/* * Copyright (C) 2013-2014 Allwinner Tech Co., Ltd * Author: Sugar * * Copyright (C) 2014 Maxime Ripard * Maxime Ripard * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. */ #include #include #include #include #include #include #include #include #include #include #include #include #include "virt-dma.h" /* * Common registers */ #define DMA_IRQ_EN(x) ((x) * 0x04) #define DMA_IRQ_HALF BIT(0) #define DMA_IRQ_PKG BIT(1) #define DMA_IRQ_QUEUE BIT(2) #define DMA_IRQ_CHAN_NR 8 #define DMA_IRQ_CHAN_WIDTH 4 #define DMA_IRQ_STAT(x) ((x) * 0x04 + 0x10) #define DMA_STAT 0x30 /* Offset between DMA_IRQ_EN and DMA_IRQ_STAT limits number of channels */ #define DMA_MAX_CHANNELS (DMA_IRQ_CHAN_NR * 0x10 / 4) /* * sun8i specific registers */ #define SUN8I_DMA_GATE 0x20 #define SUN8I_DMA_GATE_ENABLE 0x4 #define SUNXI_H3_SECURE_REG 0x20 #define SUNXI_H3_DMA_GATE 0x28 #define SUNXI_H3_DMA_GATE_ENABLE 0x4 /* * Channels specific registers */ #define DMA_CHAN_ENABLE 0x00 #define DMA_CHAN_ENABLE_START BIT(0) #define DMA_CHAN_ENABLE_STOP 0 #define DMA_CHAN_PAUSE 0x04 #define DMA_CHAN_PAUSE_PAUSE BIT(1) #define DMA_CHAN_PAUSE_RESUME 0 #define DMA_CHAN_LLI_ADDR 0x08 #define DMA_CHAN_CUR_CFG 0x0c #define DMA_CHAN_MAX_DRQ 0x1f #define DMA_CHAN_CFG_SRC_DRQ(x) ((x) & DMA_CHAN_MAX_DRQ) #define DMA_CHAN_CFG_SRC_IO_MODE BIT(5) #define DMA_CHAN_CFG_SRC_LINEAR_MODE (0 << 5) #define DMA_CHAN_CFG_SRC_BURST_A31(x) (((x) & 0x3) << 7) #define DMA_CHAN_CFG_SRC_BURST_H3(x) (((x) & 0x3) << 6) #define DMA_CHAN_CFG_SRC_WIDTH(x) (((x) & 0x3) << 9) #define DMA_CHAN_CFG_DST_DRQ(x) (DMA_CHAN_CFG_SRC_DRQ(x) << 16) #define DMA_CHAN_CFG_DST_IO_MODE (DMA_CHAN_CFG_SRC_IO_MODE << 16) #define DMA_CHAN_CFG_DST_LINEAR_MODE (DMA_CHAN_CFG_SRC_LINEAR_MODE << 16) #define DMA_CHAN_CFG_DST_BURST_A31(x) (DMA_CHAN_CFG_SRC_BURST_A31(x) << 16) #define DMA_CHAN_CFG_DST_BURST_H3(x) (DMA_CHAN_CFG_SRC_BURST_H3(x) << 16) #define DMA_CHAN_CFG_DST_WIDTH(x) (DMA_CHAN_CFG_SRC_WIDTH(x) << 16) #define DMA_CHAN_CUR_SRC 0x10 #define DMA_CHAN_CUR_DST 0x14 #define DMA_CHAN_CUR_CNT 0x18 #define DMA_CHAN_CUR_PARA 0x1c /* * Various hardware related defines */ #define LLI_LAST_ITEM 0xfffff800 #define NORMAL_WAIT 8 #define DRQ_SDRAM 1 /* forward declaration */ struct sun6i_dma_dev; /* * Hardware channels / ports representation * * The hardware is used in several SoCs, with differing numbers * of channels and endpoints. This structure ties those numbers * to a certain compatible string. */ struct sun6i_dma_config { u32 nr_max_channels; u32 nr_max_requests; u32 nr_max_vchans; /* * In the datasheets/user manuals of newer Allwinner SoCs, a special * bit (bit 2 at register 0x20) is present. * It's named "DMA MCLK interface circuit auto gating bit" in the * documents, and the footnote of this register says that this bit * should be set up when initializing the DMA controller. * Allwinner A23/A33 user manuals do not have this bit documented, * however these SoCs really have and need this bit, as seen in the * BSP kernel source code. */ void (*clock_autogate_enable)(struct sun6i_dma_dev *); void (*set_burst_length)(u32 *p_cfg, s8 src_burst, s8 dst_burst); u32 src_burst_lengths; u32 dst_burst_lengths; u32 src_addr_widths; u32 dst_addr_widths; }; /* * Hardware representation of the LLI * * The hardware will be fed the physical address of this structure, * and read its content in order to start the transfer. */ struct sun6i_dma_lli { u32 cfg; u32 src; u32 dst; u32 len; u32 para; u32 p_lli_next; /* * This field is not used by the DMA controller, but will be * used by the CPU to go through the list (mostly for dumping * or freeing it). */ struct sun6i_dma_lli *v_lli_next; }; struct sun6i_desc { struct virt_dma_desc vd; dma_addr_t p_lli; struct sun6i_dma_lli *v_lli; }; struct sun6i_pchan { u32 idx; void __iomem *base; struct sun6i_vchan *vchan; struct sun6i_desc *desc; struct sun6i_desc *done; }; struct sun6i_vchan { struct virt_dma_chan vc; struct list_head node; struct dma_slave_config cfg; struct sun6i_pchan *phy; u8 port; u8 irq_type; bool cyclic; }; struct sun6i_dma_dev { struct dma_device slave; void __iomem *base; struct clk *clk; int irq; spinlock_t lock; struct reset_control *rstc; struct tasklet_struct task; atomic_t tasklet_shutdown; struct list_head pending; struct