// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2016, Fuzhou Rockchip Electronics Co., Ltd * Author: Lin Huang */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define DMC_MAX_CHANNELS 4 #define HIWORD_UPDATE(val, mask) ((val) | (mask) << 16) /* DDRMON_CTRL */ #define DDRMON_CTRL 0x04 #define DDRMON_CTRL_DDR4 BIT(5) #define DDRMON_CTRL_LPDDR4 BIT(4) #define DDRMON_CTRL_HARDWARE_EN BIT(3) #define DDRMON_CTRL_LPDDR23 BIT(2) #define DDRMON_CTRL_SOFTWARE_EN BIT(1) #define DDRMON_CTRL_TIMER_CNT_EN BIT(0) #define DDRMON_CTRL_DDR_TYPE_MASK (DDRMON_CTRL_DDR4 | \ DDRMON_CTRL_LPDDR4 | \ DDRMON_CTRL_LPDDR23) #define DDRMON_CH0_WR_NUM 0x20 #define DDRMON_CH0_RD_NUM 0x24 #define DDRMON_CH0_COUNT_NUM 0x28 #define DDRMON_CH0_DFI_ACCESS_NUM 0x2c #define DDRMON_CH1_COUNT_NUM 0x3c #define DDRMON_CH1_DFI_ACCESS_NUM 0x40 #define PERF_EVENT_CYCLES 0x0 #define PERF_EVENT_READ_BYTES 0x1 #define PERF_EVENT_WRITE_BYTES 0x2 #define PERF_EVENT_READ_BYTES0 0x3 #define PERF_EVENT_WRITE_BYTES0 0x4 #define PERF_EVENT_READ_BYTES1 0x5 #define PERF_EVENT_WRITE_BYTES1 0x6 #define PERF_EVENT_READ_BYTES2 0x7 #define PERF_EVENT_WRITE_BYTES2 0x8 #define PERF_EVENT_READ_BYTES3 0x9 #define PERF_EVENT_WRITE_BYTES3 0xa #define PERF_EVENT_BYTES 0xb #define PERF_ACCESS_TYPE_MAX 0xc /** * struct dmc_count_channel - structure to hold counter values from the DDR controller * @access: Number of read and write accesses * @clock_cycles: DDR clock cycles * @read_access: number of read accesses * @write_access: number of write accesses */ struct dmc_count_channel { u64 access; u64 clock_cycles; u64 read_access; u64 write_access; }; struct dmc_count { struct dmc_count_channel c[DMC_MAX_CHANNELS]; }; /* * The dfi controller can monitor DDR load. It has an upper and lower threshold * for the operating points. Whenever the usage leaves these bounds an event is * generated to indicate the DDR frequency should be changed. */ struct rockchip_dfi { struct devfreq_event_dev *edev; struct devfreq_event_desc desc; struct dmc_count last_event_count; struct dmc_count last_perf_count; struct dmc_count total_count; seqlock_t count_seqlock; /* protects last_perf_count and total_count */ struct device *dev; void __iomem *regs; struct regmap *regmap_pmu; struct clk *clk; int usecount; struct mutex mutex; u32 ddr_type; unsigned int channel_mask; unsigned int max_channels; enum cpuhp_state cpuhp_state; struct hlist_node node; struct pmu pmu; struct hrtimer timer; unsigned int cpu; int active_events; int burst_len; int buswidth[DMC_MAX_CHANNELS]; int ddrmon_stride; bool ddrmon_ctrl_single; }; static int rockchip_dfi_enable(struct rockchip_dfi *dfi) { void __iomem *dfi_regs = dfi->regs; int i, ret = 0; mutex_lock(&dfi->mutex); dfi->usecount++; if (dfi->usecount > 1) goto out; ret = clk_prepare_enable(dfi->clk); if (ret) { dev_err(&dfi->edev->dev, "failed to enable dfi clk: %d\n", ret); goto out; } for (i = 0; i < dfi->max_channels; i++) { u32 ctrl = 0; if (!