/* * Copyright 2012-15 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ #include #include #include #include #include "dm_services.h" #include "amdgpu.h" #include "amdgpu_dm.h" #include "amdgpu_dm_mst_types.h" #include "amdgpu_dm_hdcp.h" #include "dc.h" #include "dm_helpers.h" #include "ddc_service_types.h" #include "dpcd_defs.h" #include "dmub_cmd.h" #if defined(CONFIG_DEBUG_FS) #include "amdgpu_dm_debugfs.h" #endif #include "dc/dcn20/dcn20_resource.h" #define PEAK_FACTOR_X1000 1006 static ssize_t dm_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg) { ssize_t result = 0; struct aux_payload payload; enum aux_return_code_type operation_result; struct amdgpu_device *adev; struct ddc_service *ddc; if (WARN_ON(msg->size > 16)) return -E2BIG; payload.address = msg->address; payload.data = msg->buffer; payload.length = msg->size; payload.reply = &msg->reply; payload.i2c_over_aux = (msg->request & DP_AUX_NATIVE_WRITE) == 0; payload.write = (msg->request & DP_AUX_I2C_READ) == 0; payload.mot = (msg->request & DP_AUX_I2C_MOT) != 0; payload.write_status_update = (msg->request & DP_AUX_I2C_WRITE_STATUS_UPDATE) != 0; payload.defer_delay = 0; result = dc_link_aux_transfer_raw(TO_DM_AUX(aux)->ddc_service, &payload, &operation_result); /* * w/a on certain intel platform where hpd is unexpected to pull low during * 1st sideband message transaction by return AUX_RET_ERROR_HPD_DISCON * aux transaction is succuess in such case, therefore bypass the error */ ddc = TO_DM_AUX(aux)->ddc_service; adev = ddc->ctx->driver_context; if (adev->dm.aux_hpd_discon_quirk) { if (msg->address == DP_SIDEBAND_MSG_DOWN_REQ_BASE && operation_result == AUX_RET_ERROR_HPD_DISCON) { result = 0; operation_result = AUX_RET_SUCCESS; } } if (payload.write && result >= 0) result = msg->size; if (result < 0) switch (operation_result) { case AUX_RET_SUCCESS: break; case AUX_RET_ERROR_HPD_DISCON: case AUX_RET_ERROR_UNKNOWN: case AUX_RET_ERROR_INVALID_OPERATION: case AUX_RET_ERROR_PROTOCOL_ERROR: result = -EIO; break; case AUX_RET_ERROR_INVALID_REPLY: case AUX_RET_ERROR_ENGINE_ACQUIRE: result = -EBUSY; break; case AUX_RET_ERROR_TIMEOUT: result = -ETIMEDOUT; break; } return result; } static void dm_dp_mst_connector_destroy(struct drm_connector *connector) { struct amdgpu_dm_connector *aconnector = to_amdgpu_dm_connector(connector); if (aconnector->dc_sink) { dc_link_remove_remote_sink(aconnector->dc_link, aconnector->dc_sink); dc_sink_release(aconnector->dc_sink); } kfree(aconnector->edid); drm_connector_cleanup(connector); drm_dp_mst_put_port_malloc(aconnector->mst_output_port); kfree(aconnector); } static int amdgpu_dm_mst_connector_late_register(struct drm_connector *connector) { struct amdgpu_dm_connector *amdgpu_dm_connector = to_amdgpu_dm_connector(connector); int r; r = drm_dp_mst_connector_late_register(connector, amdgpu_dm_connector->mst_output_port); if (r < 0) return r; #if defined(CONFIG_DEBUG_FS) connector_debugfs_init(amdgpu_dm_connector); #endif return 0; } static void amdgpu_dm_mst_connector_early_unregister(struct drm_connector *connector) { struct amdgpu_dm_connector *aconnector = to_amdgpu_dm_connector(connector); struct drm_dp_mst_port *port = aconnector->mst_output_port; struct amdgpu_dm_connector *root = aconnector->mst_root; struct dc_link *dc_link = aconnector->dc_link; struct dc_sink *dc_sink = aconnector->dc_sink; drm_dp_mst_connector_early_unregister(connector, port); /* * Release dc_sink for connector which its attached port is * no longer in the mst topology */ drm_modeset_lock(&root->mst_mgr.base.lock, NULL); if (dc_sink) { if (dc_link->sink_count) dc_link_remove_remote_sink(dc_link, dc_sink); DC_LOG_MST("DM_MST: remove remote sink 0x%p, %d remaining\n", dc_sink, dc_link->sink_count); dc_sink_release(dc_sink); aconnector->dc_sink = NULL; aconnector->edid = NULL; } aconnector->mst_status = MST_STATUS_DEFAULT; drm_modeset_unlock(&root->mst_mgr.base.lock); } static const struct drm_connector_funcs dm_dp_mst_connector_funcs = { .fill_modes = drm_helper_probe_single_connector_modes, .destroy = dm_dp_mst_connector_destroy, .reset = amdgpu_dm_connector_funcs_reset, .atomic_duplicate_state = amdgpu_dm_connector_atomic_duplicate_state, .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, .atomic_set_property = amdgpu_dm_connector_atomic_set_property, .atomic_get_property = amdgpu_dm_connector_atomic_get_property, .late_register = amdgpu_dm_mst_connector_late_register, .early_unregister = amdgpu_dm_mst_connector_early_unregister, }; bool needs_dsc_aux_workaround(struct dc_link *link) { if (link->dpcd_caps.branch_dev_id == DP_BRANCH_DEVICE_ID_90CC24 && (link->dpcd_caps.dpcd_rev.raw == DPCD_REV_14 || link->dpcd_caps.dpcd_rev.raw == DPCD_REV_12) && link->dpcd_caps.sink_count.bits.SINK_COUNT >= 2) return true; return false; } static bool is_synaptics_cascaded_panamera(struct dc_link *link, struct drm_dp_mst_port *port) { u8 branch_vendor_data[4] = { 0 }; // Vendor data 0x50C ~ 0x50F if (drm_dp_dpcd_read(port->mgr->aux, DP_BRANCH_VENDOR_SPECIFIC_START, &branch_vendor_data, 4) == 4) { if (link->dpcd_caps.branch_dev_id == DP_BRANCH_DEVICE_ID_90CC24 && IS_SYNAPTICS_CASCADED_PANAMERA(link->dpcd_caps.branch_dev_name, branch_vendor_data)) { DRM_INFO("Synaptics Cascaded MST hub\n"); return true; } } return false; } static bool validate_dsc_caps_on_connector(struct amdgpu_dm_connector *aconnector) { struct dc_sink *dc_sink = aconnector->dc_sink; struct drm_dp_mst_port *port = aconnector->mst_output_port; u8 