dma_pool *pool; struct sun6i_pchan *pchans; struct sun6i_vchan *vchans; const struct sun6i_dma_config *cfg; u32 num_pchans; u32 num_vchans; u32 max_request; }; static struct device *chan2dev(struct dma_chan *chan) { return &chan->dev->device; } static inline struct sun6i_dma_dev *to_sun6i_dma_dev(struct dma_device *d) { return container_of(d, struct sun6i_dma_dev, slave); } static inline struct sun6i_vchan *to_sun6i_vchan(struct dma_chan *chan) { return container_of(chan, struct sun6i_vchan, vc.chan); } static inline struct sun6i_desc * to_sun6i_desc(struct dma_async_tx_descriptor *tx) { return container_of(tx, struct sun6i_desc, vd.tx); } static inline void sun6i_dma_dump_com_regs(struct sun6i_dma_dev *sdev) { dev_dbg(sdev->slave.dev, "Common register:\n" "\tmask0(%04x): 0x%08x\n" "\tmask1(%04x): 0x%08x\n" "\tpend0(%04x): 0x%08x\n" "\tpend1(%04x): 0x%08x\n" "\tstats(%04x): 0x%08x\n", DMA_IRQ_EN(0), readl(sdev->base + DMA_IRQ_EN(0)), DMA_IRQ_EN(1), readl(sdev->base + DMA_IRQ_EN(1)), DMA_IRQ_STAT(0), readl(sdev->base + DMA_IRQ_STAT(0)), DMA_IRQ_STAT(1), readl(sdev->base + DMA_IRQ_STAT(1)), DMA_STAT, readl(sdev->base + DMA_STAT)); } static inline void sun6i_dma_dump_chan_regs(struct sun6i_dma_dev *sdev, struct sun6i_pchan *pchan) { phys_addr_t reg = virt_to_phys(pchan->base); dev_dbg(sdev->slave.dev, "Chan %d reg: %pa\n" "\t___en(%04x): \t0x%08x\n" "\tpause(%04x): \t0x%08x\n" "\tstart(%04x): \t0x%08x\n" "\t__cfg(%04x): \t0x%08x\n" "\t__src(%04x): \t0x%08x\n" "\t__dst(%04x): \t0x%08x\n" "\tcount(%04x): \t0x%08x\n" "\t_para(%04x): \t0x%08x\n\n", pchan->idx, ®, DMA_CHAN_ENABLE, readl(pchan->base + DMA_CHAN_ENABLE), DMA_CHAN_PAUSE, readl(pchan->base + DMA_CHAN_PAUSE), DMA_CHAN_LLI_ADDR, readl(pchan->base + DMA_CHAN_LLI_ADDR), DMA_CHAN_CUR_CFG, readl(pchan->base + DMA_CHAN_CUR_CFG), DMA_CHAN_CUR_SRC, readl(pchan->base + DMA_CHAN_CUR_SRC), DMA_CHAN_CUR_DST, readl(pchan->base + DMA_CHAN_CUR_DST), DMA_CHAN_CUR_CNT, readl(pchan->base + DMA_CHAN_CUR_CNT), DMA_CHAN_CUR_PARA, readl(pchan->base + DMA_CHAN_CUR_PARA)); } static inline s8 convert_burst(u32 maxburst) { switch (maxburst) { case 1: return 0; case 4: return 1; case 8: return 2; case 16: return 3; default: return -EINVAL; } } static inline s8 convert_buswidth(enum dma_slave_buswidth addr_width) { return ilog2(addr_width); } static void sun6i_enable_clock_autogate_a23(struct sun6i_dma_dev *sdev) { writel(SUN8I_DMA_GATE_ENABLE, sdev->base + SUN8I_DMA_GATE); } static void sun6i_enable_clock_autogate_h3(struct sun6i_dma_dev *sdev) { writel(SUNXI_H3_DMA_GATE_ENABLE, sdev->base + SUNXI_H3_DMA_GATE); } static void sun6i_set_burst_length_a31(u32 *p_cfg, s8 src_burst, s8 dst_burst) { *p_cfg |= DMA_CHAN_CFG_SRC_BURST_A31(src_burst) | DMA_CHAN_CFG_DST_BURST_A31(dst_burst); } static void sun6i_set_burst_length_h3(u32 *p_cfg, s8 src_burst, s8 dst_burst) { *p_cfg |= DMA_CHAN_CFG_SRC_BURST_H3(src_burst) | DMA_CHAN_CFG_DST_BURST_H3(dst_burst); } static size_t sun6i_get_chan_size(struct sun6i_pchan *pchan) { struct sun6i_desc *txd = pchan->desc; struct sun6i_dma_lli *lli; size_t bytes; dma_addr_t pos; pos = readl(pchan->base + DMA_CHAN_LLI_ADDR); bytes = readl(pchan->base + DMA_CHAN_CUR_CNT); if (pos == LLI_LAST_ITEM) return bytes; for (lli = txd->v_lli; lli; lli = lli->v_lli_next) { if (lli->p_lli_next == pos) { for (lli = lli->v_lli_next; lli; lli = lli->v_lli_next) bytes += lli->len; break; } } return bytes; } static void *sun6i_dma_lli_add(struct sun6i_dma_lli *prev, struct sun6i_dma_lli *next, dma_addr_t next_phy, struct sun6i_desc *txd) { if ((!prev && !txd) || !next) return NULL; if (!prev) { txd->p_lli = next_phy; txd->v_lli = next; } else { prev->p_lli_next = next_phy; prev->v_lli_next = next; } next->p_lli_next = LLI_LAST_ITEM; next->v_lli_next = NULL; return next; } static inline void sun6i_dma_dump_lli(struct sun6i_vchan *vchan, struct sun6i_dma_lli *lli) { phys_addr_t p_lli = virt_to_phys(lli); dev_dbg(chan2dev(&vchan->vc.chan), "\n\tdesc: p - %pa v - 0x%p\n" "\t\tc - 0x%08x s - 0x%08x d - 0x%08x\n" "\t\tl - 0x%08x p - 0x%08x n - 0x%08x\n", &p_lli, lli, lli->cfg, lli->src, lli->dst, lli->len, lli->para, lli->p_lli_next); } static void sun6i_dma_free_desc(struct virt_dma_desc *vd) { struct sun6i_desc *txd = to_sun6i_desc(&vd->tx); struct