(dfi->channel_mask & BIT(i))) continue; /* clear DDRMON_CTRL setting */ writel_relaxed(HIWORD_UPDATE(0, DDRMON_CTRL_TIMER_CNT_EN | DDRMON_CTRL_SOFTWARE_EN | DDRMON_CTRL_HARDWARE_EN), dfi_regs + i * dfi->ddrmon_stride + DDRMON_CTRL); /* set ddr type to dfi */ switch (dfi->ddr_type) { case ROCKCHIP_DDRTYPE_LPDDR2: case ROCKCHIP_DDRTYPE_LPDDR3: ctrl = DDRMON_CTRL_LPDDR23; break; case ROCKCHIP_DDRTYPE_LPDDR4: case ROCKCHIP_DDRTYPE_LPDDR4X: ctrl = DDRMON_CTRL_LPDDR4; break; default: break; } writel_relaxed(HIWORD_UPDATE(ctrl, DDRMON_CTRL_DDR_TYPE_MASK), dfi_regs + i * dfi->ddrmon_stride + DDRMON_CTRL); /* enable count, use software mode */ writel_relaxed(HIWORD_UPDATE(DDRMON_CTRL_SOFTWARE_EN, DDRMON_CTRL_SOFTWARE_EN), dfi_regs + i * dfi->ddrmon_stride + DDRMON_CTRL); if (dfi->ddrmon_ctrl_single) break; } out: mutex_unlock(&dfi->mutex); return ret; } static void rockchip_dfi_disable(struct rockchip_dfi *dfi) { void __iomem *dfi_regs = dfi->regs; int i; mutex_lock(&dfi->mutex); dfi->usecount--; WARN_ON_ONCE(dfi->usecount < 0); if (dfi->usecount > 0) goto out; for (i = 0; i < dfi->max_channels; i++) { if (!(dfi->channel_mask & BIT(i))) continue; writel_relaxed(HIWORD_UPDATE(0, DDRMON_CTRL_SOFTWARE_EN), dfi_regs + i * dfi->ddrmon_stride + DDRMON_CTRL); if (dfi->ddrmon_ctrl_single) break; } clk_disable_unprepare(dfi->clk); out: mutex_unlock(&dfi->mutex); } static void rockchip_dfi_read_counters(struct rockchip_dfi *dfi, struct dmc_count *res) { u32 i; void __iomem *dfi_regs = dfi->regs; for (i = 0; i < dfi->max_channels; i++) { if (!(dfi->channel_mask & BIT(i))) continue; res->c[i].read_access = readl_relaxed(dfi_regs + DDRMON_CH0_RD_NUM + i * dfi->ddrmon_stride); res->c[i].write_access = readl_relaxed(dfi_regs + DDRMON_CH0_WR_NUM + i * dfi->ddrmon_stride); res->c[i].access = readl_relaxed(dfi_regs + DDRMON_CH0_DFI_ACCESS_NUM + i * dfi->ddrmon_stride); res->c[i].clock_cycles = readl_relaxed(dfi_regs + DDRMON_CH0_COUNT_NUM + i * dfi->ddrmon_stride); } } static int rockchip_dfi_event_disable(struct devfreq_event_dev *edev) { struct rockchip_dfi *dfi = devfreq_event_get_drvdata(edev); rockchip_dfi_disable(dfi); return 0; } static int rockchip_dfi_event_enable(struct devfreq_event_dev *edev) { struct rockchip_dfi *dfi = devfreq_event_get_drvdata(edev); return rockchip_dfi_enable(dfi); } static int rockchip_dfi_set_event(struct devfreq_event_dev *edev) { return 0; } static int rockchip_dfi_get_event(struct devfreq_event_dev *edev, struct devfreq_event_data *edata) { struct rockchip_dfi *dfi = devfreq_event_get_drvdata(edev); struct dmc_count count; struct dmc_count *last = &dfi->last_event_count; u32 access = 0, clock_cycles = 0; int i; rockchip_dfi_read_counters(dfi, &count); /* We can only report one channel, so find the busiest one */ for (i = 0; i < dfi->max_channels; i++) { u32 a, c; if (!