dsc_caps[16] = { 0 }; u8 dsc_branch_dec_caps_raw[3] = { 0 }; // DSC branch decoder caps 0xA0 ~ 0xA2 u8 *dsc_branch_dec_caps = NULL; aconnector->dsc_aux = drm_dp_mst_dsc_aux_for_port(port); /* * drm_dp_mst_dsc_aux_for_port() will return NULL for certain configs * because it only check the dsc/fec caps of the "port variable" and not the dock * * This case will return NULL: DSC capabe MST dock connected to a non fec/dsc capable display * * Workaround: explicitly check the use case above and use the mst dock's aux as dsc_aux * */ if (!aconnector->dsc_aux && !port->parent->port_parent && needs_dsc_aux_workaround(aconnector->dc_link)) aconnector->dsc_aux = &aconnector->mst_root->dm_dp_aux.aux; /* synaptics cascaded MST hub case */ if (!aconnector->dsc_aux && is_synaptics_cascaded_panamera(aconnector->dc_link, port)) aconnector->dsc_aux = port->mgr->aux; if (!aconnector->dsc_aux) return false; if (drm_dp_dpcd_read(aconnector->dsc_aux, DP_DSC_SUPPORT, dsc_caps, 16) < 0) return false; if (drm_dp_dpcd_read(aconnector->dsc_aux, DP_DSC_BRANCH_OVERALL_THROUGHPUT_0, dsc_branch_dec_caps_raw, 3) == 3) dsc_branch_dec_caps = dsc_branch_dec_caps_raw; if (!dc_dsc_parse_dsc_dpcd(aconnector->dc_link->ctx->dc, dsc_caps, dsc_branch_dec_caps, &dc_sink->dsc_caps.dsc_dec_caps)) return false; return true; } static bool retrieve_downstream_port_device(struct amdgpu_dm_connector *aconnector) { union dp_downstream_port_present ds_port_present; if (!aconnector->dsc_aux) return false; if (drm_dp_dpcd_read(aconnector->dsc_aux, DP_DOWNSTREAMPORT_PRESENT, &ds_port_present, 1) < 0) { DRM_INFO("Failed to read downstream_port_present 0x05 from DFP of branch device\n"); return false; } aconnector->mst_downstream_port_present = ds_port_present; DRM_INFO("Downstream port present %d, type %d\n", ds_port_present.fields.PORT_PRESENT, ds_port_present.fields.PORT_TYPE); return true; } static int dm_dp_mst_get_modes(struct drm_connector *connector) { struct amdgpu_dm_connector *aconnector = to_amdgpu_dm_connector(connector); int ret = 0; if (!aconnector) return drm_add_edid_modes(connector, NULL); if (!aconnector->edid) { struct edid *edid; edid = drm_dp_mst_get_edid(connector, &aconnector->mst_root->mst_mgr, aconnector->mst_output_port); if (!edid) { amdgpu_dm_set_mst_status(&aconnector->mst_status, MST_REMOTE_EDID, false); drm_connector_update_edid_property( &aconnector->base, NULL); DRM_DEBUG_KMS("Can't get EDID of %s. Add default remote sink.", connector->name); if (!aconnector->dc_sink) { struct dc_sink *dc_sink; struct dc_sink_init_data init_params = { .link = aconnector->dc_link, .sink_signal = SIGNAL_TYPE_DISPLAY_PORT_MST }; dc_sink = dc_link_add_remote_sink( aconnector->dc_link, NULL, 0, &init_params); if (!dc_sink) { DRM_ERROR("Unable to add a remote sink\n"); return 0; } DC_LOG_MST("DM_MST: add remote sink 0x%p, %d remaining\n", dc_sink, aconnector->dc_link->sink_count); dc_sink->priv = aconnector; aconnector->dc_sink = dc_sink; } return ret; } aconnector->edid = edid; amdgpu_dm_set_mst_status(&aconnector->mst_status, MST_REMOTE_EDID, true); } if (aconnector->dc_sink && aconnector->dc_sink->sink_signal == SIGNAL_TYPE_VIRTUAL) { dc_sink_release(aconnector->dc_sink); aconnector->dc_sink = NULL; } if (!aconnector->dc_sink) { struct dc_sink *dc_sink; struct dc_sink_init_data init_params = { .link = aconnector->dc_link, .sink_signal = SIGNAL_TYPE_DISPLAY_PORT_MST }; dc_sink = dc_link_add_remote_sink( aconnector->dc_link, (uint8_t *)aconnector->edid, (aconnector->edid->extensions + 1) * EDID_LENGTH, &init_params); if (!dc_sink) { DRM_ERROR("Unable to add a remote sink\n"); return 0; } DC_LOG_MST("DM_MST: add remote sink 0x%p, %d remaining\n", dc_sink, aconnector->dc_link->sink_count); dc_sink->priv = aconnector; /* dc_link_add_remote_sink returns a new reference */ aconnector->dc_sink = dc_sink; /* when display is unplugged from mst hub, connctor will be * destroyed within dm_dp_mst_connector_destroy. connector * hdcp perperties, like type, undesired, desired, enabled, * will be lost. So, save hdcp properties into hdcp_work within * amdgpu_dm_atomic_commit_tail. if the same display is * plugged back with same display index, its hdcp properties * will be retrieved from hdcp_work within dm_dp_mst_get_modes */ if (aconnector->dc_sink && connector->state) { struct drm_device *dev = connector->dev; struct amdgpu_device *adev = drm_to_adev(dev); if (adev->dm.hdcp_workqueue) { struct hdcp_workqueue *hdcp_work = adev->dm.hdcp_workqueue; struct hdcp_workqueue *hdcp_w = &hdcp_work[aconnector->dc_link->link_index]; connector->state->hdcp_content_type = hdcp_w->hdcp_content_type[connector->index]; connector->state->content_protection = hdcp_w->content_protection[connector->index]; } } if (aconnector->dc_sink) { amdgpu_dm_update_freesync_caps( connector, aconnector->edid); if (!validate_dsc_caps_on_connector(aconnector)) memset(&aconnector->dc_sink->dsc_caps, 0, sizeof(aconnector->dc_sink->dsc_caps)); if (!retrieve_downstream_port_device(aconnector)) memset(&aconnector->mst_downstream_port_present, 0, sizeof(aconnector->mst_downstream_port_present)); } } drm_connector_update_edid_property( &aconnector->base, aconnector->edid); ret = drm_add_edid_modes(connector, aconnector->edid); return ret; } static struct drm_encoder * dm_mst_atomic_best_encoder(struct drm_connector *connector, struct drm_atomic_state *state) { struct drm_connector_state *connector_state = drm_atomic_get_new_connector_state(state, connector); struct