sun6i_dma_dev *sdev = to_sun6i_dma_dev(vd->tx.chan->device); struct sun6i_dma_lli *v_lli, *v_next; dma_addr_t p_lli, p_next; if (unlikely(!txd)) return; p_lli = txd->p_lli; v_lli = txd->v_lli; while (v_lli) { v_next = v_lli->v_lli_next; p_next = v_lli->p_lli_next; dma_pool_free(sdev->pool, v_lli, p_lli); v_lli = v_next; p_lli = p_next; } kfree(txd); } static int sun6i_dma_start_desc(struct sun6i_vchan *vchan) { struct sun6i_dma_dev *sdev = to_sun6i_dma_dev(vchan->vc.chan.device); struct virt_dma_desc *desc = vchan_next_desc(&vchan->vc); struct sun6i_pchan *pchan = vchan->phy; u32 irq_val, irq_reg, irq_offset; if (!pchan) return -EAGAIN; if (!desc) { pchan->desc = NULL; pchan->done = NULL; return -EAGAIN; } list_del(&desc->node); pchan->desc = to_sun6i_desc(&desc->tx); pchan->done = NULL; sun6i_dma_dump_lli(vchan, pchan->desc->v_lli); irq_reg = pchan->idx / DMA_IRQ_CHAN_NR; irq_offset = pchan->idx % DMA_IRQ_CHAN_NR; vchan->irq_type = vchan->cyclic ? DMA_IRQ_PKG : DMA_IRQ_QUEUE; irq_val = readl(sdev->base + DMA_IRQ_EN(irq_reg)); irq_val &= ~((DMA_IRQ_HALF | DMA_IRQ_PKG | DMA_IRQ_QUEUE) << (irq_offset * DMA_IRQ_CHAN_WIDTH)); irq_val |= vchan->irq_type << (irq_offset * DMA_IRQ_CHAN_WIDTH); writel(irq_val, sdev->base + DMA_IRQ_EN(irq_reg)); writel(pchan->desc->p_lli, pchan->base + DMA_CHAN_LLI_ADDR); writel(DMA_CHAN_ENABLE_START, pchan->base + DMA_CHAN_ENABLE); sun6i_dma_dump_com_regs(sdev); sun6i_dma_dump_chan_regs(sdev, pchan); return 0; } static void sun6i_dma_tasklet(unsigned long data) { struct sun6i_dma_dev *sdev = (struct sun6i_dma_dev *)data; struct sun6i_vchan *vchan; struct sun6i_pchan *pchan; unsigned int pchan_alloc = 0; unsigned int pchan_idx; list_for_each_entry(vchan, &sdev->slave.channels, vc.chan.device_node) { spin_lock_irq(&vchan->vc.lock); pchan = vchan->phy; if (pchan && pchan->done) { if (sun6i_dma_start_desc(vchan)) { /* * No current txd associated with this channel */ dev_dbg(sdev->slave.dev, "pchan %u: free\n", pchan->idx); /* Mark this channel free */ vchan->phy = NULL; pchan->vchan = NULL; } } spin_unlock_irq(&vchan->vc.lock); } spin_lock_irq(&sdev->lock); for (pchan_idx = 0; pchan_idx < sdev->num_pchans; pchan_idx++) { pchan = &sdev->pchans[pchan_idx]; if (pchan->vchan || list_empty(&sdev->pending)) continue; vchan = list_first_entry(&sdev->pending, struct sun6i_vchan, node); /* Remove from pending channels */ list_del_init(&vchan->node); pchan_alloc |= BIT(pchan_idx); /* Mark this channel allocated */ pchan->vchan = vchan; vchan->phy = pchan; dev_dbg(sdev->slave.dev, "pchan %u: alloc vchan %p\n", pchan->idx, &vchan->vc); } spin_unlock_irq(&sdev->lock); for (pchan_idx = 0; pchan_idx < sdev->num_pchans; pchan_idx++) { if (!(pchan_alloc & BIT(pchan_idx))) continue; pchan = sdev->pchans + pchan_idx; vchan = pchan->vchan; if (vchan) { spin_lock_irq(&vchan->vc.lock); sun6i_dma_start_desc(vchan); spin_unlock_irq(&vchan->vc.lock); } } } static irqreturn_t sun6i_dma_interrupt(int irq, void *dev_id) { struct sun6i_dma_dev *sdev = dev_id; struct sun6i_vchan *vchan; struct sun6i_pchan *pchan; int i, j, ret = IRQ_NONE; u32 status; for (i = 0; i < sdev->num_pchans / DMA_IRQ_CHAN_NR; i++) { status = readl(sdev->base + DMA_IRQ_STAT(i)); if (!status) continue; dev_dbg(sdev->slave.dev, "DMA irq status %s: 0x%x\n", i ? "high" : "low", status); writel(status, sdev->base + DMA_IRQ_STAT(i)); for (j = 0; (j < DMA_IRQ_CHAN_NR) && status; j++) { pchan = sdev->pchans + j; vchan = pchan->vchan; if (vchan && (status & vchan->irq_type)) { if (vchan->cyclic) { vchan_cyclic_callback(&pchan->desc->vd); } else { spin_lock(&vchan->vc.lock); vchan_cookie_complete(&pchan->desc->vd); pchan->done = pchan->desc; spin_unlock(&vchan->vc.lock); } } status = status >> DMA_IRQ_CHAN_WIDTH; } if (!atomic_read(&sdev->tasklet_shutdown)) tasklet_schedule(&sdev->task); ret = IRQ_HANDLED; } return ret; } static int set_config(struct sun6i_dma_dev *sdev, struct dma_slave_config *sconfig, enum dma_transfer_direction direction, u32 *p_cfg) { enum dma_slave_buswidth src_addr_width, dst_addr_width; u32 src_maxburst, dst_maxburst; s8 src_width, dst_width, src_burst, dst_burst; src_addr_width = sconfig->src_addr_width; dst_addr_width = sconfig->dst_addr_width; src_maxburst = sconfig->src_maxburst; dst_maxburst = sconfig->dst_maxburst; switch (direction) { case DMA_MEM_TO_DEV: if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; src_maxburst = src_maxburst ? src_maxburst : 8; break; case DMA_DEV_TO_MEM: if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; dst_maxburst = dst_maxburst ? dst_maxburst : 8; break; default: return -EINVAL; } if (!