until the task is finished * when removing the driver. * @qm: The qm needed to wait for the task to finish. * @qm_list: The list of all available devices. */ void hisi_qm_wait_task_finish(struct hisi_qm *qm, struct hisi_qm_list *qm_list) { while (qm_frozen(qm) || ((qm->fun_type == QM_HW_PF) && qm_try_frozen_vfs(qm->pdev, qm_list))) { msleep(WAIT_PERIOD); } while (test_bit(QM_RST_SCHED, &qm->misc_ctl) || test_bit(QM_RESETTING, &qm->misc_ctl)) msleep(WAIT_PERIOD); udelay(REMOVE_WAIT_DELAY); } EXPORT_SYMBOL_GPL(hisi_qm_wait_task_finish); /** * hisi_qm_get_free_qp_num() - Get free number of qp in qm. * @qm: The qm which want to get free qp. * * This function return free number of qp in qm. */ int hisi_qm_get_free_qp_num(struct hisi_qm *qm) { int ret; down_read(&qm->qps_lock); ret = qm->qp_num - qm->qp_in_used; up_read(&qm->qps_lock); return ret; } EXPORT_SYMBOL_GPL(hisi_qm_get_free_qp_num); static void hisi_qp_memory_uninit(struct hisi_qm *qm, int num) { struct device *dev = &qm->pdev->dev; struct qm_dma *qdma; int i; for (i = num - 1; i >= 0; i--) { qdma = &qm->qp_array[i].qdma; dma_free_coherent(dev, qdma->size, qdma->va, qdma->dma); } kfree(qm->qp_array); } static int hisi_qp_memory_init(struct hisi_qm *qm, size_t dma_size, int id) { struct device *dev = &qm->pdev->dev; size_t off = qm->sqe_size * QM_Q_DEPTH; struct hisi_qp *qp; qp = &qm->qp_array[id]; qp->qdma.va = dma_alloc_coherent(dev, dma_size, &qp->qdma.dma, GFP_KERNEL); if (!qp->qdma.va) return -ENOMEM; qp->sqe = qp->qdma.va; qp->sqe_dma = qp->qdma.dma; qp->cqe = qp->qdma.va + off; qp->cqe_dma = qp->qdma.dma + off; qp->qdma.size = dma_size; qp->qm = qm; qp->qp_id = id; return 0; } static int hisi_qm_memory_init(struct hisi_qm *qm) { struct device *dev = &qm->pdev->dev; size_t qp_dma_size, off = 0; int i, ret = 0; #define QM_INIT_BUF(qm, type, num) do { \ (qm)->type = ((qm)->qdma.va + (off)); \ (qm)->type##_dma = (qm)->qdma.dma + (off); \ off += QMC_ALIGN(sizeof(struct qm_##type) * (num)); \ } while (0) idr_init(&qm->qp_idr); qm->qdma.size = QMC_ALIGN(sizeof(struct qm_eqe) * QM_EQ_DEPTH) + QMC_ALIGN(sizeof(struct qm_aeqe) * QM_Q_DEPTH) + QMC_ALIGN(sizeof(struct qm_sqc) * qm->qp_num) + QMC_ALIGN(sizeof(struct qm_cqc) * qm->qp_num); qm->qdma.va = dma_alloc_coherent(dev, qm->qdma.size, &qm->qdma.dma, GFP_ATOMIC); dev_dbg(dev, "allocate qm dma buf size=%zx)\n", qm->qdma.size); if (!qm->qdma.va) return -ENOMEM; QM_INIT_BUF(qm, eqe, QM_EQ_DEPTH); QM_INIT_BUF(qm, aeqe, QM_Q_DEPTH); QM_INIT_BUF(qm, sqc, qm->qp_num); QM_INIT_BUF(qm, cqc, qm->qp_num); qm->qp_array = kcalloc(qm->qp_num, sizeof(struct hisi_qp), GFP_KERNEL); if (!qm->qp_array) { ret = -ENOMEM; goto err_alloc_qp_array; } /* one more page for device or qp statuses */ qp_dma_size = qm->sqe_size * QM_Q_DEPTH + sizeof(struct qm_cqe) * QM_Q_DEPTH; qp_dma_size = PAGE_ALIGN(qp_dma_size); for (i = 0; i < qm->qp_num; i++) { ret = hisi_qp_memory_init(qm, qp_dma_size, i); if (ret) goto err_init_qp_mem; dev_dbg(dev, "allocate qp dma buf size=%zx)\n", qp_dma_size); } return ret; err_init_qp_mem: hisi_qp_memory_uninit(qm, i); err_alloc_qp_array: dma_free_coherent(dev, qm->qdma.size, qm->qdma.va, qm->qdma.dma); return ret; } static void hisi_qm_pre_init(struct hisi_qm *qm) { struct pci_dev *pdev = qm->pdev; if (qm->ver == QM_HW_V1) qm->ops = &qm_hw_ops_v1; else if (qm->ver == QM_HW_V2) qm->ops = &qm_hw_ops_v2; else qm->ops = &qm_hw_ops_v3; pci_set_drvdata(pdev, qm); mutex_init(&qm->mailbox_lock); init_rwsem(&qm->qps_lock); qm->qp_in_used = 0; qm->misc_ctl = false; } static void qm_put_pci_res(struct hisi_qm *qm) { struct pci_dev *pdev = qm->pdev; if (qm->use_db_isolation) iounmap(qm->db_io_base); iounmap(qm->io_base); pci_release_mem_regions(pdev); } static void hisi_qm_pci_uninit(struct hisi_qm *qm) { struct pci_dev *pdev = qm->pdev; pci_free_irq_vectors(pdev); qm_put_pci_res(qm); pci_disable_device(pdev); } /** * hisi_qm_uninit() - Uninitialize qm. * @qm: The qm needed uninit. * * This function uninits qm related device resources. */ void hisi_qm_uninit(struct hisi_qm *qm) { struct pci_dev *pdev = qm->pdev; struct device *dev = &pdev->dev; down_write(&qm->qps_lock); if (!qm_avail_state(qm, QM_CLOSE)) { up_write(&qm->qps_lock); return; } hisi_qp_memory_uninit(qm, qm->qp_num); idr_destroy(&qm->qp_idr); if (qm->qdma.va) { hisi_qm_cache_wb(qm); dma_free_coherent(dev, qm->qdma.size, qm->qdma.va, qm->qdma.dma); } qm_irq_unregister(qm); hisi_qm_pci_uninit(qm); uacce_remove(qm->uacce); qm->uacce = NULL; up_write(&qm->qps_lock); } EXPORT_SYMBOL_GPL(hisi_qm_uninit); /** * hisi_qm_get_vft() - Get vft from a qm. * @qm: The qm we want to get its vft. * @base: The base number of queue in vft. * @number: The number of queues in vft. * * We can allocate multiple queues to a qm by configuring virtual function * table. We get related configures by this function. Normally, we call this * function in VF driver to get the queue information. * * qm hw v1 does not support this interface. */ int hisi_qm_get_vft(struct hisi_qm *qm, u32 *base, u32 *number) { if (!base || !number) return -EINVAL; if (!qm->ops->get_vft) { dev_err(&qm->pdev->dev, "Don't support vft read!