drm_device *dev = connector->dev; struct amdgpu_device *adev = drm_to_adev(dev); struct amdgpu_crtc *acrtc = to_amdgpu_crtc(connector_state->crtc); return &adev->dm.mst_encoders[acrtc->crtc_id].base; } static int dm_dp_mst_detect(struct drm_connector *connector, struct drm_modeset_acquire_ctx *ctx, bool force) { struct amdgpu_dm_connector *aconnector = to_amdgpu_dm_connector(connector); struct amdgpu_dm_connector *master = aconnector->mst_root; struct drm_dp_mst_port *port = aconnector->mst_output_port; int connection_status; if (drm_connector_is_unregistered(connector)) return connector_status_disconnected; connection_status = drm_dp_mst_detect_port(connector, ctx, &master->mst_mgr, aconnector->mst_output_port); if (port->pdt != DP_PEER_DEVICE_NONE && !port->dpcd_rev) { uint8_t dpcd_rev; int ret; ret = drm_dp_dpcd_readb(&port->aux, DP_DP13_DPCD_REV, &dpcd_rev); if (ret == 1) { port->dpcd_rev = dpcd_rev; /* Could be DP1.2 DP Rx case*/ if (!dpcd_rev) { ret = drm_dp_dpcd_readb(&port->aux, DP_DPCD_REV, &dpcd_rev); if (ret == 1) port->dpcd_rev = dpcd_rev; } if (!dpcd_rev) DRM_DEBUG_KMS("Can't decide DPCD revision number!"); } /* * Could be legacy sink, logical port etc on DP1.2. * Will get Nack under these cases when issue remote * DPCD read. */ if (ret != 1) DRM_DEBUG_KMS("Can't access DPCD"); } else if (port->pdt == DP_PEER_DEVICE_NONE) { port->dpcd_rev = 0; } /* * Release dc_sink for connector which unplug event is notified by CSN msg */ if (connection_status == connector_status_disconnected && aconnector->dc_sink) { if (aconnector->dc_link->sink_count) dc_link_remove_remote_sink(aconnector->dc_link, aconnector->dc_sink); DC_LOG_MST("DM_MST: remove remote sink 0x%p, %d remaining\n", aconnector->dc_link, aconnector->dc_link->sink_count); dc_sink_release(aconnector->dc_sink); aconnector->dc_sink = NULL; aconnector->edid = NULL; amdgpu_dm_set_mst_status(&aconnector->mst_status, MST_REMOTE_EDID | MST_ALLOCATE_NEW_PAYLOAD | MST_CLEAR_ALLOCATED_PAYLOAD, false); } return connection_status; } static int dm_dp_mst_atomic_check(struct drm_connector *connector, struct drm_atomic_state *state) { struct amdgpu_dm_connector *aconnector = to_amdgpu_dm_connector(connector); struct drm_dp_mst_topology_mgr *mst_mgr = &aconnector->mst_root->mst_mgr; struct drm_dp_mst_port *mst_port = aconnector->mst_output_port; return drm_dp_atomic_release_time_slots(state, mst_mgr, mst_port); } static const struct drm_connector_helper_funcs dm_dp_mst_connector_helper_funcs = { .get_modes = dm_dp_mst_get_modes, .mode_valid = amdgpu_dm_connector_mode_valid, .atomic_best_encoder = dm_mst_atomic_best_encoder, .detect_ctx = dm_dp_mst_detect, .atomic_check = dm_dp_mst_atomic_check, }; static void amdgpu_dm_encoder_destroy(struct drm_encoder *encoder) { drm_encoder_cleanup(encoder); } static const struct drm_encoder_funcs amdgpu_dm_encoder_funcs = { .destroy = amdgpu_dm_encoder_destroy, }; void dm_dp_create_fake_mst_encoders(struct amdgpu_device *adev) { struct drm_device *dev = adev_to_drm(adev); int i; for (i = 0; i < adev->dm.display_indexes_num; i++) { struct amdgpu_encoder *amdgpu_encoder = &adev->dm.mst_encoders[i]; struct drm_encoder *encoder = &amdgpu_encoder->base; encoder->possible_crtcs = amdgpu_dm_get_encoder_crtc_mask(adev); drm_encoder_init( dev, &amdgpu_encoder->base, &amdgpu_dm_encoder_funcs, DRM_MODE_ENCODER_DPMST, NULL); drm_encoder_helper_add(encoder, &amdgpu_dm_encoder_helper_funcs); } } static struct drm_connector * dm_dp_add_mst_connector(struct drm_dp_mst_topology_mgr *mgr, struct drm_dp_mst_port *port, const char *pathprop) { struct amdgpu_dm_connector *master = container_of(mgr, struct amdgpu_dm_connector, mst_mgr); struct drm_device *dev = master->base.dev; struct amdgpu_device *adev = drm_to_adev(dev); struct amdgpu_dm_connector *aconnector; struct drm_connector *connector; int i; aconnector = kzalloc(sizeof(*aconnector), GFP_KERNEL); if (!aconnector) return NULL; connector = &aconnector->base; aconnector->mst_output_port = port; aconnector->mst_root = master; amdgpu_dm_set_mst_status(&aconnector->mst_status, MST_PROBE, true); if (drm_connector_init( dev, connector, &dm_dp_mst_connector_funcs, DRM_MODE_CONNECTOR_DisplayPort)) { kfree(aconnector); return NULL; } drm_connector_helper_add(connector, &dm_dp_mst_connector_helper_funcs); amdgpu_dm_connector_init_helper( &adev->dm, aconnector, DRM_MODE_CONNECTOR_DisplayPort, master->dc_link, master->connector_id); for (i = 0; i < adev->dm.display_indexes_num; i++) { drm_connector_attach_encoder(&aconnector->base, &adev->dm.mst_encoders[i].base); } connector->max_bpc_property = master->base.max_bpc_property; if (connector->max_bpc_property) drm_connector_attach_max_bpc_property(connector, 8, 16); connector->vrr_capable_property = master->base.vrr_capable_property; if (connector->vrr_capable_property) drm_connector_attach_vrr_capable_property(connector); drm_object_attach_property( &connector->base, dev->mode_config.path_property, 0); drm_object_attach_property( &connector->base, dev->mode_config.tile_property, 0); drm_connector_set_path_property(connector, pathprop); /* * Initialize connector state before adding the connectror to drm and * framebuffer lists */ amdgpu_dm_connector_funcs_reset(connector); drm_dp_mst_get_port_malloc(port); return connector; } void dm_handle_mst_sideband_msg_ready_event( struct drm_dp_mst_topology_mgr *mgr, enum mst_msg_ready_type msg_rdy_type) { uint8_t esi[DP_PSR_ERROR_STATUS - DP_SINK_COUNT_ESI] = { 0 }; uint8_t dret; bool new_irq_handled = false; int dpcd_addr; uint8_t dpcd_bytes_to_read; const uint8_t max_process_count = 30; uint8_t process_count = 0; u8 retry; struct amdgpu_dm_connector *aconnector = container_of(mgr, struct amdgpu_dm_connector, mst_mgr); const struct dc_link_status *link_status = dc_link_get_status(aconnector->dc_link); if (link_status->dpcd_caps->dpcd_rev.raw < 0x12) { dpcd_bytes_to_read = DP_LANE0_1_STATUS - DP_SINK_COUNT; /* DPCD 0x200 - 0x201 for downstream IRQ */ dpcd_addr = DP_SINK_COUNT; } else { dpcd_bytes_to_read = DP_PSR_ERROR_STATUS - DP_SINK_COUNT_ESI; /* DPCD 0x2002 - 0x2005 for downstream IRQ */ dpcd_addr = DP_SINK_COUNT_ESI; } mutex_lock(&aconnector->handle_mst_msg_ready); while (process_count < max_process_count) { u8 ack[DP_PSR_ERROR_STATUS - DP_SINK_COUNT_ESI] = {}; process_count++; dret = drm_dp_dpcd_read( &aconnector->dm_dp_aux.aux, dpcd_addr, esi, dpcd_bytes_to_read); if (dret != dpcd_bytes_to_read) { DRM_DEBUG_KMS("DPCD read and acked number is not as expected!"); break; } DRM_DEBUG_DRIVER("ESI %02x %02x %02x\n", esi[0], esi[1], esi[2]); switch (msg_rdy_type) { case DOWN_REP_MSG_RDY_EVENT: /* Only handle DOWN_REP_MSG_RDY case*/ esi[1] &= DP_DOWN_REP_MSG_RDY; break; case UP_REQ_MSG_RDY_EVENT: /* Only handle UP_REQ_MSG_RDY case*/ esi[1] &= DP_UP_REQ_MSG_RDY; break; default: /* Handle both cases*/ esi[1] &= (DP_DOWN_REP_MSG_RDY | DP_UP_REQ_MSG_RDY); break; } if (!esi[1]) break; /* handle MST irq */ if (aconnector->mst_mgr.mst_state) drm_dp_mst_hpd_irq_handle_event(&aconnector->mst_mgr, esi, ack, &new_irq_handled); if (new_irq_handled) { /* ACK at DPCD to notify down stream */ for (retry = 0; retry < 3; retry++) { ssize_t wret; wret = drm_dp_dpcd_writeb(&aconnector->dm_dp_aux.aux, dpcd_addr + 1, ack[1]); if (wret == 1) break; } if (retry == 3) { DRM_ERROR("Failed to ack MST event.\n"); break; } drm_dp_mst_hpd_irq_send_new_request(&aconnector->mst_mgr); new_irq_handled = false; } else { break; } } mutex_unlock(&aconnector->handle_mst_msg_ready); if (process_count == max_process_count) DRM_DEBUG_DRIVER("Loop exceeded max iterations\n"); } static void dm_handle_mst_down_rep_msg_ready(struct drm_dp_mst_topology_mgr *mgr) { dm_handle_mst_sideband_msg_ready_event(mgr, DOWN_REP_MSG_RDY_EVENT); } static const struct drm_dp_mst_topology_cbs dm_mst_cbs = { .add_connector = dm_dp_add_mst_connector, .poll_hpd_irq = dm_handle_mst_down_rep_msg_ready, }; void amdgpu_dm_initialize_dp_connector(struct amdgpu_display_manager *dm, struct amdgpu_dm_connector *aconnector, int link_index) { struct dc_link_settings max_link_enc_cap = {0}; aconnector->dm_dp_aux.aux.name = kasprintf(GFP_KERNEL, "AMDGPU DM aux hw bus %d", link_index); aconnector->dm_dp_aux.aux.transfer = dm_dp_aux_transfer; aconnector->dm_dp_aux.aux.drm_dev = dm->ddev; aconnector->dm_dp_aux.ddc_service = aconnector->dc_link->ddc; drm_dp_aux_init(&aconnector->dm_dp_aux.aux); drm_dp_cec_register_connector(&aconnector->dm_dp_aux.aux, &aconnector->base); if (aconnector->base.connector_type == DRM_MODE_CONNECTOR_eDP) return; dc_link_dp_get_max_link_enc_cap(aconnector->dc_link, &max_link_enc_cap); aconnector->mst_mgr.cbs = &dm_mst_cbs; drm_dp_mst_topology_mgr_init(&aconnector->mst_mgr, adev_to_drm(dm->adev), &aconnector->dm_dp_aux.aux, 16, 4, aconnector->connector_id); drm_connector_attach_dp_subconnector_property(&aconnector->base); } int dm_mst_get_pbn_divider(struct dc_link *link) { if (!link) return 0; return dc_link_bandwidth_kbps(link, dc_link_get_link_cap(link)) / (8 * 1000 * 54); } struct dsc_mst_fairness_params { struct dc_crtc_timing *timing; struct dc_sink *sink; struct dc_dsc_bw_range bw_range; bool compression_possible; struct drm_dp_mst_port *port; enum dsc_clock_force_state clock_force_enable; uint32_t num_slices_h; uint32_t num_slices_v; uint32_t bpp_overwrite; struct amdgpu_dm_connector *aconnector; }; static uint16_t get_fec_overhead_multiplier(struct dc_link *dc_link) { u8 link_coding_cap; uint16_t fec_overhead_multiplier_x1000 = PBN_FEC_OVERHEAD_MULTIPLIER_8B_10B; link_coding_cap = dc_link_dp_mst_decide_link_encoding_format(dc_link); if (link_coding_cap == DP_128b_132b_ENCODING) fec_overhead_multiplier_x1000 = PBN_FEC_OVERHEAD_MULTIPLIER_128B_132B; return fec_overhead_multiplier_x1000; } static int kbps_to_peak_pbn(int kbps, uint16_t fec_overhead_multiplier_x1000) { u64 peak_kbps = kbps; peak_kbps *= 1006; peak_kbps *= fec_overhead_multiplier_x1000; peak_kbps = div_u64(peak_kbps, 1000 * 1000); return (int) DIV64_U64_ROUND_UP(peak_kbps * 64, (54 * 8 * 1000)); } static void set_dsc_configs_from_fairness_vars(struct dsc_mst_fairness_params *params, struct dsc_mst_fairness_vars *vars, int count, int k) { struct drm_connector *drm_connector; int i; struct dc_dsc_config_options dsc_options = {0}; for (i = 0; i < count; i++) { drm_connector = ¶ms[i].aconnector->base; dc_dsc_get_default_config_option(params[i].sink->ctx->dc, &dsc_options); dsc_options.max_target_bpp_limit_override_x16 = drm_connector->display_info.max_dsc_bpp * 16; memset(¶ms[i].timing->dsc_cfg, 0, sizeof(params[i].timing->dsc_cfg)); if (vars[i + k].dsc_enabled && dc_dsc_compute_config( params[i].sink->ctx->dc->res_pool->dscs[0], ¶ms[i].sink->dsc_caps.dsc_dec_caps, &dsc_options, 0, params[i].timing, ¶ms[i].timing->dsc_cfg)) { params[i].timing->flags.DSC = 1; if (params[i].bpp_overwrite) params[i].timing->dsc_cfg.bits_per_pixel = params[i].bpp_overwrite; else params[i].timing->dsc_cfg.bits_per_pixel = vars[i + k].bpp_x16; if (params[i].num_slices_h) params[i].timing->dsc_cfg.num_slices_h = params[i].num_slices_h; if (params[i].num_slices_v) params[i].timing->dsc_cfg.num_slices_v = params[i].num_slices_v; } else { params[i].timing->flags.DSC = 0; } params[i].timing->dsc_cfg.mst_pbn = vars[i + k].pbn; } for (i = 0; i < count; i++) { if (params[i].sink) { if (params[i].sink->sink_signal != SIGNAL_TYPE_VIRTUAL && params[i].sink->sink_signal != SIGNAL_TYPE_NONE) DRM_DEBUG_DRIVER("%s i=%d dispname=%s\n", __func__, i, params[i].sink->edid_caps.display_name); } DRM_DEBUG_DRIVER("dsc=%d bits_per_pixel=%d pbn=%d\n", params[i].timing->flags.DSC, params[i].timing->dsc_cfg.bits_per_pixel, vars[i + k].pbn); } } static int bpp_x16_from_pbn(struct dsc_mst_fairness_params param, int pbn) { struct dc_dsc_config dsc_config; u64 kbps; struct drm_connector *drm_connector = ¶m.aconnector->base; struct dc_dsc_config_options dsc_options = {0}; dc_dsc_get_default_config_option(param.sink->ctx->dc, &dsc_options); dsc_options.max_target_bpp_limit_override_x16 = drm_connector->display_info.max_dsc_bpp * 16; kbps = div_u64((u64)pbn * 994 * 8 * 54, 64); dc_dsc_compute_config( param.sink->ctx->dc->res_pool->dscs[0], ¶m.sink->dsc_caps.dsc_dec_caps, &dsc_options, (int) kbps, param.timing, &dsc_config); return dsc_config.bits_per_pixel; } static int increase_dsc_bpp(struct drm_atomic_state *state, struct drm_dp_mst_topology_state *mst_state, struct dc_link *dc_link, struct dsc_mst_fairness_params *params, struct dsc_mst_fairness_vars *vars, int count, int k) { int i; bool bpp_increased[MAX_PIPES]; int initial_slack[MAX_PIPES]; int min_initial_slack; int next_index; int remaining_to_increase = 0; int link_timeslots_used; int fair_pbn_alloc; int ret = 0; uint16_t fec_overhead_multiplier_x1000 = get_fec_overhead_multiplier(dc_link); for (i = 0; i < count; i++) { if (vars[i + k].dsc_enabled) { initial_slack[i] = kbps_to_peak_pbn(params[i].bw_range.max_kbps, fec_overhead_multiplier_x1000) - vars[i + k].pbn; bpp_increased[i] = false; remaining_to_increase += 1; } else { initial_slack[i] = 0; bpp_increased[i] = true; } } while (remaining_to_increase) { next_index = -1; min_initial_slack = -1; for (i = 0; i < count; i++) { if (!bpp_increased[i]) { if (min_initial_slack == -1 || min_initial_slack > initial_slack[i]) { min_initial_slack = initial_slack[i]; next_index = i; } } } if (next_index == -1) break; link_timeslots_used = 0; for (i = 0; i < count; i++) link_timeslots_used += DIV_ROUND_UP(vars[i + k].pbn, mst_state->pbn_div); fair_pbn_alloc = (63 - link_timeslots_used) / remaining_to_increase * mst_state->pbn_div; if (initial_slack[next_index] > fair_pbn_alloc) { vars[next_index].pbn += fair_pbn_alloc; ret = drm_dp_atomic_find_time_slots(state, params[next_index].port->mgr, params[next_index].port, vars[next_index].pbn); if (ret < 0) return ret; ret = drm_dp_mst_atomic_check(state); if (ret == 0) { vars[next_index].bpp_x16 = bpp_x16_from_pbn(params[next_index], vars[next_index].pbn); } else { vars[next_index].pbn -= fair_pbn_alloc; ret = drm_dp_atomic_find_time_slots(state, params[next_index].port->mgr, params[next_index].port, vars[next_index].pbn); if (ret < 0) return ret; } } else { vars[next_index].pbn += initial_slack[next_index]; ret = drm_dp_atomic_find_time_slots(state, params[next_index].port->mgr, params[next_index].port, vars[next_index].pbn); if (ret < 0) return ret; ret = drm_dp_mst_atomic_check(state); if (ret == 0) { vars[next_index].bpp_x16 = params[next_index].bw_range.max_target_bpp_x16; } else { vars[next_index].pbn -= initial_slack[next_index]; ret = drm_dp_atomic_find_time_slots(state, params[next_index].port->mgr, params[next_index].port, vars[next_index].pbn); if (ret < 0) return ret; } } bpp_increased[next_index] = true; remaining_to_increase--; } return 0; } static int try_disable_dsc(struct drm_atomic_state *state, struct dc_link *dc_link, struct dsc_mst_fairness_params *params, struct dsc_mst_fairness_vars *vars, int count, int k) { int i; bool tried[MAX_PIPES]; int kbps_increase[MAX_PIPES]; int max_kbps_increase; int next_index; int remaining_to_try = 0; int ret; uint16_t fec_overhead_multiplier_x1000 = get_fec_overhead_multiplier(dc_link); for (i = 0; i < count; i++) { if (vars[i + k].dsc_enabled && vars[i + k].bpp_x16 == params[i].bw_range.max_target_bpp_x16 && params[i].clock_force_enable == DSC_CLK_FORCE_DEFAULT) { kbps_increase[i] = params[i].bw_range.stream_kbps - params[i].bw_range.max_kbps; tried[i] = false; remaining_to_try += 1; } else { kbps_increase[i] = 0; tried[i] = true; } } while (remaining_to_try) { next_index = -1; max_kbps_increase = -1; for (i = 0; i < count; i++) { if (!tried[i]) { if (max_kbps_increase == -1 || max_kbps_increase < kbps_increase[i]) { max_kbps_increase = kbps_increase[i]; next_index = i; } } } if (next_index == -1) break; vars[next_index].pbn = kbps_to_peak_pbn(params[next_index].bw_range.stream_kbps, fec_overhead_multiplier_x1000); ret = drm_dp_atomic_find_time_slots(state, params[next_index].port->mgr, params[next_index].port, vars[next_index].pbn); if (ret < 0) return ret; ret = drm_dp_mst_atomic_check(state); if (ret == 0) { vars[next_index].dsc_enabled = false; vars[next_index].bpp_x16 = 0; } else { vars[next_index].pbn = kbps_to_peak_pbn(params[next_index].bw_range.max_kbps, fec_overhead_multiplier_x1000); ret = drm_dp_atomic_find_time_slots(state, params[next_index].port->mgr, params[next_index].port, vars[next_index].pbn); if (ret < 0) return ret; } tried[next_index] = true; remaining_to_try--; } return 0; } static int compute_mst_dsc_configs_for_link(struct drm_atomic_state *state, struct dc_state *dc_state, struct dc_link *dc_link, struct dsc_mst_fairness_vars *vars, struct drm_dp_mst_topology_mgr *mgr, int *link_vars_start_index) { struct dc_stream_state *stream; struct dsc_mst_fairness_params params[MAX_PIPES]; struct amdgpu_dm_connector *aconnector; struct drm_dp_mst_topology_state *mst_state = drm_atomic_get_mst_topology_state(state, mgr); int count = 0; int i, k, ret; bool debugfs_overwrite = false; uint16_t fec_overhead_multiplier_x1000 = get_fec_overhead_multiplier(dc_link); memset(params, 0, sizeof(params)); if (IS_ERR(mst_state)) return PTR_ERR(mst_state); /* Set up params */ for (i = 0; i < dc_state->stream_count; i++) { struct dc_dsc_policy dsc_policy = {0}; stream = dc_state->streams[i]; if (stream->link != dc_link) continue; aconnector = (struct amdgpu_dm_connector *)stream->dm_stream_context; if (!aconnector) continue; if (!aconnector->mst_output_port) continue; stream->timing.flags.DSC = 0; params[count].timing = &stream->timing; params[count].sink = stream->sink; params[count].aconnector = aconnector; params[count].port = aconnector->mst_output_port; params[count].clock_force_enable = aconnector->dsc_settings.dsc_force_enable; if (params[count].clock_force_enable == DSC_CLK_FORCE_ENABLE) debugfs_overwrite = true; params[count].num_slices_h = aconnector->dsc_settings.dsc_num_slices_h; params[count].num_slices_v = aconnector->dsc_settings.dsc_num_slices_v; params[count].bpp_overwrite = aconnector->dsc_settings.dsc_bits_per_pixel; params[count].compression_possible = stream->sink->dsc_caps.dsc_dec_caps.is_dsc_supported; dc_dsc_get_policy_for_timing(params[count].timing, 0, &dsc_policy); if (!dc_dsc_compute_bandwidth_range( stream->sink->ctx->dc->res_pool->dscs[0], stream->sink->ctx->dc->debug.dsc_min_slice_height_override, dsc_policy.min_target_bpp * 16, dsc_policy.max_target_bpp * 16, &stream->sink->dsc_caps.dsc_dec_caps, &stream->timing, ¶ms[count].bw_range)) params[count].bw_range.stream_kbps = dc_bandwidth_in_kbps_from_timing(&stream->timing); count++; } if (count == 0) { ASSERT(0); return 0; } /* k is start index of vars for current phy link used by mst hub */ k = *link_vars_start_index; /* set vars start index for next mst hub phy link */ *link_vars_start_index += count; /* Try no compression */ for (i = 0; i < count; i++) { vars[i + k].aconnector = params[i].aconnector; vars[i + k].pbn = kbps_to_peak_pbn(params[i].bw_range.stream_kbps, fec_overhead_multiplier_x1000); vars[i + k].dsc_enabled = false; vars[i + k].bpp_x16 = 0; ret = drm_dp_atomic_find_time_slots(state, params[i].port->mgr, params[i].port, vars[i + k].pbn); if (ret < 0) return ret; } ret = drm_dp_mst_atomic_check(state); if (ret == 0 && !debugfs_overwrite) { set_dsc_configs_from_fairness_vars(params, vars, count, k); return 0; } else if (ret != -ENOSPC) { return ret; } /* Try max compression */ for (i = 0; i < count; i++) { if (params[i].compression_possible && params[i].clock_force_enable != DSC_CLK_FORCE_DISABLE) { vars[i + k].pbn = kbps_to_peak_pbn(params[i].bw_range.min_kbps, fec_overhead_multiplier_x1000); vars[i + k].dsc_enabled = true; vars[i + k].bpp_x16 = params[i].bw_range.min_target_bpp_x16; ret = drm_dp_atomic_find_time_slots(state, params[i].port->mgr, params[i].port, vars[i + k].pbn); if (ret < 0) return ret; } else { vars[i + k].pbn = kbps_to_peak_pbn(params[i].bw_range.stream_kbps, fec_overhead_multiplier_x1000); vars[i + k].dsc_enabled = false; vars[i + k].bpp_x16 = 0; ret = drm_dp_atomic_find_time_slots(state, params[i].port->mgr, params[i].port, vars[i + k].pbn); if (ret < 0) return ret; } } ret = drm_dp_mst_atomic_check(state); if (ret != 0) return ret; /* Optimize degree of compression */ ret = increase_dsc_bpp(state, mst_state, dc_link, params, vars, count, k); if (ret < 0) return ret; ret = try_disable_dsc(state, dc_link, params, vars, count, k); if (ret < 0) return ret; set_dsc_configs_from_fairness_vars(params, vars, count, k); return 0; } static bool is_dsc_need_re_compute( struct drm_atomic_state *state, struct dc_state *dc_state, struct dc_link *dc_link) { int i, j; bool is_dsc_need_re_compute = false; struct amdgpu_dm_connector *stream_on_link[MAX_PIPES]; int new_stream_on_link_num = 0; struct amdgpu_dm_connector *aconnector; struct dc_stream_state *stream; const struct dc *dc = dc_link->dc; /* only check phy used by dsc mst branch */ if (dc_link->type != dc_connection_mst_branch) return false; if (!(dc_link->dpcd_caps.dsc_caps.dsc_basic_caps.fields.dsc_support.DSC_SUPPORT || dc_link->dpcd_caps.dsc_caps.dsc_basic_caps.fields.dsc_support.DSC_PASSTHROUGH_SUPPORT)) return false; for (i = 0; i < MAX_PIPES; i++) stream_on_link[i] = NULL; /* check if there is mode change in new request */ for (i = 0; i < dc_state->stream_count; i++) { struct drm_crtc_state *new_crtc_state; struct drm_connector_state *new_conn_state; stream = dc_state->streams[i]; if (!stream) continue; /* check if stream using the same link for mst */ if (stream->link != dc_link) continue; aconnector = (struct amdgpu_dm_connector *) stream->dm_stream_context; if (!aconnector) continue; stream_on_link[new_stream_on_link_num] = aconnector; new_stream_on_link_num++; new_conn_state = drm_atomic_get_new_connector_state(state, &aconnector->base); if (!new_conn_state) continue; if (IS_ERR(new_conn_state)) continue; if (!new_conn_state->crtc) continue; new_crtc_state = drm_atomic_get_new_crtc_state(state, new_conn_state->crtc); if (!new_crtc_state) continue; if (IS_ERR(new_crtc_state)) continue; if (new_crtc_state->enable && new_crtc_state->active) { if (new_crtc_state->mode_changed || new_crtc_state->active_changed || new_crtc_state->connectors_changed) return true; } } /* check current_state if there stream on link but it is not in * new request state */ for (i = 0; i < dc->current_state->stream_count; i++) { stream = dc->current_state->streams[i]; /* only check stream on the mst hub */ if (stream->link != dc_link) continue; aconnector = (struct amdgpu_dm_connector *)stream->dm_stream_context; if (!aconnector) continue; for (j = 0; j < new_stream_on_link_num; j++) { if (stream_on_link[j]) { if (aconnector == stream_on_link[j]) break; } } if (j == new_stream_on_link_num) { /* not in new state */ is_dsc_need_re_compute = true; break; } } return is_dsc_need_re_compute; } int compute_mst_dsc_configs_for_state(struct drm_atomic_state *state, struct dc_state *dc_state, struct dsc_mst_fairness_vars *vars) { int i, j; struct dc_stream_state *stream; bool computed_streams[MAX_PIPES]; struct amdgpu_dm_connector *aconnector; struct drm_dp_mst_topology_mgr *mst_mgr; struct resource_pool *res_pool; int link_vars_start_index = 0; int ret = 0; for (i = 0; i < dc_state->stream_count; i++) computed_streams[i] = false; for (i = 0; i < dc_state->stream_count; i++) { stream = dc_state->streams[i]; res_pool = stream->ctx->dc->res_pool; if (stream->signal != SIGNAL_TYPE_DISPLAY_PORT_MST) continue; aconnector = (struct amdgpu_dm_connector *)stream->dm_stream_context; if (!aconnector || !aconnector->dc_sink || !aconnector->mst_output_port) continue; if (!aconnector->dc_sink->dsc_caps.dsc_dec_caps.is_dsc_supported) continue; if (computed_streams[i]) continue; if (!res_pool->funcs->remove_stream_from_ctx || res_pool->funcs->remove_stream_from_ctx(stream->ctx->dc, dc_state, stream) != DC_OK) return -EINVAL; if (!is_dsc_need_re_compute(state, dc_state, stream->link)) continue; mst_mgr = aconnector->mst_output_port->mgr; ret = compute_mst_dsc_configs_for_link(state, dc_state, stream->link, vars, mst_mgr, &link_vars_start_index); if (ret != 0) return ret; for (j = 0; j < dc_state->stream_count; j++) { if (dc_state->streams[j]->link == stream->link) computed_streams[j] = true; } } for (i = 0; i < dc_state->stream_count; i++) { stream = dc_state->streams[i]; if (stream->timing.flags.DSC == 1) if (dc_stream_add_dsc_to_resource(stream->ctx->dc, dc_state, stream) != DC_OK) return -EINVAL; } return ret; } static int pre_compute_mst_dsc_configs_for_state(struct drm_atomic_state *state, struct dc_state *dc_state, struct dsc_mst_fairness_vars *vars) { int i, j; struct dc_stream_state *stream; bool computed_streams[MAX_PIPES]; struct amdgpu_dm_connector *aconnector; struct drm_dp_mst_topology_mgr *mst_mgr; int link_vars_start_index = 0; int ret = 0; for (i = 0; i < dc_state->stream_count; i++) computed_streams[i] = false; for (i = 0; i < dc_state->stream_count; i++) { stream = dc_state->streams[i]; if (stream->signal != SIGNAL_TYPE_DISPLAY_PORT_MST) continue; aconnector = (struct amdgpu_dm_connector *)stream->dm_stream_context; if (!aconnector || !aconnector->dc_sink || !aconnector->mst_output_port) continue; if (!aconnector->dc_sink->dsc_caps.dsc_dec_caps.is_dsc_supported) continue; if (computed_streams[i]) continue; if (!is_dsc_need_re_compute(state, dc_state, stream->link)) continue; mst_mgr = aconnector->mst_output_port->mgr; ret = compute_mst_dsc_configs_for_link(state, dc_state, stream->link, vars, mst_mgr, &link_vars_start_index); if (ret != 0) return ret; for (j = 0; j < dc_state->stream_count; j++) { if (dc_state->streams[j]->link == stream->link) computed_streams[j] = true; } } return ret; } static int find_crtc_index_in_state_by_stream(struct drm_atomic_state *state, struct dc_stream_state *stream) { int i; struct drm_crtc *crtc; struct drm_crtc_state *new_state, *old_state; for_each_oldnew_crtc_in_state(state, crtc, old_state, new_state, i) { struct dm_crtc_state *dm_state = to_dm_crtc_state(new_state); if (dm_state->stream == stream) return i; } return -1; } static bool is_link_to_dschub(struct dc_link *dc_link) { union dpcd_dsc_basic_capabilities *dsc_caps = &dc_link->dpcd_caps.dsc_caps.dsc_basic_caps; /* only check phy used by dsc mst branch */ if (dc_link->type != dc_connection_mst_branch) return false; if (!(dsc_caps->fields.dsc_support.DSC_SUPPORT || dsc_caps->fields.dsc_support.DSC_PASSTHROUGH_SUPPORT)) return false; return true; } static bool is_dsc_precompute_needed(struct drm_atomic_state *state) { int i; struct drm_crtc *crtc; struct drm_crtc_state *old_crtc_state, *new_crtc_state; bool ret = false; for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { struct dm_crtc_state *dm_crtc_state = to_dm_crtc_state(new_crtc_state); if (!amdgpu_dm_find_first_crtc_matching_connector(state, crtc)) { ret = false; break; } if (dm_crtc_state->stream && dm_crtc_state->stream->link) if (is_link_to_dschub(dm_crtc_state->stream->link)) ret = true; } return ret; } int pre_validate_dsc(struct drm_atomic_state *state, struct dm_atomic_state **dm_state_ptr, struct dsc_mst_fairness_vars *vars) { int i; struct dm_atomic_state *dm_state; struct dc_state *local_dc_state = NULL; int ret = 0; if (!is_dsc_precompute_needed(state)) { DRM_INFO_ONCE("DSC precompute is not needed.