// SPDX-License-Identifier: MIT /* * Copyright 2022 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ #include "dcn314_clk_mgr.h" #include "dccg.h" #include "clk_mgr_internal.h" // For dce12_get_dp_ref_freq_khz #include "dce100/dce_clk_mgr.h" // For dcn20_update_clocks_update_dpp_dto #include "dcn20/dcn20_clk_mgr.h" #include "reg_helper.h" #include "core_types.h" #include "dm_helpers.h" /* TODO: remove this include once we ported over remaining clk mgr functions*/ #include "dcn30/dcn30_clk_mgr.h" #include "dcn31/dcn31_clk_mgr.h" #include "dc_dmub_srv.h" #include "dc_link_dp.h" #include "dcn314_smu.h" #define MAX_INSTANCE 7 #define MAX_SEGMENT 8 struct IP_BASE_INSTANCE { unsigned int segment[MAX_SEGMENT]; }; struct IP_BASE { struct IP_BASE_INSTANCE instance[MAX_INSTANCE]; }; static const struct IP_BASE CLK_BASE = { { { { 0x00016C00, 0x02401800, 0, 0, 0, 0, 0, 0 } }, { { 0x00016E00, 0x02401C00, 0, 0, 0, 0, 0, 0 } }, { { 0x00017000, 0x02402000, 0, 0, 0, 0, 0, 0 } }, { { 0x00017200, 0x02402400, 0, 0, 0, 0, 0, 0 } }, { { 0x0001B000, 0x0242D800, 0, 0, 0, 0, 0, 0 } }, { { 0x0001B200, 0x0242DC00, 0, 0, 0, 0, 0, 0 } }, { { 0x0001B400, 0x0242E000, 0, 0, 0, 0, 0, 0 } } } }; #define regCLK1_CLK_PLL_REQ 0x0237 #define regCLK1_CLK_PLL_REQ_BASE_IDX 0 #define CLK1_CLK_PLL_REQ__FbMult_int__SHIFT 0x0 #define CLK1_CLK_PLL_REQ__PllSpineDiv__SHIFT 0xc #define CLK1_CLK_PLL_REQ__FbMult_frac__SHIFT 0x10 #define CLK1_CLK_PLL_REQ__FbMult_int_MASK 0x000001FFL #define CLK1_CLK_PLL_REQ__PllSpineDiv_MASK 0x0000F000L #define CLK1_CLK_PLL_REQ__FbMult_frac_MASK 0xFFFF0000L #define REG(reg_name) \ (CLK_BASE.instance[0].segment[reg ## reg_name ## _BASE_IDX] + reg ## reg_name) #define TO_CLK_MGR_DCN314(clk_mgr)\ container_of(clk_mgr, struct clk_mgr_dcn314, base) static int dcn314_get_active_display_cnt_wa( struct dc *dc, struct dc_state *context) { int i, display_count; bool tmds_present = false; display_count = 0; for (i = 0; i < context->stream_count; i++) { const struct dc_stream_state *stream = context->streams[i]; if (stream->signal == SIGNAL_TYPE_HDMI_TYPE_A || stream->signal == SIGNAL_TYPE_DVI_SINGLE_LINK || stream->signal == SIGNAL_TYPE_DVI_DUAL_LINK) tmds_present = true; } for (i = 0; i < dc->link_count; i++) { const struct dc_link *link = dc->links[i]; /* abusing the fact that the dig and phy are coupled to see if the phy is enabled */ if (link->link_enc && link->link_enc->funcs->is_dig_enabled && link->link_enc->funcs->is_dig_enabled(link->link_enc)) display_count++; } /* WA for hang on HDMI after display off back on*/ if (display_count == 0 && tmds_present) display_count = 1; return display_count; } static void dcn314_disable_otg_wa(struct clk_mgr *clk_mgr_base, bool disable) { struct dc *dc = clk_mgr_base->ctx->dc; int i; for (i = 0; i < dc->res_pool->pipe_count; ++i) { struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i]; if (pipe->top_pipe || pipe->prev_odm_pipe) continue; if (pipe->stream && (pipe->stream->dpms_off || pipe->plane_state == NULL || dc_is_virtual_signal(pipe->stream->signal))) { if (disable) pipe->stream_res.tg->funcs->immediate_disable_crtc(pipe->stream_res.tg); else pipe->stream_res.tg->funcs->enable_crtc(pipe->stream_res.tg); } } } void dcn314_update_clocks(struct clk_mgr *clk_mgr_base, struct dc_state *context, bool safe_to_lower) { union dmub_rb_cmd cmd; struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base); struct dc_clocks *new_clocks = &context->bw_ctx.bw.dcn.clk; struct dc *dc = clk_mgr_base->ctx->dc; int display_count; bool update_dppclk = false; bool update_dispclk = false; bool dpp_clock_lowered = false; if (dc->work_arounds.skip_clock_update) return; /* * if it is safe to lower, but we are already in the lower state, we don't have to do anything * also if safe to