\n"); return -EINVAL; } return qm->ops->get_vft(qm, base, number); } EXPORT_SYMBOL_GPL(hisi_qm_get_vft); /** * hisi_qm_set_vft() - Set vft to a qm. * @qm: The qm we want to set its vft. * @fun_num: The function number. * @base: The base number of queue in vft. * @number: The number of queues in vft. * * This function is alway called in PF driver, it is used to assign queues * among PF and VFs. * * Assign queues A~B to PF: hisi_qm_set_vft(qm, 0, A, B - A + 1) * Assign queues A~B to VF: hisi_qm_set_vft(qm, 2, A, B - A + 1) * (VF function number 0x2) */ static int hisi_qm_set_vft(struct hisi_qm *qm, u32 fun_num, u32 base, u32 number) { u32 max_q_num = qm->ctrl_qp_num; if (base >= max_q_num || number > max_q_num || (base + number) > max_q_num) return -EINVAL; return qm_set_sqc_cqc_vft(qm, fun_num, base, number); } static void qm_init_eq_aeq_status(struct hisi_qm *qm) { struct hisi_qm_status *status = &qm->status; status->eq_head = 0; status->aeq_head = 0; status->eqc_phase = true; status->aeqc_phase = true; } static int qm_eq_ctx_cfg(struct hisi_qm *qm) { struct device *dev = &qm->pdev->dev; struct qm_eqc *eqc; dma_addr_t eqc_dma; int ret; eqc = kzalloc(sizeof(struct qm_eqc), GFP_KERNEL); if (!eqc) return -ENOMEM; eqc->base_l = cpu_to_le32(lower_32_bits(qm->eqe_dma)); eqc->base_h = cpu_to_le32(upper_32_bits(qm->eqe_dma)); if (qm->ver == QM_HW_V1) eqc->dw3 = cpu_to_le32(QM_EQE_AEQE_SIZE); eqc->dw6 = cpu_to_le32((QM_EQ_DEPTH - 1) | (1 << QM_EQC_PHASE_SHIFT)); eqc_dma = dma_map_single(dev, eqc, sizeof(struct qm_eqc), DMA_TO_DEVICE); if (dma_mapping_error(dev, eqc_dma)) { kfree(eqc); return -ENOMEM; } ret = qm_mb(qm, QM_MB_CMD_EQC, eqc_dma, 0, 0); dma_unmap_single(dev, eqc_dma, sizeof(struct qm_eqc), DMA_TO_DEVICE); kfree(eqc); return ret; } static int qm_aeq_ctx_cfg(struct hisi_qm *qm) { struct device *dev = &qm->pdev->dev; struct qm_aeqc *aeqc; dma_addr_t aeqc_dma; int ret; aeqc = kzalloc(sizeof(struct qm_aeqc), GFP_KERNEL); if (!aeqc) return -ENOMEM; aeqc->base_l = cpu_to_le32(lower_32_bits(qm->aeqe_dma)); aeqc->base_h = cpu_to_le32(upper_32_bits(qm->aeqe_dma)); aeqc->dw6 = cpu_to_le32((QM_Q_DEPTH - 1) | (1 << QM_EQC_PHASE_SHIFT)); aeqc_dma = dma_map_single(dev, aeqc, sizeof(struct qm_aeqc), DMA_TO_DEVICE); if (dma_mapping_error(dev, aeqc_dma)) { kfree(aeqc); return -ENOMEM; } ret = qm_mb(qm, QM_MB_CMD_AEQC, aeqc_dma, 0, 0); dma_unmap_single(dev, aeqc_dma, sizeof(struct qm_aeqc), DMA_TO_DEVICE); kfree(aeqc); return ret; } static int qm_eq_aeq_ctx_cfg(struct hisi_qm *qm) { struct device *dev = &qm->pdev->dev; int ret; qm_init_eq_aeq_status(qm); ret = qm_eq_ctx_cfg(qm); if (ret) { dev_err(dev, "Set eqc failed!\n"); return ret; } return qm_aeq_ctx_cfg(qm); } static int __hisi_qm_start(struct hisi_qm *qm) { int ret; WARN_ON(!qm->qdma.va); if (qm->fun_type == QM_HW_PF) { ret = qm_dev_mem_reset(qm); if (ret) return ret; ret = hisi_qm_set_vft(qm, 0, qm->qp_base, qm->qp_num); if (ret) return ret; } ret = qm_eq_aeq_ctx_cfg(qm); if (ret) return ret; ret = qm_mb(qm, QM_MB_CMD_SQC_BT, qm->sqc_dma, 0, 0); if (ret) return ret; ret = qm_mb(qm, QM_MB_CMD_CQC_BT, qm->cqc_dma, 0, 0); if (ret) return ret; writel(0x0, qm->io_base + QM_VF_EQ_INT_MASK); writel(0x0, qm->io_base + QM_VF_AEQ_INT_MASK); return 0; } /** * hisi_qm_start() - start qm * @qm: The qm to be started. * * This function starts a qm, then we can allocate qp from this qm. */ int hisi_qm_start(struct hisi_qm *qm) { struct device *dev = &qm->pdev->dev; int ret = 0; down_write(&qm->qps_lock); if (!qm_avail_state(qm, QM_START)) { up_write(&qm->qps_lock); return -EPERM; } dev_dbg(dev, "qm start with %u queue pairs\n", qm->qp_num); if (!qm->qp_num) { dev_err(dev, "qp_num should not be 0\n"); ret = -EINVAL; goto err_unlock; } ret = __hisi_qm_start(qm); if (!ret) atomic_set(&qm->status.flags, QM_START); err_unlock: up_write(&qm->qps_lock); return ret; } EXPORT_SYMBOL_GPL(hisi_qm_start); static int qm_restart(struct hisi_qm *qm) { struct device *dev = &qm->pdev->dev; struct hisi_qp *qp; int ret, i; ret = hisi_qm_start(qm); if (ret < 0) return ret; down_write(&qm->qps_lock); for (i = 0; i < qm->qp_num; i++) { qp = &qm->qp_array[i]; if (atomic_read(&qp->qp_status.flags) == QP_STOP && qp->is_resetting == true) { ret = qm_start_qp_nolock(qp, 0); if (ret < 0) { dev_err(dev, "Failed to start qp%d!\n", i); up_write(&qm->qps_lock); return ret; } qp->is_resetting = false; } } up_write(&qm->qps_lock); return 0; } /* Stop started qps in reset flow */ static int qm_stop_started_qp(struct hisi_qm *qm) { struct device *dev = &qm->pdev->dev; struct hisi_qp *qp; int i, ret; for (i = 0; i < qm->qp_num; i++) { qp = &qm->qp_array[i]; if (qp && atomic_read(&qp->qp_status.flags) == QP_START) { qp->is_resetting = true; ret = qm_stop_qp_nolock(qp); if (ret < 0) { dev_err(dev, "Failed to stop qp%d!\n", i); return ret; } } } return 0; } /** * qm_clear_queues() - Clear all queues memory in a qm. * @qm: The qm in which the queues will be cleared. * * This function clears all queues memory in a qm. Reset of accelerator can * use this to clear queues. */ static void qm_clear_queues(struct hisi_qm *qm) { struct hisi_qp *qp; int i; for (i = 0; i < qm->qp_num; i++) { qp = &qm->qp_array[i]; if (qp->is_resetting) memset(qp->qdma.va, 0, qp->qdma.size); } memset(qm->qdma.va, 0, qm->qdma.size); } /** * hisi_qm_stop() - Stop a qm. * @qm: The qm which will be stopped. * @r: The reason to stop qm. * * This function stops qm and its qps, then qm can not accept request. * Related resources are not released at this state, we can use hisi_qm_start * to let qm start again. */ int hisi_qm_stop(struct hisi_qm *qm, enum qm_stop_reason r) { struct device *dev = &qm->pdev->dev; int ret = 0; down_write(&qm->qps_lock); qm->status.stop_reason = r; if (!qm_avail_state(qm, QM_STOP)) { ret = -EPERM; goto err_unlock; } if (qm->status.stop_reason == QM_SOFT_RESET || qm->status.stop_reason == QM_FLR) { ret = qm_stop_started_qp(qm); if (ret < 0) { dev_err(dev, "Failed to stop started qp!