(BIT(src_addr_width) & sdev->slave.src_addr_widths)) return -EINVAL; if (!(BIT(dst_addr_width) & sdev->slave.dst_addr_widths)) return -EINVAL; if (!(BIT(src_maxburst) & sdev->cfg->src_burst_lengths)) return -EINVAL; if (!(BIT(dst_maxburst) & sdev->cfg->dst_burst_lengths)) return -EINVAL; src_width = convert_buswidth(src_addr_width); dst_width = convert_buswidth(dst_addr_width); dst_burst = convert_burst(dst_maxburst); src_burst = convert_burst(src_maxburst); *p_cfg = DMA_CHAN_CFG_SRC_WIDTH(src_width) | DMA_CHAN_CFG_DST_WIDTH(dst_width); sdev->cfg->set_burst_length(p_cfg, src_burst, dst_burst); return 0; } static struct dma_async_tx_descriptor *sun6i_dma_prep_dma_memcpy( struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, size_t len, unsigned long flags) { struct sun6i_dma_dev *sdev = to_sun6i_dma_dev(chan->device); struct sun6i_vchan *vchan = to_sun6i_vchan(chan); struct sun6i_dma_lli *v_lli; struct sun6i_desc *txd; dma_addr_t p_lli; s8 burst, width; dev_dbg(chan2dev(chan), "%s; chan: %d, dest: %pad, src: %pad, len: %zu. flags: 0x%08lx\n", __func__, vchan->vc.chan.chan_id, &dest, &src, len, flags); if (!len) return NULL; txd = kzalloc(sizeof(*txd), GFP_NOWAIT); if (!txd) return NULL; v_lli = dma_pool_alloc(sdev->pool, GFP_NOWAIT, &p_lli); if (!v_lli) { dev_err(sdev->slave.dev, "Failed to alloc lli memory\n"); goto err_txd_free; } v_lli->src = src; v_lli->dst = dest; v_lli->len = len; v_lli->para = NORMAL_WAIT; burst = convert_burst(8); width = convert_buswidth(DMA_SLAVE_BUSWIDTH_4_BYTES); v_lli->cfg = DMA_CHAN_CFG_SRC_DRQ(DRQ_SDRAM) | DMA_CHAN_CFG_DST_DRQ(DRQ_SDRAM) | DMA_CHAN_CFG_DST_LINEAR_MODE | DMA_CHAN_CFG_SRC_LINEAR_MODE | DMA_CHAN_CFG_SRC_WIDTH(width) | DMA_CHAN_CFG_DST_WIDTH(width); sdev->cfg->set_burst_length(&v_lli->cfg, burst, burst); sun6i_dma_lli_add(NULL, v_lli, p_lli, txd); sun6i_dma_dump_lli(vchan, v_lli); return vchan_tx_prep(&vchan->vc, &txd->vd, flags); err_txd_free: kfree(txd); return NULL; } static struct dma_async_tx_descriptor *sun6i_dma_prep_slave_sg( struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, enum dma_transfer_direction dir, unsigned long flags, void *context) { struct sun6i_dma_dev *sdev = to_sun6i_dma_dev(chan->device); struct sun6i_vchan *vchan = to_sun6i_vchan(chan); struct dma_slave_config *sconfig = &vchan->cfg; struct sun6i_dma_lli *v_lli, *prev = NULL; struct sun6i_desc *txd; struct scatterlist *sg; dma_addr_t p_lli; u32 lli_cfg; int i, ret; if (!sgl) return NULL; ret = set_config(sdev, sconfig, dir, &lli_cfg); if (ret) { dev_err(chan2dev(chan), "Invalid DMA configuration\n"); return NULL; } txd = kzalloc(sizeof(*txd), GFP_NOWAIT); if (!txd) return NULL; for_each_sg(sgl, sg, sg_len, i) { v_lli = dma_pool_alloc(sdev->pool, GFP_NOWAIT, &p_lli); if (!v_lli) goto err_lli_free; v_lli->len = sg_dma_len(sg); v_lli->para = NORMAL_WAIT; if (dir == DMA_MEM_TO_DEV) { v_lli->src = sg_dma_address(sg); v_lli->dst = sconfig->dst_addr; v_lli->cfg = lli_cfg | DMA_CHAN_CFG_DST_IO_MODE | DMA_CHAN_CFG_SRC_LINEAR_MODE | DMA_CHAN_CFG_SRC_DRQ(DRQ_SDRAM) | DMA_CHAN_CFG_DST_DRQ(vchan->port); dev_dbg(chan2dev(chan), "%s; chan: %d, dest: %pad, src: %pad, len: %u. flags: 0x%08lx\n", __func__, vchan->vc.chan.chan_id, &sconfig->dst_addr, &sg_dma_address(sg), sg_dma_len(sg), flags); } else { v_lli->src = sconfig->src_addr; v_lli->dst = sg_dma_address(sg); v_lli->cfg = lli_cfg | DMA_CHAN_CFG_DST_LINEAR_MODE | DMA_CHAN_CFG_SRC_IO_MODE | DMA_CHAN_CFG_DST_DRQ(DRQ_SDRAM) | DMA_CHAN_CFG_SRC_DRQ(vchan->port); dev_dbg(chan2dev(chan), "%s; chan: %d, dest: %pad, src: %pad, len: %u. flags: 0x%08lx\n", __func__, vchan->vc.chan.chan_id, &sg_dma_address(sg), &sconfig->src_addr, sg_dma_len(sg), flags); } prev = sun6i_dma_lli_add(prev, v_lli, p_lli, txd); } dev_dbg(chan2dev(chan), "First: %pad\n", &txd->p_lli); for (prev = txd->v_lli; prev; prev = prev->v_lli_next) sun6i_dma_dump_lli(vchan, prev); return