/* * Copyright 2017 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ #include "dcn_calc_math.h" #define isNaN(number) ((number) != (number)) /* * NOTE: * This file is gcc-parseable HW gospel, coming straight from HW engineers. * * It doesn't adhere to Linux kernel style and sometimes will do things in odd * ways. Unless there is something clearly wrong with it the code should * remain as-is as it provides us with a guarantee from HW that it is correct. */ float dcn_bw_mod(const float arg1, const float arg2) { if (isNaN(arg1)) return arg2; if (isNaN(arg2)) return arg1; return arg1 - arg1 * ((int) (arg1 / arg2)); } float dcn_bw_min2(const float arg1, const float arg2) { if (isNaN(arg1)) return arg2; if (isNaN(arg2)) return arg1; return arg1 < arg2 ? arg1 : arg2; } unsigned int dcn_bw_max(const unsigned int arg1, const unsigned int arg2) { return arg1 > arg2 ? arg1 : arg2; } float dcn_bw_max2(const float arg1, const float arg2) { if (isNaN(arg1)) return arg2; if (isNaN(arg2)) return arg1; return arg1 > arg2 ? arg1 : arg2; } float dcn_bw_floor2(const float arg, const float significance) { if (significance == 0) return 0; return ((int) (arg / significance)) * significance; } float dcn_bw_floor(const float arg) { return ((int) (arg)); } float dcn_bw_ceil(const float arg) { float flr = dcn_bw_floor2(arg, 1); return flr + 0.00001 >= arg ? arg : flr + 1; } float dcn_bw_ceil2(const float arg, const float significance) { float flr = dcn_bw_floor2(arg, significance); if (significance == 0) return 0; return flr + 0.00001 >= arg ? arg : flr + significance; } float dcn_bw_max3(float v1, float v2, float v3) { return v3 > dcn_bw_max2(v1, v2) ? v3 : dcn_bw_max2(v1, v2); } float dcn_bw_max5(float v1, float v2, float v3, float v4, float v5) { return dcn_bw_max3(v1, v2, v3) > dcn_bw_max2(v4, v5) ? dcn_bw_max3(v1, v2, v3) : dcn_bw_max2(v4, v5); } float dcn_bw_pow(float a, float exp) { float temp; /*ASSERT(exp == (int)exp);*/ if ((int)exp == 0) return 1; temp = dcn_bw_pow(a, (int)(exp / 2)); if (((int)exp % 2) == 0) { return temp * temp; } else { if ((int)exp > 0) return a * temp * temp; else return (temp * temp) / a; } } double dcn_bw_fabs(double a) { if (a > 0) return (a); else return (-a); } float dcn_bw_log(float a, float b) { int * const exp_ptr = (int *)(&a); int x = *exp_ptr; const int log_2 = ((x >> 23) & 255) - 128; x &= ~(255 << 23); x += 127 << 23; *exp_ptr = x; a = ((-1.0f / 3) * a + 2) * a - 2.0f / 3; if (b > 2.00001 || b < 1.99999) return (a + log_2) / dcn_bw_log(b, 2); else return (a + log_2); }