\n"); goto err_unlock; } } /* Mask eq and aeq irq */ writel(0x1, qm->io_base + QM_VF_EQ_INT_MASK); writel(0x1, qm->io_base + QM_VF_AEQ_INT_MASK); if (qm->fun_type == QM_HW_PF) { ret = hisi_qm_set_vft(qm, 0, 0, 0); if (ret < 0) { dev_err(dev, "Failed to set vft!\n"); ret = -EBUSY; goto err_unlock; } } qm_clear_queues(qm); atomic_set(&qm->status.flags, QM_STOP); err_unlock: up_write(&qm->qps_lock); return ret; } EXPORT_SYMBOL_GPL(hisi_qm_stop); static ssize_t qm_status_read(struct file *filp, char __user *buffer, size_t count, loff_t *pos) { struct hisi_qm *qm = filp->private_data; char buf[QM_DBG_READ_LEN]; int val, len; val = atomic_read(&qm->status.flags); len = scnprintf(buf, QM_DBG_READ_LEN, "%s\n", qm_s[val]); return simple_read_from_buffer(buffer, count, pos, buf, len); } static const struct file_operations qm_status_fops = { .owner = THIS_MODULE, .open = simple_open, .read = qm_status_read, }; static int qm_debugfs_atomic64_set(void *data, u64 val) { if (val) return -EINVAL; atomic64_set((atomic64_t *)data, 0); return 0; } static int qm_debugfs_atomic64_get(void *data, u64 *val) { *val = atomic64_read((atomic64_t *)data); return 0; } DEFINE_DEBUGFS_ATTRIBUTE(qm_atomic64_ops, qm_debugfs_atomic64_get, qm_debugfs_atomic64_set, "%llu\n"); /** * hisi_qm_debug_init() - Initialize qm related debugfs files. * @qm: The qm for which we want to add debugfs files. * * Create qm related debugfs files. */ void hisi_qm_debug_init(struct hisi_qm *qm) { struct qm_dfx *dfx = &qm->debug.dfx; struct dentry *qm_d; void *data; int i; qm_d = debugfs_create_dir("qm", qm->debug.debug_root); qm->debug.qm_d = qm_d; /* only show this in PF */ if (qm->fun_type == QM_HW_PF) { qm_create_debugfs_file(qm, qm->debug.debug_root, CURRENT_QM); for (i = CURRENT_Q; i < DEBUG_FILE_NUM; i++) qm_create_debugfs_file(qm, qm_d, i); } debugfs_create_file("regs", 0444, qm->debug.qm_d, qm, &qm_regs_fops); debugfs_create_file("cmd", 0444, qm->debug.qm_d, qm, &qm_cmd_fops); debugfs_create_file("status", 0444, qm->debug.qm_d, qm, &qm_status_fops); for (i = 0; i < ARRAY_SIZE(qm_dfx_files); i++) { data = (atomic64_t *)((uintptr_t)dfx + qm_dfx_files[i].offset); debugfs_create_file(qm_dfx_files[i].name, 0644, qm_d, data, &qm_atomic64_ops); } } EXPORT_SYMBOL_GPL(hisi_qm_debug_init); /** * hisi_qm_debug_regs_clear() - clear qm debug related registers. * @qm: The qm for which we want to clear its debug registers. */ void hisi_qm_debug_regs_clear(struct hisi_qm *qm) { struct qm_dfx_registers *regs; int i; /* clear current_qm */ writel(0x0, qm->io_base + QM_DFX_MB_CNT_VF); writel(0x0, qm->io_base + QM_DFX_DB_CNT_VF); /* clear current_q */ writel(0x0, qm->io_base + QM_DFX_SQE_CNT_VF_SQN); writel(0x0, qm->io_base + QM_DFX_CQE_CNT_VF_CQN); /* * these registers are reading and clearing, so clear them after * reading them. */ writel(0x1, qm->io_base + QM_DFX_CNT_CLR_CE); regs = qm_dfx_regs; for (i = 0; i < CNT_CYC_REGS_NUM; i++) { readl(qm->io_base + regs->reg_offset); regs++; } writel(0x0, qm->io_base + QM_DFX_CNT_CLR_CE); } EXPORT_SYMBOL_GPL(hisi_qm_debug_regs_clear); static void qm_hw_error_init(struct hisi_qm *qm) { struct hisi_qm_err_info *err_info = &qm->err_info; if (!qm->ops->hw_error_init) { dev_err(&qm->pdev->dev, "QM doesn't support hw error handling!\n"); return; } qm->ops->hw_error_init(qm, err_info->ce, err_info->nfe, err_info->fe); } static void qm_hw_error_uninit(struct hisi_qm *qm) { if (!qm->ops->hw_error_uninit) { dev_err(&qm->pdev->dev, "Unexpected QM hw error uninit!\n"); return; } qm->ops->hw_error_uninit(qm); } static enum acc_err_result qm_hw_error_handle(struct hisi_qm *qm) { if (!qm->ops->hw_error_handle) { dev_err(&qm->pdev->dev, "QM doesn't support hw error report!\n"); return ACC_ERR_NONE; } return qm->ops->hw_error_handle(qm); } /** * hisi_qm_dev_err_init() - Initialize device error configuration. * @qm: The qm for which we want to do error initialization. * * Initialize QM and device error related configuration. */ void hisi_qm_dev_err_init(struct hisi_qm *qm) { if (qm->fun_type == QM_HW_VF) return; qm_hw_error_init(qm); if (!qm->err_ini->hw_err_enable) { dev_err(&qm->pdev->dev, "Device doesn't support hw error init!\n"); return; } qm->err_ini->hw_err_enable(qm); } EXPORT_SYMBOL_GPL(hisi_qm_dev_err_init); /** * hisi_qm_dev_err_uninit() - Uninitialize device error configuration. * @qm: The qm for which we want to do error uninitialization. * * Uninitialize QM and device error related configuration. */ void hisi_qm_dev_err_uninit(struct hisi_qm *qm) { if (qm->fun_type == QM_HW_VF) return; qm_hw_error_uninit(qm); if (!qm->err_ini->hw_err_disable) { dev_err(&qm->pdev->dev, "Unexpected device hw error uninit!