vchan_tx_prep(&vchan->vc, &txd->vd, flags); err_lli_free: for (prev = txd->v_lli; prev; prev = prev->v_lli_next) dma_pool_free(sdev->pool, prev, virt_to_phys(prev)); kfree(txd); return NULL; } static struct dma_async_tx_descriptor *sun6i_dma_prep_dma_cyclic( struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, size_t period_len, enum dma_transfer_direction dir, unsigned long flags) { struct sun6i_dma_dev *sdev = to_sun6i_dma_dev(chan->device); struct sun6i_vchan *vchan = to_sun6i_vchan(chan); struct dma_slave_config *sconfig = &vchan->cfg; struct sun6i_dma_lli *v_lli, *prev = NULL; struct sun6i_desc *txd; dma_addr_t p_lli; u32 lli_cfg; unsigned int i, periods = buf_len / period_len; int ret; ret = set_config(sdev, sconfig, dir, &lli_cfg); if (ret) { dev_err(chan2dev(chan), "Invalid DMA configuration\n"); return NULL; } txd = kzalloc(sizeof(*txd), GFP_NOWAIT); if (!txd) return NULL; for (i = 0; i < periods; i++) { v_lli = dma_pool_alloc(sdev->pool, GFP_NOWAIT, &p_lli); if (!v_lli) { dev_err(sdev->slave.dev, "Failed to alloc lli memory\n"); goto err_lli_free; } v_lli->len = period_len; v_lli->para = NORMAL_WAIT; if (dir == DMA_MEM_TO_DEV) { v_lli->src = buf_addr + period_len * i; v_lli->dst = sconfig->dst_addr; v_lli->cfg = lli_cfg | DMA_CHAN_CFG_DST_IO_MODE | DMA_CHAN_CFG_SRC_LINEAR_MODE | DMA_CHAN_CFG_SRC_DRQ(DRQ_SDRAM) | DMA_CHAN_CFG_DST_DRQ(vchan->port); } else { v_lli->src = sconfig->src_addr; v_lli->dst = buf_addr + period_len * i; v_lli->cfg = lli_cfg | DMA_CHAN_CFG_DST_LINEAR_MODE | DMA_CHAN_CFG_SRC_IO_MODE | DMA_CHAN_CFG_DST_DRQ(DRQ_SDRAM) | DMA_CHAN_CFG_SRC_DRQ(vchan->port); } prev = sun6i_dma_lli_add(prev, v_lli, p_lli, txd); } prev->p_lli_next = txd->p_lli; /* cyclic list */ vchan->cyclic = true; return vchan_tx_prep(&vchan->vc, &txd->vd, flags); err_lli_free: for (prev = txd->v_lli; prev; prev = prev->v_lli_next) dma_pool_free(sdev->pool, prev, virt_to_phys(prev)); kfree(txd); return NULL; } static int sun6i_dma_config(struct dma_chan *chan, struct dma_slave_config *config) { struct sun6i_vchan *vchan = to_sun6i_vchan(chan); memcpy(&vchan->cfg, config, sizeof(*config)); return 0; } static int sun6i_dma_pause(struct dma_chan *chan) { struct sun6i_dma_dev *sdev = to_sun6i_dma_dev(chan->device); struct sun6i_vchan *vchan = to_sun6i_vchan(chan); struct sun6i_pchan *pchan = vchan->phy; dev_dbg(chan2dev(chan), "vchan %p: pause\n", &vchan->vc); if (pchan) { writel(DMA_CHAN_PAUSE_PAUSE, pchan->base + DMA_CHAN_PAUSE); } else { spin_lock(&sdev->lock); list_del_init(&vchan->node); spin_unlock(&sdev->lock); } return 0; } static int sun6i_dma_resume(struct dma_chan *chan) { struct sun6i_dma_dev *sdev = to_sun6i_dma_dev(chan->device); struct sun6i_vchan *vchan = to_sun6i_vchan(chan); struct sun6i_pchan *pchan = vchan->phy; unsigned long flags; dev_dbg(chan2dev(chan), "vchan %p: resume\n", &vchan->vc); spin_lock_irqsave(&vchan->vc.lock, flags); if (pchan) { writel(DMA_CHAN_PAUSE_RESUME, pchan->base + DMA_CHAN_PAUSE); } else if (!list_empty(&vchan->vc.desc_issued)) { spin_lock(&sdev->lock); list_add_tail(&vchan->node, &sdev->pending); spin_unlock(&sdev->lock); } spin_unlock_irqrestore(&vchan->vc.lock, flags); return 0; } static int sun6i_dma_terminate_all(struct dma_chan *chan) { struct sun6i_dma_dev *sdev = to_sun6i_dma_dev(chan->device); struct sun6i_vchan *vchan = to_sun6i_vchan(chan); struct sun6i_pchan *pchan = vchan->phy; unsigned long flags; LIST_HEAD(head); spin_lock(&sdev->lock); list_del_init(&vchan->node); spin_unlock(&sdev->lock); spin_lock_irqsave(&vchan->vc.lock, flags); if (vchan->cyclic) { vchan->cyclic = false; if (pchan && pchan->desc) { struct virt_dma_desc *vd = &pchan->desc->vd; struct virt_dma_chan *vc = &vchan->vc; list_add_tail(&vd->node, &vc->desc_completed); } } vchan_get_all_descriptors(&vchan->vc, &head); if (pchan) { writel(DMA_CHAN_ENABLE_STOP, pchan->base + DMA_CHAN_ENABLE); writel(DMA_CHAN_PAUSE_RESUME, pchan->base + DMA_CHAN_PAUSE); vchan->phy = NULL; pchan->vchan = NULL; pchan->desc = NULL; pchan->done = NULL; } spin_unlock_irqrestore(&vchan->vc.lock, flags); vchan_dma_desc_free_list(&vchan->vc, &head); return 0; } static enum dma_status sun6i_dma_tx_status(struct dma_chan *chan, dma_cookie_t cookie, struct dma_tx_state *state) { struct sun6i_vchan *vchan = to_sun6i_vchan(chan); struct sun6i_pchan *pchan = vchan->phy; struct sun6i_dma_lli *lli; struct virt_dma_desc *vd; struct sun6i_desc *txd; enum dma_status ret; unsigned long flags; size_t bytes = 0; ret = dma_cookie_status(chan, cookie, state); if (ret == DMA_COMPLETE || !state) return ret; spin_lock_irqsave(&vchan->vc.lock, flags); vd = vchan_find_desc(&vchan->vc, cookie); txd = to_sun6i_desc(&vd->tx); if (vd) { for (lli = txd->v_lli; lli != NULL; lli = lli->v_lli_next) bytes += lli->len; } else if (!pchan || !pchan->desc) { bytes = 0; } else { bytes = sun6i_get_chan_size(pchan); } spin_unlock_irqrestore(&vchan->vc.lock, flags); dma_set_residue(state, bytes); return ret; } static void sun6i_dma_issue_pending(struct dma_chan *chan) { struct sun6i_dma_dev *sdev = to_sun6i_dma_dev(chan->device); struct sun6i_vchan *vchan = to_sun6i_vchan(chan); unsigned long flags; spin_lock_irqsave(&vchan->vc.lock, flags); if (vchan_issue_pending(&vchan->vc)) { spin_lock(&sdev->lock); if (!vchan->phy && list_empty(&vchan->node)) { list_add_tail(&vchan->node, &sdev->pending); tasklet_schedule(&sdev->task); dev_dbg(chan2dev(chan), "vchan %p: issued\n", &vchan->vc); } spin_unlock(&sdev->lock); } else { dev_dbg(chan2dev(chan), "vchan %p: nothing to issue\n", &vchan->vc); } spin_unlock_irqrestore(&vchan->vc.lock, flags); } static void sun6i_dma_free_chan_resources(struct dma_chan *chan) { struct sun6i_dma_dev *sdev = to_sun6i_dma_dev(chan->device); struct sun6i_vchan *vchan = to_sun6i_vchan(chan); unsigned long flags; spin_lock_irqsave(&sdev->lock, flags); list_del_init(&vchan->node); spin_unlock_irqrestore(&sdev->lock, flags); vchan_free_chan_resources(&vchan->vc); } static struct dma_chan *sun6i_dma_of_xlate(struct of_phandle_args *dma_spec, struct of_dma *ofdma) { struct sun6i_dma_dev *sdev = ofdma->of_dma_data; struct sun6i_vchan *vchan; struct dma_chan *chan; u8 port = dma_spec->args[0]; if (port > sdev->max_request) return NULL; chan = dma_get_any_slave_channel(&sdev->slave); if (!chan) return NULL; vchan = to_sun6i_vchan(chan); vchan->port = port; return chan; } static inline void sun6i_kill_tasklet(struct sun6i_dma_dev *sdev) { /* Disable all interrupts from DMA */ writel(0, sdev->base + DMA_IRQ_EN(0)); writel(0, sdev->base + DMA_IRQ_EN(1)); /* Prevent spurious interrupts from scheduling the tasklet */ atomic_inc(&sdev->tasklet_shutdown); /* Make sure we won't have any further interrupts */ devm_free_irq(sdev->slave.dev, sdev->irq, sdev); /* Actually prevent the tasklet from being scheduled */ tasklet_kill(&sdev->task); } static inline void sun6i_dma_free(struct sun6i_dma_dev *sdev) { int i; for (i = 0; i < sdev->num_vchans; i++) { struct sun6i_vchan *vchan = &sdev->vchans[i]; list_del(&vchan->vc.chan.device_node); tasklet_kill(&vchan->vc.task); } } /* * For A31: * * There's 16 physical channels that can work in parallel. * * However we have 30 different endpoints for our requests. * * Since the channels are able to handle only an unidirectional * transfer, we need to allocate more virtual channels so that * everyone can grab one channel. * * Some devices can't work in both direction (mostly because it * wouldn't make sense), so we have a bit fewer virtual channels than * 2 channels per endpoints. */ static struct sun6i_dma_config sun6i_a31_dma_cfg = { .nr_max_channels = 16, .nr_max_requests = 30, .nr_max_vchans = 53, .set_burst_length = sun6i_set_burst_length_a31, .src_burst_lengths = BIT(1) | BIT(8), .dst_burst_lengths = BIT(1) | BIT(8), .src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | BIT(DMA_SLAVE_BUSWIDTH_4_BYTES), .dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | BIT(DMA_SLAVE_BUSWIDTH_4_BYTES), }; /* * The A23 only has 8 physical channels, a maximum DRQ port id of 24, * and a total of 37 usable source and destination endpoints. */ static struct sun6i_dma_config sun8i_a23_dma_cfg = { .nr_max_channels = 8, .nr_max_requests = 24, .nr_max_vchans = 37, .clock_autogate_enable = sun6i_enable_clock_autogate_a23, .set_burst_length = sun6i_set_burst_length_a31, .src_burst_lengths = BIT(1) | BIT(8), .dst_burst_lengths = BIT(1) | BIT(8), .src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | BIT(DMA_SLAVE_BUSWIDTH_4_BYTES), .dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | BIT(DMA_SLAVE_BUSWIDTH_4_BYTES), }; static