\n"); return 0; } ret = dm_atomic_get_state(state, dm_state_ptr); if (ret != 0) { DRM_INFO_ONCE("dm_atomic_get_state() failed\n"); return ret; } dm_state = *dm_state_ptr; /* * create local vailable for dc_state. copy content of streams of dm_state->context * to local variable. make sure stream pointer of local variable not the same as stream * from dm_state->context. */ local_dc_state = kmemdup(dm_state->context, sizeof(struct dc_state), GFP_KERNEL); if (!local_dc_state) return -ENOMEM; for (i = 0; i < local_dc_state->stream_count; i++) { struct dc_stream_state *stream = dm_state->context->streams[i]; int ind = find_crtc_index_in_state_by_stream(state, stream); if (ind >= 0) { struct amdgpu_dm_connector *aconnector; struct drm_connector_state *drm_new_conn_state; struct dm_connector_state *dm_new_conn_state; struct dm_crtc_state *dm_old_crtc_state; aconnector = amdgpu_dm_find_first_crtc_matching_connector(state, state->crtcs[ind].ptr); drm_new_conn_state = drm_atomic_get_new_connector_state(state, &aconnector->base); dm_new_conn_state = to_dm_connector_state(drm_new_conn_state); dm_old_crtc_state = to_dm_crtc_state(state->crtcs[ind].old_state); local_dc_state->streams[i] = create_validate_stream_for_sink(aconnector, &state->crtcs[ind].new_state->mode, dm_new_conn_state, dm_old_crtc_state->stream); if (local_dc_state->streams[i] == NULL) { ret = -EINVAL; break; } } } if (ret != 0) goto clean_exit; ret = pre_compute_mst_dsc_configs_for_state(state, local_dc_state, vars); if (ret != 0) { DRM_INFO_ONCE("pre_compute_mst_dsc_configs_for_state() failed\n"); ret = -EINVAL; goto clean_exit; } /* * compare local_streams -> timing with dm_state->context, * if the same set crtc_state->mode-change = 0; */ for (i = 0; i < local_dc_state->stream_count; i++) { struct dc_stream_state *stream = dm_state->context->streams[i]; if (local_dc_state->streams[i] && dc_is_timing_changed(stream, local_dc_state->streams[i])) { DRM_INFO_ONCE("crtc[%d] needs mode_changed\n", i); } else { int ind = find_crtc_index_in_state_by_stream(state, stream); if (ind >= 0) state->crtcs[ind].new_state->mode_changed = 0; } } clean_exit: for (i = 0; i < local_dc_state->stream_count; i++) { struct dc_stream_state *stream = dm_state->context->streams[i]; if (local_dc_state->streams[i] != stream) dc_stream_release(local_dc_state->streams[i]); } kfree(local_dc_state); return ret; } static unsigned int kbps_from_pbn(unsigned int pbn) { unsigned int kbps = pbn; kbps *= (1000000 / PEAK_FACTOR_X1000); kbps *= 8; kbps *= 54; kbps /= 64; return kbps; } static bool is_dsc_common_config_possible(struct dc_stream_state *stream, struct dc_dsc_bw_range *bw_range) { struct dc_dsc_policy dsc_policy = {0}; dc_dsc_get_policy_for_timing(&stream->timing, 0, &dsc_policy); dc_dsc_compute_bandwidth_range(stream->sink->ctx->dc->res_pool->dscs[0], stream->sink->ctx->dc->debug.dsc_min_slice_height_override, dsc_policy.min_target_bpp * 16, dsc_policy.max_target_bpp * 16, &stream->sink->dsc_caps.dsc_dec_caps, &stream->timing, bw_range); return bw_range->max_target_bpp_x16 && bw_range->min_target_bpp_x16; } enum dc_status dm_dp_mst_is_port_support_mode( struct amdgpu_dm_connector *aconnector, struct dc_stream_state *stream) { int bpp, pbn, branch_max_throughput_mps = 0; struct dc_link_settings cur_link_settings; unsigned int end_to_end_bw_in_kbps = 0; unsigned int upper_link_bw_in_kbps = 0, down_link_bw_in_kbps = 0; unsigned int max_compressed_bw_in_kbps = 0; struct dc_dsc_bw_range bw_range = {0}; struct drm_dp_mst_topology_mgr *mst_mgr; /* * check if the mode could be supported if DSC pass-through is supported * AND check if there enough bandwidth available to support the mode * with DSC enabled. */ if (is_dsc_common_config_possible(stream, &bw_range) && aconnector->mst_output_port->passthrough_aux) { mst_mgr = aconnector->mst_output_port->mgr; mutex_lock(&mst_mgr->lock); cur_link_settings = stream->link->verified_link_cap; upper_link_bw_in_kbps = dc_link_bandwidth_kbps(aconnector->dc_link, &cur_link_settings ); down_link_bw_in_kbps = kbps_from_pbn(aconnector->mst_output_port->full_pbn); /* pick the bottleneck */ end_to_end_bw_in_kbps = min(upper_link_bw_in_kbps, down_link_bw_in_kbps); mutex_unlock(&mst_mgr->lock); /* * use the maximum dsc compression bandwidth as the required * bandwidth for the mode */ max_compressed_bw_in_kbps = bw_range.min_kbps; if (end_to_end_bw_in_kbps < max_compressed_bw_in_kbps) { DRM_DEBUG_DRIVER("Mode does not fit into DSC pass-through bandwidth validation\n"); return DC_FAIL_BANDWIDTH_VALIDATE; } } else { /* check if mode could be supported within full_pbn */ bpp = convert_dc_color_depth_into_bpc(stream->timing.display_color_depth) * 3; pbn = drm_dp_calc_pbn_mode(stream->timing.pix_clk_100hz / 10, bpp, false); if (pbn > aconnector->mst_output_port->full_pbn) return DC_FAIL_BANDWIDTH_VALIDATE; } /* check is mst dsc output bandwidth branch_overall_throughput_0_mps */ switch (stream->timing.pixel_encoding) { case PIXEL_ENCODING_RGB: case PIXEL_ENCODING_YCBCR444: branch_max_throughput_mps = aconnector->dc_sink->dsc_caps.dsc_dec_caps.branch_overall_throughput_0_mps; break; case PIXEL_ENCODING_YCBCR422: case PIXEL_ENCODING_YCBCR420: branch_max_throughput_mps = aconnector->dc_sink->dsc_caps.dsc_dec_caps.branch_overall_throughput_1_mps; break; default: break; } if (branch_max_throughput_mps != 0 && ((stream->timing.pix_clk_100hz / 10) > branch_max_throughput_mps * 1000)) return DC_FAIL_BANDWIDTH_VALIDATE; return DC_OK; }