\n"); return; } qm->err_ini->hw_err_disable(qm); } EXPORT_SYMBOL_GPL(hisi_qm_dev_err_uninit); /** * hisi_qm_free_qps() - free multiple queue pairs. * @qps: The queue pairs need to be freed. * @qp_num: The num of queue pairs. */ void hisi_qm_free_qps(struct hisi_qp **qps, int qp_num) { int i; if (!qps || qp_num <= 0) return; for (i = qp_num - 1; i >= 0; i--) hisi_qm_release_qp(qps[i]); } EXPORT_SYMBOL_GPL(hisi_qm_free_qps); static void free_list(struct list_head *head) { struct hisi_qm_resource *res, *tmp; list_for_each_entry_safe(res, tmp, head, list) { list_del(&res->list); kfree(res); } } static int hisi_qm_sort_devices(int node, struct list_head *head, struct hisi_qm_list *qm_list) { struct hisi_qm_resource *res, *tmp; struct hisi_qm *qm; struct list_head *n; struct device *dev; int dev_node = 0; list_for_each_entry(qm, &qm_list->list, list) { dev = &qm->pdev->dev; if (IS_ENABLED(CONFIG_NUMA)) { dev_node = dev_to_node(dev); if (dev_node < 0) dev_node = 0; } res = kzalloc(sizeof(*res), GFP_KERNEL); if (!res) return -ENOMEM; res->qm = qm; res->distance = node_distance(dev_node, node); n = head; list_for_each_entry(tmp, head, list) { if (res->distance < tmp->distance) { n = &tmp->list; break; } } list_add_tail(&res->list, n); } return 0; } /** * hisi_qm_alloc_qps_node() - Create multiple queue pairs. * @qm_list: The list of all available devices. * @qp_num: The number of queue pairs need created. * @alg_type: The algorithm type. * @node: The numa node. * @qps: The queue pairs need created. * * This function will sort all available device according to numa distance. * Then try to create all queue pairs from one device, if all devices do * not meet the requirements will return error. */ int hisi_qm_alloc_qps_node(struct hisi_qm_list *qm_list, int qp_num, u8 alg_type, int node, struct hisi_qp **qps) { struct hisi_qm_resource *tmp; int ret = -ENODEV; LIST_HEAD(head); int i; if (!qps || !qm_list || qp_num <= 0) return -EINVAL; mutex_lock(&qm_list->lock); if (hisi_qm_sort_devices(node, &head, qm_list)) { mutex_unlock(&qm_list->lock); goto err; } list_for_each_entry(tmp, &head, list) { for (i = 0; i < qp_num; i++) { qps[i] = hisi_qm_create_qp(tmp->qm, alg_type); if (IS_ERR(qps[i])) { hisi_qm_free_qps(qps, i); break; } } if (i == qp_num) { ret = 0; break; } } mutex_unlock(&qm_list->lock); if (ret) pr_info("Failed to create qps, node[%d], alg[%u], qp[%d]!\n", node, alg_type, qp_num); err: free_list(&head); return ret; } EXPORT_SYMBOL_GPL(hisi_qm_alloc_qps_node); static int qm_vf_q_assign(struct hisi_qm *qm, u32 num_vfs) { u32 remain_q_num, vfs_q_num, act_q_num, q_num, i, j; u32 max_qp_num = qm->max_qp_num; u32 q_base = qm->qp_num; int ret; if (!num_vfs) return -EINVAL; vfs_q_num = qm->ctrl_qp_num - qm->qp_num; /* If vfs_q_num is less than num_vfs, return error. */ if (vfs_q_num < num_vfs) return -EINVAL; q_num = vfs_q_num / num_vfs; remain_q_num = vfs_q_num % num_vfs; for (i = num_vfs; i > 0; i--) { /* * if q_num + remain_q_num > max_qp_num in last vf, divide the * remaining queues equally. */ if (i == num_vfs && q_num + remain_q_num <= max_qp_num) { act_q_num = q_num + remain_q_num; remain_q_num = 0; } else if (remain_q_num > 0) { act_q_num = q_num + 1; remain_q_num--; } else { act_q_num = q_num; } act_q_num = min_t(int, act_q_num, max_qp_num); ret = hisi_qm_set_vft(qm, i, q_base, act_q_num); if (ret) { for (j = num_vfs; j > i; j--) hisi_qm_set_vft(qm, j, 0, 0); return ret; } q_base += act_q_num; } return 0; } static int qm_clear_vft_config(struct hisi_qm *qm) { int ret; u32 i; for (i = 1; i <= qm->vfs_num; i++) { ret = hisi_qm_set_vft(qm, i, 0, 0); if (ret) return ret; } qm->vfs_num = 0; return 0; } /** * hisi_qm_sriov_enable() - enable virtual functions * @pdev: the PCIe device * @max_vfs: the number of virtual functions to enable * * Returns the number of enabled VFs. If there are VFs enabled already or * max_vfs is more than the total number of device can be enabled, returns * failure. */ int hisi_qm_sriov_enable(struct pci_dev *pdev, int max_vfs) { struct hisi_qm *qm = pci_get_drvdata(pdev); int pre_existing_vfs, num_vfs, total_vfs, ret; total_vfs = pci_sriov_get_totalvfs(pdev); pre_existing_vfs = pci_num_vf(pdev); if (pre_existing_vfs) { pci_err(pdev, "%d VFs already enabled. Please disable pre-enabled VFs!\n", pre_existing_vfs); return 0; } num_vfs = min_t(int, max_vfs, total_vfs); ret = qm_vf_q_assign(qm, num_vfs); if (ret) { pci_err(pdev, "Can't assign queues for VF!\n"); return ret; } qm->vfs_num = num_vfs; ret = pci_enable_sriov(pdev, num_vfs); if (ret) { pci_err(pdev, "Can't enable VF!\n"); qm_clear_vft_config(qm); return ret; } pci_info(pdev, "VF enabled, vfs_num(=%d)!\n", num_vfs); return num_vfs; } EXPORT_SYMBOL_GPL(hisi_qm_sriov_enable); /** * hisi_qm_sriov_disable - disable virtual functions * @pdev: the PCI device. * @is_frozen: true when all the VFs are frozen. * * Return failure if there are VFs assigned already or VF is in used. */ int hisi_qm_sriov_disable(struct pci_dev *pdev, bool is_frozen) { struct hisi_qm *qm = pci_get_drvdata(pdev); if (pci_vfs_assigned(pdev)) { pci_err(pdev, "Failed to disable VFs as VFs are assigned!\n"); return -EPERM; } /* While VF is in used, SRIOV cannot be disabled. */ if (!is_frozen && qm_try_frozen_vfs(pdev, qm->qm_list)) { pci_err(pdev, "Task is using its VF!