(dfi->channel_mask & BIT(i))) continue; a = count.c[i].access - last->c[i].access; c = count.c[i].clock_cycles - last->c[i].clock_cycles; if (a > access) { access = a; clock_cycles = c; } } edata->load_count = access * 4; edata->total_count = clock_cycles; dfi->last_event_count = count; return 0; } static const struct devfreq_event_ops rockchip_dfi_ops = { .disable = rockchip_dfi_event_disable, .enable = rockchip_dfi_event_enable, .get_event = rockchip_dfi_get_event, .set_event = rockchip_dfi_set_event, }; #ifdef CONFIG_PERF_EVENTS static void rockchip_ddr_perf_counters_add(struct rockchip_dfi *dfi, const struct dmc_count *now, struct dmc_count *res) { const struct dmc_count *last = &dfi->last_perf_count; int i; for (i = 0; i < dfi->max_channels; i++) { res->c[i].read_access = dfi->total_count.c[i].read_access + (u32)(now->c[i].read_access - last->c[i].read_access); res->c[i].write_access = dfi->total_count.c[i].write_access + (u32)(now->c[i].write_access - last->c[i].write_access); res->c[i].access = dfi->total_count.c[i].access + (u32)(now->c[i].access - last->c[i].access); res->c[i].clock_cycles = dfi->total_count.c[i].clock_cycles + (u32)(now->c[i].clock_cycles - last->c[i].clock_cycles); } } static ssize_t ddr_perf_cpumask_show(struct device *dev, struct device_attribute *attr, char *buf) { struct pmu *pmu = dev_get_drvdata(dev); struct rockchip_dfi *dfi = container_of(pmu, struct rockchip_dfi, pmu); return cpumap_print_to_pagebuf(true, buf, cpumask_of(dfi->cpu)); } static struct device_attribute ddr_perf_cpumask_attr = __ATTR(cpumask, 0444, ddr_perf_cpumask_show, NULL); static struct attribute *ddr_perf_cpumask_attrs[] = { &ddr_perf_cpumask_attr.attr, NULL, }; static const struct attribute_group ddr_perf_cpumask_attr_group = { .attrs = ddr_perf_cpumask_attrs, }; PMU_EVENT_ATTR_STRING(cycles, ddr_pmu_cycles, "event="__stringify(PERF_EVENT_CYCLES)) #define DFI_PMU_EVENT_ATTR(_name, _var, _str) \ PMU_EVENT_ATTR_STRING(_name, _var, _str); \ PMU_EVENT_ATTR_STRING(_name.unit, _var##_unit, "MB"); \ PMU_EVENT_ATTR_STRING(_name.scale, _var##_scale, "9.536743164e-07") DFI_PMU_EVENT_ATTR(read-bytes0, ddr_pmu_read_bytes0, "event="__stringify(PERF_EVENT_READ_BYTES0)); DFI_PMU_EVENT_ATTR(write-bytes0, ddr_pmu_write_bytes0, "event="__stringify(PERF_EVENT_WRITE_BYTES0)); DFI_PMU_EVENT_ATTR(read-bytes1, ddr_pmu_read_bytes1, "event="__stringify(PERF_EVENT_READ_BYTES1)); DFI_PMU_EVENT_ATTR(write-bytes1, ddr_pmu_write_bytes1, "event="__stringify(PERF_EVENT_WRITE_BYTES1)); DFI_PMU_EVENT_ATTR(read-bytes2, ddr_pmu_read_bytes2, "event="__stringify(PERF_EVENT_READ_BYTES2)); DFI_PMU_EVENT_ATTR(write-bytes2, ddr_pmu_write_bytes2, "event="__stringify(PERF_EVENT_WRITE_BYTES2)); DFI_PMU_EVENT_ATTR(read-bytes3, ddr_pmu_read_bytes3, "event="__stringify(PERF_EVENT_READ_BYTES3)); DFI_PMU_EVENT_ATTR(write-bytes3, ddr_pmu_write_bytes3, "event="__stringify(PERF_EVENT_WRITE_BYTES3)); DFI_PMU_EVENT_ATTR(read-bytes, ddr_pmu_read_bytes, "event="__stringify(PERF_EVENT_READ_BYTES)); DFI_PMU_EVENT_ATTR(write-bytes, ddr_pmu_write_bytes, "event="__stringify(PERF_EVENT_WRITE_BYTES)); DFI_PMU_EVENT_ATTR(bytes, ddr_pmu_bytes, "event="__stringify(PERF_EVENT_BYTES)); #define DFI_ATTR_MB(_name) \ &_name.attr.attr, \ &_name##_unit.attr.attr, \ &_name##_scale.attr.attr static struct attribute *ddr_perf_events_attrs[] = { &ddr_pmu_cycles.attr.attr, DFI_ATTR_MB(ddr_pmu_read_bytes), DFI_ATTR_MB(ddr_pmu_write_bytes), DFI_ATTR_MB(ddr_pmu_read_bytes0), DFI_ATTR_MB(ddr_pmu_write_bytes0), DFI_ATTR_MB(ddr_pmu_read_bytes1), DFI_ATTR_MB(ddr_pmu_write_bytes1), DFI_ATTR_MB(ddr_pmu_read_bytes2), DFI_ATTR_MB(ddr_pmu_write_bytes2), DFI_ATTR_MB(ddr_pmu_read_bytes3), DFI_ATTR_MB(ddr_pmu_write_bytes3), DFI_ATTR_MB(ddr_pmu_bytes), NULL, }; static const struct attribute_group ddr_perf_events_attr_group = { .name = "events", .attrs = ddr_perf_events_attrs, }; PMU_FORMAT_ATTR(event, "config:0-7"); static struct attribute *ddr_perf_format_attrs[] = { &format_attr_event.attr, NULL, }; static const struct attribute_group ddr_perf_format_attr_group = { .name = "format", .attrs = ddr_perf_format_attrs, }; static const struct attribute_group *attr_groups[] = { &ddr_perf_events_attr_group, &ddr_perf_cpumask_attr_group, &ddr_perf_format_attr_group, NULL, }; static int rockchip_ddr_perf_event_init(struct perf_event *event) { struct rockchip_dfi *dfi = container_of(event->pmu, struct rockchip_dfi, pmu); if (event->attr.type != event->pmu->type) return -ENOENT; if (event->attach_state & PERF_ATTACH_TASK) return -EINVAL; if (event->cpu < 0) { dev_warn(dfi->dev, "Can't provide per-task data!\n"); return -EINVAL; } return 0; } static u64 rockchip_ddr_perf_event_get_count(struct perf_event *event) { struct rockchip_dfi *dfi = container_of(event->pmu, struct rockchip_dfi, pmu); int blen = dfi->burst_len; struct dmc_count total, now; unsigned int seq; u64 count = 0; int i; rockchip_dfi_read_counters(dfi, &now); do { seq = read_seqbegin(&dfi->count_seqlock); rockchip_ddr_perf_counters_add(dfi, &now, &total); } while (read_seqretry(&dfi->count_seqlock, seq)); switch (event->attr.config) { case PERF_EVENT_CYCLES: count = total.c[0].clock_cycles; break; case PERF_EVENT_READ_BYTES: for (i = 0; i < dfi->max_channels; i++) count += total.c[i].read_access * blen * dfi->buswidth[i]; break; case PERF_EVENT_WRITE_BYTES: for (i = 0; i < dfi->max_channels; i++) count += total.c[i].write_access * blen * dfi->buswidth[i]; break; case PERF_EVENT_READ_BYTES0: count = total.c[0].read_access * blen * dfi->buswidth[0]; break; case PERF_EVENT_WRITE_BYTES0: count = total.c[0].write_access * blen * dfi->buswidth[0]; break; case PERF_EVENT_READ_BYTES1: count = total.c[1].read_access * blen * dfi->buswidth[1]; break; case PERF_EVENT_WRITE_BYTES1: count = total.c[1].write_access * blen * dfi->buswidth[1]; break; case PERF_EVENT_READ_BYTES2: count = total.c[2].read_access * blen * dfi->buswidth[2]; break; case PERF_EVENT_WRITE_BYTES2: count = total.c[2].write_access * blen * dfi->buswidth[2]; break; case PERF_EVENT_READ_BYTES3: count = total.c[3].read_access * blen * dfi->buswidth[3]; break; case PERF_EVENT_WRITE_BYTES3: count = total.c[3].write_access * blen * dfi->buswidth[3]; break; case PERF_EVENT_BYTES: for (i = 0; i < dfi->max_channels; i++) count += total.c[i].access * blen * dfi->buswidth[i]; break; } return count; } static void rockchip_ddr_perf_event_update(struct perf_event *event) { u64 now; s64 prev; if (event->attr.config >= PERF_ACCESS_TYPE_MAX) return; now = rockchip_ddr_perf_event_get_count(event); prev = local64_xchg(&event->hw.prev_count, now); local64_add(now - prev, &event->count); } static void rockchip_ddr_perf_event_start(struct perf_event *event, int flags) { u64 now = rockchip_ddr_perf_event_get_count(event); local64_set(&event->hw.prev_count, now); } static int rockchip_ddr_perf_event_add(struct perf_event *event, int flags) { struct rockchip_dfi *dfi = container_of(event->pmu, struct rockchip_dfi, pmu); dfi->active_events++; if (dfi->active_events == 1) { dfi->total_count = (struct dmc_count){}; rockchip_dfi_read_counters(dfi, &dfi->last_perf_count); hrtimer_start(&dfi->timer, ns_to_ktime(NSEC_PER_SEC), HRTIMER_MODE_REL); } if (flags & PERF_EF_START) rockchip_ddr_perf_event_start(event, flags); return 0; } static void rockchip_ddr_perf_event_stop(struct perf_event *event, int flags) { rockchip_ddr_perf_event_update(event); } static void rockchip_ddr_perf_event_del(struct perf_event *event, int flags) { struct rockchip_dfi *dfi = container_of(event->pmu, struct rockchip_dfi, pmu); rockchip_ddr_perf_event_stop(event, PERF_EF_UPDATE); dfi->active_events--; if (dfi->active_events == 0) hrtimer_cancel(&dfi->timer); } static enum hrtimer_restart rockchip_dfi_timer(struct hrtimer *timer) { struct rockchip_dfi *dfi = container_of(timer, struct rockchip_dfi, timer); struct dmc_count now, total; rockchip_dfi_read_counters(dfi, &now); write_seqlock(&dfi->count_seqlock); rockchip_ddr_perf_counters_add(dfi, &now, &total); dfi->total_count = total; dfi->last_perf_count = now; write_sequnlock(&dfi->count_seqlock); hrtimer_forward_now(&dfi->timer, ns_to_ktime(NSEC_PER_SEC)); return HRTIMER_RESTART; }; static int ddr_perf_offline_cpu(unsigned int cpu, struct hlist_node *node) { struct rockchip_dfi *dfi = hlist_entry_safe(node, struct rockchip_dfi, node); int target; if (cpu != dfi->cpu) return 0; target = cpumask_any_but(cpu_online_mask, cpu); if (target >= nr_cpu_ids) return 0; perf_pmu_migrate_context(&dfi->pmu, cpu, target); dfi->cpu = target; return 0; } static void rockchip_ddr_cpuhp_remove_state(void *data) { struct rockchip_dfi *dfi = data; cpuhp_remove_multi_state(dfi->cpuhp_state); rockchip_dfi_disable(dfi); } static void rockchip_ddr_cpuhp_remove_instance(void *data) { struct rockchip_dfi *dfi = data; cpuhp_state_remove_instance_nocalls(dfi->cpuhp_state, &dfi->node); } static void rockchip_ddr_perf_remove(void *data) { struct rockchip_dfi *dfi = data; perf_pmu_unregister(&dfi->pmu); } static int rockchip_ddr_perf_init(struct rockchip_dfi *dfi) { struct pmu *pmu = &dfi->pmu; int ret; seqlock_init(&dfi->count_seqlock); pmu->module = THIS_MODULE; pmu->capabilities = PERF_PMU_CAP_NO_EXCLUDE; pmu->task_ctx_nr = perf_invalid_context; pmu->attr_groups = attr_groups; pmu->event_init = rockchip_ddr_perf_event_init; pmu->add = rockchip_ddr_perf_event_add; pmu->del = rockchip_ddr_perf_event_del; pmu->start = rockchip_ddr_perf_event_start; pmu->stop = rockchip_ddr_perf_event_stop; pmu->read = rockchip_ddr_perf_event_update; dfi->cpu = raw_smp_processor_id(); ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "rockchip_ddr_perf_pmu", NULL, ddr_perf_offline_cpu); if (ret < 0) { dev_err(dfi->dev, "cpuhp_setup_state_multi failed: %d\n", ret); return ret; } dfi->cpuhp_state = ret; rockchip_dfi_enable(dfi); ret = devm_add_action_or_reset(dfi->dev, rockchip_ddr_cpuhp_remove_state, dfi); if (ret) return ret; ret = cpuhp_state_add_instance_nocalls(dfi->cpuhp_state, &dfi->node); if (ret) { dev_err(dfi->dev, "Error %d registering hotplug\n", ret); return ret; } ret = devm_add_action_or_reset(dfi->dev, rockchip_ddr_cpuhp_remove_instance, dfi); if (ret) return ret; hrtimer_init(&dfi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); dfi->timer.function = rockchip_dfi_timer; switch (dfi->ddr_type) { case ROCKCHIP_DDRTYPE_LPDDR2: case ROCKCHIP_DDRTYPE_LPDDR3: dfi->burst_len = 8; break; case ROCKCHIP_DDRTYPE_LPDDR4: case ROCKCHIP_DDRTYPE_LPDDR4X: dfi->burst_len = 16; break; } ret = perf_pmu_register(pmu, "rockchip_ddr", -1); if (ret) return ret; return devm_add_action_or_reset(dfi->dev, rockchip_ddr_perf_remove, dfi); } #else static int rockchip_ddr_perf_init(struct rockchip_dfi *dfi) { return 0; } #endif static int rk3399_dfi_init(struct rockchip_dfi *dfi) { struct regmap *regmap_pmu = dfi->regmap_pmu; u32 val; dfi->clk = devm_clk_get(dfi->dev, "pclk_ddr_mon"); if (IS_ERR(dfi->clk)) return dev_err_probe(dfi->dev, PTR_ERR(dfi->clk), "Cannot get the clk pclk_ddr_mon\n"); /* get ddr type */ regmap_read(regmap_pmu, RK3399_PMUGRF_OS_REG2, &val); dfi->ddr_type = FIELD_GET(RK3399_PMUGRF_OS_REG2_DDRTYPE, val); dfi->channel_mask = GENMASK(1, 0); dfi->max_channels = 2; dfi->buswidth[0] = FIELD_GET(RK3399_PMUGRF_OS_REG2_BW_CH0, val) == 0 ? 4 : 2; dfi->buswidth[1] = FIELD_GET(RK3399_PMUGRF_OS_REG2_BW_CH1, val) == 0 ? 4 : 2; dfi->ddrmon_stride = 0x14; dfi->ddrmon_ctrl_single = true; return 0; }; static int rk3568_dfi_init(struct rockchip_dfi *dfi) { struct regmap *regmap_pmu = dfi->regmap_pmu; u32 reg2, reg3; regmap_read(regmap_pmu, RK3568_PMUGRF_OS_REG2, ®2); regmap_read(regmap_pmu, RK3568_PMUGRF_OS_REG3, ®3); /* lower 3 bits of the DDR type */ dfi->ddr_type = FIELD_GET(RK3568_PMUGRF_OS_REG2_DRAMTYPE_INFO, reg2); /* * For version three and higher the upper two bits of the DDR type are * in RK3568_PMUGRF_OS_REG3 */ if (FIELD_GET(RK3568_PMUGRF_OS_REG3_SYSREG_VERSION, reg3) >= 0x3) dfi->ddr_type |= FIELD_GET(RK3568_PMUGRF_OS_REG3_DRAMTYPE_INFO_V3, reg3) << 3; dfi->channel_mask = BIT(0); dfi->max_channels = 1; dfi->buswidth[0] = FIELD_GET(RK3568_PMUGRF_OS_REG2_BW_CH0, reg2) == 0 ? 