struct sun6i_dma_config sun8i_a83t_dma_cfg = { .nr_max_channels = 8, .nr_max_requests = 28, .nr_max_vchans = 39, .clock_autogate_enable = sun6i_enable_clock_autogate_a23, .set_burst_length = sun6i_set_burst_length_a31, .src_burst_lengths = BIT(1) | BIT(8), .dst_burst_lengths = BIT(1) | BIT(8), .src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | BIT(DMA_SLAVE_BUSWIDTH_4_BYTES), .dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | BIT(DMA_SLAVE_BUSWIDTH_4_BYTES), }; /* * The H3 has 12 physical channels, a maximum DRQ port id of 27, * and a total of 34 usable source and destination endpoints. * It also supports additional burst lengths and bus widths, * and the burst length fields have different offsets. */ static struct sun6i_dma_config sun8i_h3_dma_cfg = { .nr_max_channels = 12, .nr_max_requests = 27, .nr_max_vchans = 34, .clock_autogate_enable = sun6i_enable_clock_autogate_h3, .set_burst_length = sun6i_set_burst_length_h3, .src_burst_lengths = BIT(1) | BIT(4) | BIT(8) | BIT(16), .dst_burst_lengths = BIT(1) | BIT(4) | BIT(8) | BIT(16), .src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | BIT(DMA_SLAVE_BUSWIDTH_8_BYTES), .dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | BIT(DMA_SLAVE_BUSWIDTH_8_BYTES), }; /* * The A64 binding uses the number of dma channels from the * device tree node. */ static struct sun6i_dma_config sun50i_a64_dma_cfg = { .clock_autogate_enable = sun6i_enable_clock_autogate_h3, .set_burst_length = sun6i_set_burst_length_h3, .src_burst_lengths = BIT(1) | BIT(4) | BIT(8) | BIT(16), .dst_burst_lengths = BIT(1) | BIT(4) | BIT(8) | BIT(16), .src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | BIT(DMA_SLAVE_BUSWIDTH_8_BYTES), .dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | BIT(DMA_SLAVE_BUSWIDTH_8_BYTES), }; /* * The V3s have only 8 physical channels, a maximum DRQ port id of 23, * and a total of 24 usable source and destination endpoints. */ static struct sun6i_dma_config sun8i_v3s_dma_cfg = { .nr_max_channels = 8, .nr_max_requests = 23, .nr_max_vchans = 24, .clock_autogate_enable = sun6i_enable_clock_autogate_a23, .set_burst_length = sun6i_set_burst_length_a31, .src_burst_lengths = BIT(1) | BIT(8), .dst_burst_lengths = BIT(1) | BIT(8), .src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | BIT(DMA_SLAVE_BUSWIDTH_4_BYTES), .dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | BIT(DMA_SLAVE_BUSWIDTH_4_BYTES), }; static const struct of_device_id sun6i_dma_match[] = { { .compatible = "allwinner,sun6i-a31-dma", .data = &sun6i_a31_dma_cfg }, { .compatible = "allwinner,sun8i-a23-dma", .data = &sun8i_a23_dma_cfg }, { .compatible = "allwinner,sun8i-a83t-dma", .data = &sun8i_a83t_dma_cfg }, { .compatible = "allwinner,sun8i-h3-dma", .data = &sun8i_h3_dma_cfg }, { .compatible = "allwinner,sun8i-v3s-dma", .data = &sun8i_v3s_dma_cfg }, { .compatible = "allwinner,sun50i-a64-dma", .data = &sun50i_a64_dma_cfg }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, sun6i_dma_match); static int sun6i_dma_probe(struct platform_device *pdev) { struct device_node *np = pdev->dev.of_node; struct sun6i_dma_dev *sdc; struct resource *res; int ret, i; sdc = devm_kzalloc(&pdev->dev, sizeof(*sdc), GFP_KERNEL); if (!sdc) return -ENOMEM; sdc->cfg = of_device_get_match_data(&pdev->dev); if (!sdc->cfg) return -ENODEV; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); sdc->base = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(sdc->base)) return PTR_ERR(sdc->base); sdc->irq = platform_get_irq(pdev, 0); if (sdc->irq < 0) { dev_err(&pdev->dev, "Cannot claim IRQ\n"); return sdc->irq; } sdc->clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(sdc->clk)) { dev_err(&pdev->dev, "No clock specified\n"); return PTR_ERR(sdc->clk); } sdc->rstc = devm_reset_control_get(&pdev->dev, NULL); if (IS_ERR(sdc->rstc)) { dev_err(&pdev->dev, "No reset controller specified\n"); return PTR_ERR(sdc->rstc); } sdc->pool = dmam_pool_create(dev_name(&pdev->dev), &pdev->dev, sizeof(struct sun6i_dma_lli), 4, 0); if (!sdc->pool) { dev_err(&pdev->dev, "No memory for descriptors dma pool\n"); return -ENOMEM; } platform_set_drvdata(pdev, sdc); INIT_LIST_HEAD(&sdc->pending); spin_lock_init(&sdc->lock); dma_cap_set(DMA_PRIVATE, sdc->slave.cap_mask); dma_cap_set(DMA_MEMCPY, sdc->slave.cap_mask); dma_cap_set(DMA_SLAVE, sdc->slave.cap_mask); dma_cap_set(DMA_CYCLIC, sdc->slave.cap_mask); INIT_LIST_HEAD(&sdc->slave.channels); sdc->slave.device_free_chan_resources = sun6i_dma_free_chan_resources; sdc->slave.device_tx_status = sun6i_dma_tx_status; sdc->slave.device_issue_pending = sun6i_dma_issue_pending; sdc->slave.device_prep_slave_sg = sun6i_dma_prep_slave_sg; sdc->slave.device_prep_dma_memcpy = sun6i_dma_prep_dma_memcpy; sdc->slave.device_prep_dma_cyclic = sun6i_dma_prep_dma_cyclic; sdc->slave.copy_align = DMAENGINE_ALIGN_4_BYTES; sdc->slave.device_config = sun6i_dma_config; sdc->slave.device_pause = sun6i_dma_pause; sdc->slave.device_resume = sun6i_dma_resume; sdc->slave.device_terminate_all = sun6i_dma_terminate_all; sdc->slave.src_addr_widths = sdc->cfg->src_addr_widths; sdc->slave.dst_addr_widths = sdc->cfg->dst_addr_widths; sdc->slave.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); sdc->slave.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; sdc->slave.dev = &pdev->dev; sdc->num_pchans = sdc->cfg->nr_max_channels; sdc->num_vchans = sdc->cfg->nr_max_vchans; sdc->max_request = sdc->cfg->nr_max_requests; ret = of_property_read_u32(np, "dma-channels", &sdc->num_pchans); if (ret && !sdc->num_pchans) { dev_err(&pdev->dev, "Can't get dma-channels.\n"); return ret; } ret = of_property_read_u32(np, "dma-requests", &sdc->max_request); if (ret && !sdc->max_request) { dev_info(&pdev->dev, "Missing dma-requests, using %u.\n", DMA_CHAN_MAX_DRQ); sdc->max_request = DMA_CHAN_MAX_DRQ; } /* * If the number of vchans is not specified, derive it from the * highest port number, at most one channel per port and direction. */ if (!sdc->num_vchans) sdc->num_vchans = 2 * (sdc->max_request + 1); sdc->pchans = devm_kcalloc(&pdev->dev, sdc->num_pchans, sizeof(struct sun6i_pchan), GFP_KERNEL); if (!sdc->pchans) return -ENOMEM; sdc->vchans = devm_kcalloc(&pdev->dev, sdc->num_vchans, sizeof(struct sun6i_vchan), GFP_KERNEL); if (!sdc->vchans) return -ENOMEM; tasklet_init(&sdc->task, sun6i_dma_tasklet, (unsigned long)sdc); for (i = 0; i < sdc->num_pchans; i++) { struct sun6i_pchan *pchan = &sdc->pchans[i]; pchan->idx = i; pchan->base = sdc->base + 0x100 + i * 0x40; } for (i = 0; i < sdc->num_vchans; i++) { struct sun6i_vchan *vchan = &sdc->vchans[i]; INIT_LIST_HEAD(&vchan->node); vchan->vc.desc_free = sun6i_dma_free_desc; vchan_init(&vchan->vc, &sdc->slave); } ret = reset_control_deassert(sdc->rstc); if (ret) { dev_err(&pdev->dev, "Couldn't deassert the device from reset\n"); goto err_chan_free; } ret = clk_prepare_enable(sdc->clk); if (ret) { dev_err(&pdev->dev, "Couldn't enable the clock\n"); goto err_reset_assert; } ret = devm_request_irq(&pdev->dev, sdc->irq, sun6i_dma_interrupt, 0, dev_name(&pdev->dev), sdc); if (ret) { dev_err(&pdev->dev, "Cannot request IRQ\n"); goto err_clk_disable; } ret = dma_async_device_register(&sdc->slave); if (ret) { dev_warn(&pdev->dev, "Failed to register DMA engine device\n"); goto err_irq_disable; } ret = of_dma_controller_register(pdev->dev.of_node, sun6i_dma_of_xlate, sdc); if (ret) { dev_err(&pdev->dev, "of_dma_controller_register failed\n"); goto err_dma_unregister; } if (sdc->cfg->clock_autogate_enable) sdc->cfg->clock_autogate_enable(sdc); return 0; err_dma_unregister: dma_async_device_unregister(&sdc->slave); err_irq_disable: sun6i_kill_tasklet(sdc); err_clk_disable: clk_disable_unprepare(sdc->clk); err_reset_assert: reset_control_assert(sdc->rstc); err_chan_free: sun6i_dma_free(sdc); return ret; } static int sun6i_dma_remove(struct platform_device *pdev) { struct sun6i_dma_dev *sdc = platform_get_drvdata(pdev); of_dma_controller_free(pdev->dev.of_node); dma_async_device_unregister(&sdc->slave); sun6i_kill_tasklet(sdc); clk_disable_unprepare(sdc->clk); reset_control_assert(sdc->rstc); sun6i_dma_free(sdc); return 0; } static struct platform_driver sun6i_dma_driver = { .probe = sun6i_dma_probe, .remove = sun6i_dma_remove, .driver = { .name = "sun6i-dma", .of_match_table = sun6i_dma_match, }, }; module_platform_driver(sun6i_dma_driver); MODULE_DESCRIPTION("Allwinner A31 DMA Controller Driver"); MODULE_AUTHOR("Sugar "); MODULE_AUTHOR("Maxime Ripard "); MODULE_LICENSE("GPL");