\n"); return -EBUSY; } pci_disable_sriov(pdev); return qm_clear_vft_config(qm); } EXPORT_SYMBOL_GPL(hisi_qm_sriov_disable); /** * hisi_qm_sriov_configure - configure the number of VFs * @pdev: The PCI device * @num_vfs: The number of VFs need enabled * * Enable SR-IOV according to num_vfs, 0 means disable. */ int hisi_qm_sriov_configure(struct pci_dev *pdev, int num_vfs) { if (num_vfs == 0) return hisi_qm_sriov_disable(pdev, false); else return hisi_qm_sriov_enable(pdev, num_vfs); } EXPORT_SYMBOL_GPL(hisi_qm_sriov_configure); static enum acc_err_result qm_dev_err_handle(struct hisi_qm *qm) { u32 err_sts; if (!qm->err_ini->get_dev_hw_err_status) { dev_err(&qm->pdev->dev, "Device doesn't support get hw error status!\n"); return ACC_ERR_NONE; } /* get device hardware error status */ err_sts = qm->err_ini->get_dev_hw_err_status(qm); if (err_sts) { if (err_sts & qm->err_info.ecc_2bits_mask) qm->err_status.is_dev_ecc_mbit = true; if (qm->err_ini->log_dev_hw_err) qm->err_ini->log_dev_hw_err(qm, err_sts); /* ce error does not need to be reset */ if ((err_sts | qm->err_info.dev_ce_mask) == qm->err_info.dev_ce_mask) { if (qm->err_ini->clear_dev_hw_err_status) qm->err_ini->clear_dev_hw_err_status(qm, err_sts); return ACC_ERR_RECOVERED; } return ACC_ERR_NEED_RESET; } return ACC_ERR_RECOVERED; } static enum acc_err_result qm_process_dev_error(struct hisi_qm *qm) { enum acc_err_result qm_ret, dev_ret; /* log qm error */ qm_ret = qm_hw_error_handle(qm); /* log device error */ dev_ret = qm_dev_err_handle(qm); return (qm_ret == ACC_ERR_NEED_RESET || dev_ret == ACC_ERR_NEED_RESET) ? ACC_ERR_NEED_RESET : ACC_ERR_RECOVERED; } /** * hisi_qm_dev_err_detected() - Get device and qm error status then log it. * @pdev: The PCI device which need report error. * @state: The connectivity between CPU and device. * * We register this function into PCIe AER handlers, It will report device or * qm hardware error status when error occur. */ pci_ers_result_t hisi_qm_dev_err_detected(struct pci_dev *pdev, pci_channel_state_t state) { struct hisi_qm *qm = pci_get_drvdata(pdev); enum acc_err_result ret; if (pdev->is_virtfn) return PCI_ERS_RESULT_NONE; pci_info(pdev, "PCI error detected, state(=%u)!!\n", state); if (state == pci_channel_io_perm_failure) return PCI_ERS_RESULT_DISCONNECT; ret = qm_process_dev_error(qm); if (ret == ACC_ERR_NEED_RESET) return PCI_ERS_RESULT_NEED_RESET; return PCI_ERS_RESULT_RECOVERED; } EXPORT_SYMBOL_GPL(hisi_qm_dev_err_detected); static u32 qm_get_hw_error_status(struct hisi_qm *qm) { return readl(qm->io_base + QM_ABNORMAL_INT_STATUS); } static int qm_check_req_recv(struct hisi_qm *qm) { struct pci_dev *pdev = qm->pdev; int ret; u32 val; writel(ACC_VENDOR_ID_VALUE, qm->io_base + QM_PEH_VENDOR_ID); ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val, (val == ACC_VENDOR_ID_VALUE), POLL_PERIOD, POLL_TIMEOUT); if (ret) { dev_err(&pdev->dev, "Fails to read QM reg!\n"); return ret; } writel(PCI_VENDOR_ID_HUAWEI, qm->io_base + QM_PEH_VENDOR_ID); ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val, (val == PCI_VENDOR_ID_HUAWEI), POLL_PERIOD, POLL_TIMEOUT); if (ret) dev_err(&pdev->dev, "Fails to read QM reg in the second time!\n"); return ret; } static int qm_set_pf_mse(struct hisi_qm *qm, bool set) { struct pci_dev *pdev = qm->pdev; u16 cmd; int i; pci_read_config_word(pdev, PCI_COMMAND, &cmd); if (set) cmd |= PCI_COMMAND_MEMORY; else cmd &= ~PCI_COMMAND_MEMORY; pci_write_config_word(pdev, PCI_COMMAND, cmd); for (i = 0; i < MAX_WAIT_COUNTS; i++) { pci_read_config_word(pdev, PCI_COMMAND, &cmd); if (set == ((cmd & PCI_COMMAND_MEMORY) >> 1)) return 0; udelay(1); } return -ETIMEDOUT; } static int qm_set_vf_mse(struct hisi_qm *qm, bool set) { struct pci_dev *pdev = qm->pdev; u16 sriov_ctrl; int pos; int i; pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV); pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl); if (set) sriov_ctrl |= PCI_SRIOV_CTRL_MSE; else sriov_ctrl &= ~PCI_SRIOV_CTRL_MSE; pci_write_config_word(pdev, pos + PCI_SRIOV_CTRL, sriov_ctrl); for (i = 0; i < MAX_WAIT_COUNTS; i++) { pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl); if (set == (sriov_ctrl & PCI_SRIOV_CTRL_MSE) >> ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT) return 0; udelay(1); } return -ETIMEDOUT; } static int qm_set_msi(struct hisi_qm *qm, bool set) { struct pci_dev *pdev = qm->pdev; if (set) { pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64, 0); } else { pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64, ACC_PEH_MSI_DISABLE); if (qm->err_status.is_qm_ecc_mbit || qm->err_status.is_dev_ecc_mbit) return 0; mdelay(1); if (readl(qm->io_base + QM_PEH_DFX_INFO0)) return -EFAULT; } return 0; } static int qm_vf_reset_prepare(struct hisi_qm *qm, enum qm_stop_reason stop_reason) { struct hisi_qm_list *qm_list = qm->qm_list; struct pci_dev *pdev = qm->pdev; struct pci_dev *virtfn; struct hisi_qm *vf_qm; int ret = 0; mutex_lock(&qm_list->lock); list_for_each_entry(vf_qm, &qm_list->list, list) { virtfn = vf_qm->pdev; if (virtfn == pdev) continue; if (pci_physfn(virtfn) == pdev) { /* save VFs PCIE BAR configuration */ pci_save_state(virtfn); ret = hisi_qm_stop(vf_qm, stop_reason); if (ret) goto stop_fail; } } stop_fail: mutex_unlock(&qm_list->lock); return ret; } static int qm_reset_prepare_ready(struct hisi_qm *qm) { struct pci_dev *pdev = qm->pdev; struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); int delay = 0; /* All reset requests need to be queued for processing */ while (test_and_set_bit(QM_RESETTING, &pf_qm->misc_ctl)) { msleep(++delay); if (delay > QM_RESET_WAIT_TIMEOUT) return -EBUSY; } return 0; } static int qm_controller_reset_prepare(struct hisi_qm *qm) { struct pci_dev *pdev = qm->pdev; int ret; ret = qm_reset_prepare_ready(qm); if (ret) { pci_err(pdev, "Controller reset not ready!