4 : 2; dfi->ddrmon_stride = 0x0; /* not relevant, we only have a single channel on this SoC */ dfi->ddrmon_ctrl_single = true; return 0; }; static int rk3588_dfi_init(struct rockchip_dfi *dfi) { struct regmap *regmap_pmu = dfi->regmap_pmu; u32 reg2, reg3, reg4; regmap_read(regmap_pmu, RK3588_PMUGRF_OS_REG2, ®2); regmap_read(regmap_pmu, RK3588_PMUGRF_OS_REG3, ®3); regmap_read(regmap_pmu, RK3588_PMUGRF_OS_REG4, ®4); /* lower 3 bits of the DDR type */ dfi->ddr_type = FIELD_GET(RK3588_PMUGRF_OS_REG2_DRAMTYPE_INFO, reg2); /* * For version three and higher the upper two bits of the DDR type are * in RK3588_PMUGRF_OS_REG3 */ if (FIELD_GET(RK3588_PMUGRF_OS_REG3_SYSREG_VERSION, reg3) >= 0x3) dfi->ddr_type |= FIELD_GET(RK3588_PMUGRF_OS_REG3_DRAMTYPE_INFO_V3, reg3) << 3; dfi->buswidth[0] = FIELD_GET(RK3588_PMUGRF_OS_REG2_BW_CH0, reg2) == 0 ? 4 : 2; dfi->buswidth[1] = FIELD_GET(RK3588_PMUGRF_OS_REG2_BW_CH1, reg2) == 0 ? 4 : 2; dfi->buswidth[2] = FIELD_GET(RK3568_PMUGRF_OS_REG2_BW_CH0, reg4) == 0 ? 4 : 2; dfi->buswidth[3] = FIELD_GET(RK3588_PMUGRF_OS_REG2_BW_CH1, reg4) == 0 ? 4 : 2; dfi->channel_mask = FIELD_GET(RK3588_PMUGRF_OS_REG2_CH_INFO, reg2) | FIELD_GET(RK3588_PMUGRF_OS_REG2_CH_INFO, reg4) << 2; dfi->max_channels = 4; dfi->ddrmon_stride = 0x4000; return 0; }; static const struct of_device_id rockchip_dfi_id_match[] = { { .compatible = "rockchip,rk3399-dfi", .data = rk3399_dfi_init }, { .compatible = "rockchip,rk3568-dfi", .data = rk3568_dfi_init }, { .compatible = "rockchip,rk3588-dfi", .data = rk3588_dfi_init }, { }, }; MODULE_DEVICE_TABLE(of, rockchip_dfi_id_match); static int rockchip_dfi_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct rockchip_dfi *dfi; struct devfreq_event_desc *desc; struct device_node *np = pdev->dev.of_node, *node; int (*soc_init)(struct rockchip_dfi *dfi); int ret; soc_init = of_device_get_match_data(&pdev->dev); if (!soc_init) return -EINVAL; dfi = devm_kzalloc(dev, sizeof(*dfi), GFP_KERNEL); if (!dfi) return -ENOMEM; dfi->regs = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(dfi->regs)) return PTR_ERR(dfi->regs); node = of_parse_phandle(np, "rockchip,pmu", 0); if (!node) return dev_err_probe(&pdev->dev, -ENODEV, "Can't find pmu_grf registers\n"); dfi->regmap_pmu = syscon_node_to_regmap(node); of_node_put(node); if (IS_ERR(dfi->regmap_pmu)) return PTR_ERR(dfi->regmap_pmu); dfi->dev = dev; mutex_init(&dfi->mutex); desc = &dfi->desc; desc->ops = &rockchip_dfi_ops; desc->driver_data = dfi; desc->name = np->name; ret = soc_init(dfi); if (ret) return ret; dfi->edev = devm_devfreq_event_add_edev(&pdev->dev, desc); if (IS_ERR(dfi->edev)) { dev_err(&pdev->dev, "failed to add devfreq-event device\n"); return PTR_ERR(dfi->edev); } ret = rockchip_ddr_perf_init(dfi); if (ret) return ret; platform_set_drvdata(pdev, dfi); return 0; } static struct platform_driver rockchip_dfi_driver = { .probe = rockchip_dfi_probe, .driver = { .name = "rockchip-dfi", .of_match_table = rockchip_dfi_id_match, .suppress_bind_attrs = true, }, }; module_platform_driver(rockchip_dfi_driver); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Lin Huang "); MODULE_DESCRIPTION("Rockchip DFI driver");