\n"); return ret; } if (qm->vfs_num) { ret = qm_vf_reset_prepare(qm, QM_SOFT_RESET); if (ret) { pci_err(pdev, "Fails to stop VFs!\n"); clear_bit(QM_RESETTING, &qm->misc_ctl); return ret; } } ret = hisi_qm_stop(qm, QM_SOFT_RESET); if (ret) { pci_err(pdev, "Fails to stop QM!\n"); clear_bit(QM_RESETTING, &qm->misc_ctl); return ret; } clear_bit(QM_RST_SCHED, &qm->misc_ctl); return 0; } static void qm_dev_ecc_mbit_handle(struct hisi_qm *qm) { u32 nfe_enb = 0; if (!qm->err_status.is_dev_ecc_mbit && qm->err_status.is_qm_ecc_mbit && qm->err_ini->close_axi_master_ooo) { qm->err_ini->close_axi_master_ooo(qm); } else if (qm->err_status.is_dev_ecc_mbit && !qm->err_status.is_qm_ecc_mbit && !qm->err_ini->close_axi_master_ooo) { nfe_enb = readl(qm->io_base + QM_RAS_NFE_ENABLE); writel(nfe_enb & QM_RAS_NFE_MBIT_DISABLE, qm->io_base + QM_RAS_NFE_ENABLE); writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SET); } } static int qm_soft_reset(struct hisi_qm *qm) { struct pci_dev *pdev = qm->pdev; int ret; u32 val; /* Ensure all doorbells and mailboxes received by QM */ ret = qm_check_req_recv(qm); if (ret) return ret; if (qm->vfs_num) { ret = qm_set_vf_mse(qm, false); if (ret) { pci_err(pdev, "Fails to disable vf MSE bit.\n"); return ret; } } ret = qm_set_msi(qm, false); if (ret) { pci_err(pdev, "Fails to disable PEH MSI bit.\n"); return ret; } qm_dev_ecc_mbit_handle(qm); /* OOO register set and check */ writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN, qm->io_base + ACC_MASTER_GLOBAL_CTRL); /* If bus lock, reset chip */ ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN, val, (val == ACC_MASTER_TRANS_RETURN_RW), POLL_PERIOD, POLL_TIMEOUT); if (ret) { pci_emerg(pdev, "Bus lock! Please reset system.\n"); return ret; } ret = qm_set_pf_mse(qm, false); if (ret) { pci_err(pdev, "Fails to disable pf MSE bit.\n"); return ret; } /* The reset related sub-control registers are not in PCI BAR */ if (ACPI_HANDLE(&pdev->dev)) { unsigned long long value = 0; acpi_status s; s = acpi_evaluate_integer(ACPI_HANDLE(&pdev->dev), qm->err_info.acpi_rst, NULL, &value); if (ACPI_FAILURE(s)) { pci_err(pdev, "NO controller reset method!\n"); return -EIO; } if (value) { pci_err(pdev, "Reset step %llu failed!\n", value); return -EIO; } } else { pci_err(pdev, "No reset method!\n"); return -EINVAL; } return 0; } static int qm_vf_reset_done(struct hisi_qm *qm) { struct hisi_qm_list *qm_list = qm->qm_list; struct pci_dev *pdev = qm->pdev; struct pci_dev *virtfn; struct hisi_qm *vf_qm; int ret = 0; mutex_lock(&qm_list->lock); list_for_each_entry(vf_qm, &qm_list->list, list) { virtfn = vf_qm->pdev; if (virtfn == pdev) continue; if (pci_physfn(virtfn) == pdev) { /* enable VFs PCIE BAR configuration */ pci_restore_state(virtfn); ret = qm_restart(vf_qm); if (ret) goto restart_fail; } } restart_fail: mutex_unlock(&qm_list->lock); return ret; } static u32 qm_get_dev_err_status(struct hisi_qm *qm) { return qm->err_ini->get_dev_hw_err_status(qm); } static int qm_dev_hw_init(struct hisi_qm *qm) { return qm->err_ini->hw_init(qm); } static void qm_restart_prepare(struct hisi_qm *qm) { u32 value; if (!qm->err_status.is_qm_ecc_mbit && !qm->err_status.is_dev_ecc_mbit) return; /* temporarily close the OOO port used for PEH to write out MSI */ value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN); writel(value & ~qm->err_info.msi_wr_port, qm->io_base + ACC_AM_CFG_PORT_WR_EN); /* clear dev ecc 2bit error source if having */ value = qm_get_dev_err_status(qm) & qm->err_info.ecc_2bits_mask; if (value && qm->err_ini->clear_dev_hw_err_status) qm->err_ini->clear_dev_hw_err_status(qm, value); /* clear QM ecc mbit error source */ writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SOURCE); /* clear AM Reorder Buffer ecc mbit source */ writel(ACC_ROB_ECC_ERR_MULTPL, qm->io_base + ACC_AM_ROB_ECC_INT_STS); if (qm->err_ini->open_axi_master_ooo) qm->err_ini->open_axi_master_ooo(qm); } static void qm_restart_done(struct hisi_qm *qm) { u32 value; if (!qm->err_status.is_qm_ecc_mbit && !qm->err_status.is_dev_ecc_mbit) return; /* open the OOO port for PEH to write out MSI */ value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN); value |= qm->err_info.msi_wr_port; writel(value, qm->io_base + ACC_AM_CFG_PORT_WR_EN); qm->err_status.is_qm_ecc_mbit = false; qm->err_status.is_dev_ecc_mbit = false; } static int qm_controller_reset_done(struct hisi_qm *qm) { struct pci_dev *pdev = qm->pdev; int ret; ret = qm_set_msi(qm, true); if (ret) { pci_err(pdev, "Fails to enable PEH MSI bit!\n"); return ret; } ret = qm_set_pf_mse(qm, true); if (ret) { pci_err(pdev, "Fails to enable pf MSE bit!\n"); return ret; } if (qm->vfs_num) { ret = qm_set_vf_mse(qm, true); if (ret) { pci_err(pdev, "Fails to enable vf MSE bit!\n"); return ret; } } ret = qm_dev_hw_init(qm); if (ret) { pci_err(pdev, "Failed to init device\n"); return ret; } qm_restart_prepare(qm); ret = qm_restart(qm); if (ret) { pci_err(pdev, "Failed to start QM!\n"); return ret; } if (qm->vfs_num) { ret = qm_vf_q_assign(qm, qm->vfs_num); if (ret) { pci_err(pdev, "Failed to assign queue!\n"); return ret; } } ret = qm_vf_reset_done(qm); if (ret) { pci_err(pdev, "Failed to start VFs!\n"); return -EPERM; } hisi_qm_dev_err_init(qm); qm_restart_done(qm); clear_bit(QM_RESETTING, &qm->misc_ctl); return 0; } static int qm_controller_reset(struct hisi_qm *qm) { struct pci_dev *pdev = qm->pdev; int ret; pci_info(pdev, "Controller resetting...\n"); ret = qm_controller_reset_prepare(qm); if (ret) { clear_bit(QM_RST_SCHED, &qm->misc_ctl); return ret; } ret = qm_soft_reset(qm); if (ret) { pci_err(pdev, "Controller reset failed (%d)\n", ret); clear_bit(QM_RESETTING, &qm->misc_ctl); return ret; } ret = qm_controller_reset_done(qm); if (ret) { clear_bit(QM_RESETTING, &qm->misc_ctl); return ret; } pci_info(pdev, "Controller reset complete\n"); return 0; } /** * hisi_qm_dev_slot_reset() - slot reset * @pdev: the PCIe device * * This function offers QM relate PCIe device reset interface. Drivers which * use QM can use this function as slot_reset in its struct pci_error_handlers. */ pci_ers_result_t hisi_qm_dev_slot_reset(struct pci_dev *pdev) { struct hisi_qm *qm = pci_get_drvdata(pdev); int ret; if (pdev->is_virtfn) return PCI_ERS_RESULT_RECOVERED; pci_aer_clear_nonfatal_status(pdev); /* reset pcie device controller */ ret = qm_controller_reset(qm); if (ret) { pci_err(pdev, "Controller reset failed (%d)\n", ret); return PCI_ERS_RESULT_DISCONNECT; } return PCI_ERS_RESULT_RECOVERED; } EXPORT_SYMBOL_GPL(hisi_qm_dev_slot_reset); /* check the interrupt is ecc-mbit error or not */ static int qm_check_dev_error(struct hisi_qm *qm) { int ret; if (qm->fun_type == QM_HW_VF) return 0; ret = qm_get_hw_error_status(qm) & QM_ECC_MBIT; if (ret) return ret; return (qm_get_dev_err_status(qm) & qm->err_info.ecc_2bits_mask); } void hisi_qm_reset_prepare(struct pci_dev *pdev) { struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); struct hisi_qm *qm = pci_get_drvdata(pdev); u32 delay = 0; int ret; hisi_qm_dev_err_uninit(pf_qm); /* * Check whether there is an ECC mbit error, If it occurs, need to * wait for soft reset to fix it. */ while (qm_check_dev_error(pf_qm)) { msleep(++delay); if (delay > QM_RESET_WAIT_TIMEOUT) return; } ret = qm_reset_prepare_ready(qm); if (ret) { pci_err(pdev, "FLR not ready!\n"); return; } if (qm->vfs_num) { ret = qm_vf_reset_prepare(qm, QM_FLR); if (ret) { pci_err(pdev, "Failed to prepare reset, ret = %d.\n", ret); return; } } ret = hisi_qm_stop(qm, QM_FLR); if (ret) { pci_err(pdev, "Failed to stop QM, ret = %d.\n", ret); return; } pci_info(pdev, "FLR resetting...\n"); } EXPORT_SYMBOL_GPL(hisi_qm_reset_prepare); static bool qm_flr_reset_complete(struct pci_dev *pdev) { struct pci_dev *pf_pdev = pci_physfn(pdev); struct hisi_qm *qm = pci_get_drvdata(pf_pdev); u32 id; pci_read_config_dword(qm->pdev, PCI_COMMAND, &id); if (id == QM_PCI_COMMAND_INVALID) { pci_err(pdev, "Device can not be used!\n"); return false; } return true; } void hisi_qm_reset_done(struct pci_dev *pdev) { struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); struct hisi_qm *qm = pci_get_drvdata(pdev); int ret; hisi_qm_dev_err_init(pf_qm); ret = qm_restart(qm); if (ret) { pci_err(pdev, "Failed to start QM, ret = %d.\n", ret); goto flr_done; } if (qm->fun_type == QM_HW_PF) { ret = qm_dev_hw_init(qm); if (ret) { pci_err(pdev, "Failed to init PF, ret = %d.\n", ret); goto flr_done; } if (!qm->vfs_num) goto flr_done; ret = qm_vf_q_assign(qm, qm->vfs_num); if (ret) { pci_err(pdev, "Failed to assign VFs, ret = %d.\n", ret); goto flr_done; } ret = qm_vf_reset_done(qm); if (ret) { pci_err(pdev, "Failed to start VFs, ret = %d.\n", ret); goto flr_done; } } flr_done: if (qm_flr_reset_complete(pdev)) pci_info(pdev, "FLR reset complete\n"); clear_bit(QM_RESETTING, &qm->misc_ctl); } EXPORT_SYMBOL_GPL(hisi_qm_reset_done); static irqreturn_t qm_abnormal_irq(int irq, void *data) { struct hisi_qm *qm = data; enum acc_err_result ret; atomic64_inc(&qm->debug.dfx.abnormal_irq_cnt); ret = qm_process_dev_error(qm); if (ret == ACC_ERR_NEED_RESET && !test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl) && !test_and_set_bit(QM_RST_SCHED, &qm->misc_ctl)) schedule_work(&qm->rst_work); return IRQ_HANDLED; } static int qm_irq_register(struct hisi_qm *qm) { struct pci_dev *pdev = qm->pdev; int ret; ret = request_irq(pci_irq_vector(pdev, QM_EQ_EVENT_IRQ_VECTOR), qm_irq, 0, qm->dev_name, qm); if (ret) return ret; if (qm->ver != QM_HW_V1) { ret = request_irq(pci_irq_vector(pdev, QM_AEQ_EVENT_IRQ_VECTOR), qm_aeq_irq, 0, qm->dev_name, qm); if (ret) goto err_aeq_irq; if (qm->fun_type == QM_HW_PF) { ret = request_irq(pci_irq_vector(pdev, QM_ABNORMAL_EVENT_IRQ_VECTOR), qm_abnormal_irq, 0, qm->dev_name, qm); if (ret) goto err_abonormal_irq; } } return 0; err_abonormal_irq: free_irq(pci_irq_vector(pdev, QM_AEQ_EVENT_IRQ_VECTOR), qm); err_aeq_irq: free_irq(pci_irq_vector(pdev, QM_EQ_EVENT_IRQ_VECTOR), qm); return ret; } /** * hisi_qm_dev_shutdown() - Shutdown device. * @pdev: The device will be shutdown. * * This function will stop qm when OS shutdown or rebooting. */ void hisi_qm_dev_shutdown(struct pci_dev *pdev) { struct hisi_qm *qm = pci_get_drvdata(pdev); int ret; ret = hisi_qm_stop(qm, QM_NORMAL); if (ret) dev_err(&pdev->dev, "Fail to stop qm in shutdown!\n"); } EXPORT_SYMBOL_GPL(hisi_qm_dev_shutdown); static void hisi_qm_controller_reset(struct work_struct *rst_work) { struct hisi_qm *qm = container_of(rst_work, struct hisi_qm, rst_work); int ret; /* reset pcie device controller */ ret = qm_controller_reset(qm); if (ret) dev_err(&qm->pdev->dev, "controller reset failed (%d)\n", ret); } /** * hisi_qm_alg_register() - Register alg to crypto and add qm to qm_list. * @qm: The qm needs add. * @qm_list: The qm list. * * This function adds qm to qm list, and will register algorithm to * crypto when the qm list is empty. */ int hisi_qm_alg_register(struct hisi_qm *qm, struct hisi_qm_list *qm_list) { int flag = 0; int ret = 0; /* HW V2 not support both use uacce sva mode and hardware crypto algs */ if (qm->ver <= QM_HW_V2 && qm->use_sva) return 0; mutex_lock(&qm_list->lock); if (list_empty(&qm_list->list)) flag = 1; list_add_tail(&qm->list, &qm_list->list); mutex_unlock(&qm_list->lock); if (flag) { ret = qm_list->register_to_crypto(qm); if (ret) { mutex_lock(&qm_list->lock); list_del(&qm->list); mutex_unlock(&qm_list->lock); } } return ret; } EXPORT_SYMBOL_GPL(hisi_qm_alg_register); /** * hisi_qm_alg_unregister() - Unregister alg from crypto and delete qm from * qm list. * @qm: The qm needs delete. * @qm_list: The qm list. * * This function deletes qm from qm list, and will unregister algorithm * from crypto when the qm list is empty. */ void hisi_qm_alg_unregister(struct hisi_qm *qm, struct hisi_qm_list *qm_list) { if (qm->ver <= QM_HW_V2 && qm->use_sva) return; mutex_lock(&qm_list->lock); list_del(&qm->list); mutex_unlock(&qm_list->lock); if (list_empty(&qm_list->list)) qm_list->unregister_from_crypto(qm); } EXPORT_SYMBOL_GPL(hisi_qm_alg_unregister); static int qm_get_qp_num(struct hisi_qm *qm) { if (qm->ver == QM_HW_V1) qm->ctrl_qp_num = QM_QNUM_V1; else if (qm->ver == QM_HW_V2) qm->ctrl_qp_num = QM_QNUM_V2; else qm->ctrl_qp_num = readl(qm->io_base + QM_CAPBILITY) & QM_QP_NUN_MASK; if (qm->use_db_isolation) qm->max_qp_num = (readl(qm->io_base + QM_CAPBILITY) >> QM_QP_MAX_NUM_SHIFT) & QM_QP_NUN_MASK; else qm->max_qp_num = qm->ctrl_qp_num; /* check if qp number is valid */ if (qm->qp_num > qm->max_qp_num) { dev_err(&qm->pdev->dev, "qp num(%u) is more than max qp num(%u)!\n", qm->qp_num, qm->max_qp_num); return -EINVAL; } return 0; } static int qm_get_pci_res(struct hisi_qm *qm) { struct pci_dev *pdev = qm->pdev; struct device *dev = &pdev->dev; int ret; ret = pci_request_mem_regions(pdev, qm->dev_name); if (ret < 0) { dev_err(dev, "Failed to request mem regions!\n"); return ret; } qm->phys_base = pci_resource_start(pdev, PCI_BAR_2); qm->io_base = ioremap(qm->phys_base, pci_resource_len(pdev, PCI_BAR_2)); if (!qm->io_base) { ret = -EIO; goto err_request_mem_regions; } if (qm->ver > QM_HW_V2) { if (qm->fun_type == QM_HW_PF) qm->use_db_isolation = readl(qm->io_base + QM_QUE_ISO_EN) & BIT(0); else qm->use_db_isolation = readl(qm->io_base + QM_QUE_ISO_CFG_V) & BIT(0); } if (qm->use_db_isolation) { qm->db_interval = QM_QP_DB_INTERVAL; qm->db_phys_base = pci_resource_start(pdev, PCI_BAR_4); qm->db_io_base = ioremap(qm->db_phys_base, pci_resource_len(pdev, PCI_BAR_4)); if (!qm->db_io_base) { ret = -EIO; goto err_ioremap; } } else { qm->db_phys_base = qm->phys_base; qm->db_io_base = qm->io_base; qm->db_interval = 0; } if (qm->fun_type == QM_HW_PF) { ret = qm_get_qp_num(qm); if (ret) goto err_db_ioremap; } return 0; err_db_ioremap: if (qm->use_db_isolation) iounmap(qm->db_io_base); err_ioremap: iounmap(qm->io_base); err_request_mem_regions: pci_release_mem_regions(pdev); return ret; } static int hisi_qm_pci_init(struct hisi_qm *qm) { struct pci_dev *pdev = qm->pdev; struct device *dev = &pdev->dev; unsigned int num_vec; int ret; ret = pci_enable_device_mem(pdev); if (ret < 0) { dev_err(dev, "Failed to enable device mem!\n"); return ret; } ret = qm_get_pci_res(qm); if (ret) goto err_disable_pcidev; ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); if (ret < 0) goto err_get_pci_res; pci_set_master(pdev); if (!qm->ops->get_irq_num) { ret = -EOPNOTSUPP; goto err_get_pci_res; } num_vec = qm->ops->get_irq_num(qm); ret = pci_alloc_irq_vectors(pdev, num_vec, num_vec, PCI_IRQ_MSI); if (ret < 0) { dev_err(dev, "Failed to enable MSI vectors!\n"); goto err_get_pci_res; } return 0; err_get_pci_res: qm_put_pci_res(qm); err_disable_pcidev: pci_disable_device(pdev); return ret; } /** * hisi_qm_init() - Initialize configures about qm. * @qm: The qm needing init. * * This function init qm, then we can call hisi_qm_start to put qm into work. */ int hisi_qm_init(struct hisi_qm *qm) { struct pci_dev *pdev = qm->pdev; struct device *dev = &pdev->dev; int ret; hisi_qm_pre_init(qm); ret = hisi_qm_pci_init(qm); if (ret) return ret; ret = qm_irq_register(qm); if (ret) goto err_pci_init; if (qm->fun_type == QM_HW_VF && qm->ver != QM_HW_V1) { /* v2 starts to support get vft by mailbox */ ret = hisi_qm_get_vft(qm, &qm->qp_base, &qm->qp_num); if (ret) goto err_irq_register; } ret = qm_alloc_uacce(qm); if (ret < 0) dev_warn(dev, "fail to alloc uacce (%d)\n", ret); ret = hisi_qm_memory_init(qm); if (ret) goto err_alloc_uacce; INIT_WORK(&qm->work, qm_work_process); if (qm->fun_type == QM_HW_PF) INIT_WORK(&qm->rst_work, hisi_qm_controller_reset); atomic_set(&qm->status.flags, QM_INIT); return 0; err_alloc_uacce: uacce_remove(qm->uacce); qm->uacce = NULL; err_irq_register: qm_irq_unregister(qm); err_pci_init: hisi_qm_pci_uninit(qm); return ret; } EXPORT_SYMBOL_GPL(hisi_qm_init); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Zhou Wang "); MODULE_DESCRIPTION("HiSilicon Accelerator queue manager driver");