lower is false, we just go in the higher state */ if (safe_to_lower) { if (new_clocks->zstate_support != DCN_ZSTATE_SUPPORT_DISALLOW && new_clocks->zstate_support != clk_mgr_base->clks.zstate_support) { dcn314_smu_set_zstate_support(clk_mgr, new_clocks->zstate_support); dm_helpers_enable_periodic_detection(clk_mgr_base->ctx, true); clk_mgr_base->clks.zstate_support = new_clocks->zstate_support; } if (clk_mgr_base->clks.dtbclk_en && !new_clocks->dtbclk_en) { dcn314_smu_set_dtbclk(clk_mgr, false); clk_mgr_base->clks.dtbclk_en = new_clocks->dtbclk_en; } /* check that we're not already in lower */ if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_LOW_POWER) { display_count = dcn314_get_active_display_cnt_wa(dc, context); /* if we can go lower, go lower */ if (display_count == 0) { union display_idle_optimization_u idle_info = { 0 }; idle_info.idle_info.df_request_disabled = 1; idle_info.idle_info.phy_ref_clk_off = 1; idle_info.idle_info.s0i2_rdy = 1; dcn314_smu_set_display_idle_optimization(clk_mgr, idle_info.data); /* update power state */ clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_LOW_POWER; } } } else { if (new_clocks->zstate_support == DCN_ZSTATE_SUPPORT_DISALLOW && new_clocks->zstate_support != clk_mgr_base->clks.zstate_support) { dcn314_smu_set_zstate_support(clk_mgr, DCN_ZSTATE_SUPPORT_DISALLOW); dm_helpers_enable_periodic_detection(clk_mgr_base->ctx, false); clk_mgr_base->clks.zstate_support = new_clocks->zstate_support; } if (!clk_mgr_base->clks.dtbclk_en && new_clocks->dtbclk_en) { dcn314_smu_set_dtbclk(clk_mgr, true); clk_mgr_base->clks.dtbclk_en = new_clocks->dtbclk_en; } /* check that we're not already in D0 */ if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_MISSION_MODE) { union display_idle_optimization_u idle_info = { 0 }; dcn314_smu_set_display_idle_optimization(clk_mgr, idle_info.data); /* update power state */ clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_MISSION_MODE; } } if (should_set_clock(safe_to_lower, new_clocks->dcfclk_khz, clk_mgr_base->clks.dcfclk_khz)) { clk_mgr_base->clks.dcfclk_khz = new_clocks->dcfclk_khz; dcn314_smu_set_hard_min_dcfclk(clk_mgr, clk_mgr_base->clks.dcfclk_khz); } if (should_set_clock(safe_to_lower, new_clocks->dcfclk_deep_sleep_khz, clk_mgr_base->clks.dcfclk_deep_sleep_khz)) { clk_mgr_base->clks.dcfclk_deep_sleep_khz = new_clocks->dcfclk_deep_sleep_khz; dcn314_smu_set_min_deep_sleep_dcfclk(clk_mgr, clk_mgr_base->clks.dcfclk_deep_sleep_khz); } // workaround: Limit dppclk to 100Mhz to avoid lower eDP panel switch to plus 4K monitor underflow. if (!IS_DIAG_DC(dc->ctx->dce_environment)) { if (new_clocks->dppclk_khz < 100000) new_clocks->dppclk_khz = 100000; } if (should_set_clock(safe_to_lower, new_clocks->dppclk_khz, clk_mgr->base.clks.dppclk_khz)) { if (clk_mgr->base.clks.dppclk_khz > new_clocks->dppclk_khz) dpp_clock_lowered = true; clk_mgr_base->clks.dppclk_khz = new_clocks->dppclk_khz; update_dppclk = true; } if (should_set_clock(safe_to_lower, new_clocks->dispclk_khz, clk_mgr_base->clks.dispclk_khz)) { dcn314_disable_otg_wa(clk_mgr_base, true); clk_mgr_base->clks.dispclk_khz = new_clocks->dispclk_khz; dcn314_smu_set_dispclk(clk_mgr, clk_mgr_base->clks.dispclk_khz); dcn314_disable_otg_wa(clk_mgr_base, false); update_dispclk = true; } if (dpp_clock_lowered) { // increase per DPP DTO before lowering global dppclk dcn20_update_clocks_update_dpp_dto(clk_mgr, context, safe_to_lower); dcn314_smu_set_dppclk(clk_mgr, clk_mgr_base->clks.dppclk_khz); } else { // increase global DPPCLK before lowering per DPP DTO if (update_dppclk || update_dispclk) dcn314_smu_set_dppclk(clk_mgr, clk_mgr_base->clks.dppclk_khz); // always update dtos unless clock is lowered and not safe to lower if (new_clocks->dppclk_khz >= dc->current_state->bw_ctx.bw.dcn.clk.dppclk_khz) dcn20_update_clocks_update_dpp_dto(clk_mgr, context, safe_to_lower); } // notify DMCUB of latest clocks memset(&cmd, 0, sizeof(cmd)); cmd.notify_clocks.header.type = DMUB_CMD__CLK_MGR; cmd.notify_clocks.header.sub_type = DMUB_CMD__CLK_MGR_NOTIFY_CLOCKS; cmd.notify_clocks.clocks.dcfclk_khz = clk_mgr_base->clks.dcfclk_khz; cmd.notify_clocks.clocks.dcfclk_deep_sleep_khz = clk_mgr_base->clks.dcfclk_deep_sleep_khz; cmd.notify_clocks.clocks.dispclk_khz = clk_mgr_base->clks.dispclk_khz; cmd.notify_clocks.clocks.dppclk_khz = clk_mgr_base->clks.dppclk_khz; dc_dmub_srv_cmd_queue(dc->ctx->dmub_srv, &cmd); dc_dmub_srv_cmd_execute(dc->ctx->dmub_srv); dc_dmub_srv_wait_idle(dc->ctx->dmub_srv); } static int get_vco_frequency_from_reg(struct clk_mgr_internal *clk_mgr) { /* get FbMult value */ struct fixed31_32 pll_req; unsigned int fbmult_frac_val = 0; unsigned int fbmult_int_val = 0; /* * Register value of fbmult is in 8.16 format, we are converting to 314.32 * to leverage the fix point operations available in driver */ REG_GET(CLK1_CLK_PLL_REQ, FbMult_frac, &fbmult_frac_val); /* 16 bit fractional part*/ REG_GET(CLK1_CLK_PLL_REQ, FbMult_int, &fbmult_int_val); /* 8 bit integer part */ pll_req = dc_fixpt_from_int(fbmult_int_val); /* * since fractional part is only 16 bit in register definition but is 32 bit * in our fix point definiton, need to shift left by 16 to obtain correct value */ pll_req.value |= fbmult_frac_val << 16; /* multiply by REFCLK period */ pll_req = dc_fixpt_mul_int(pll_req, clk_mgr->dfs_ref_freq_khz); /* integer part is now VCO frequency in kHz */ return dc_fixpt_floor(pll_req); } static void dcn314_enable_pme_wa(struct clk_mgr *clk_mgr_base) { struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base); dcn314_smu_enable_pme_wa(clk_mgr); } bool dcn314_are_clock_states_equal(struct dc_clocks *a, struct dc_clocks *b) { if (a->dispclk_khz != b->dispclk_khz) return false; else if (a->dppclk_khz != b->dppclk_khz) return false; else if (a->dcfclk_khz != b->dcfclk_khz) return false; else if (a->dcfclk_deep_sleep_khz != b->dcfclk_deep_sleep_khz) return false; else if (a->zstate_support != b->zstate_support) return false; else if (a->dtbclk_en != b->dtbclk_en) return false; return true; } static void dcn314_dump_clk_registers(struct clk_state_registers_and_bypass *regs_and_bypass, struct clk_mgr *clk_mgr_base, struct clk_log_info *log_info) { return; } static struct clk_bw_params dcn314_bw_params = { .vram_type = Ddr4MemType, .num_channels = 1, .clk_table = { .num_entries = 4, }, }; static struct wm_table ddr5_wm_table = { .entries = { { .wm_inst = WM_A, .wm_type = WM_TYPE_PSTATE_CHG, .pstate_latency_us = 11.72, .sr_exit_time_us = 9, .sr_enter_plus_exit_time_us = 11, .valid = true, }, { .wm_inst = WM_B, .wm_type = WM_TYPE_PSTATE_CHG, .pstate_latency_us = 11.72, .sr_exit_time_us = 9, .sr_enter_plus_exit_time_us = 11, .valid = true, }, { .wm_inst = WM_C, .wm_type = WM_TYPE_PSTATE_CHG, .pstate_latency_us = 11.72, .sr_exit_time_us = 9, .sr_enter_plus_exit_time_us = 11, .valid = true, }, { .wm_inst = WM_D, .wm_type = WM_TYPE_PSTATE_CHG, .pstate_latency_us = 11.72, .sr_exit_time_us = 9, .sr_enter_plus_exit_time_us = 11, .valid = true, }, } }; static struct wm_table lpddr5_wm_table = { .entries = { { .wm_inst = WM_A, .wm_type = WM_TYPE_PSTATE_CHG, .pstate_latency_us = 11.65333, .sr_exit_time_us = 11.5, .sr_enter_plus_exit_time_us = 14.5, .valid = true, }, { .wm_inst = WM_B, .wm_type = WM_TYPE_PSTATE_CHG, .pstate_latency_us = 11.65333, .sr_exit_time_us = 11.5, .sr_enter_plus_exit_time_us = 14.5, .valid = true, }, { .wm_inst = WM_C, .wm_type = WM_TYPE_PSTATE_CHG, .pstate_latency_us = 11.65333, .sr_exit_time_us = 11.5, .sr_enter_plus_exit_time_us = 14.5, .valid = true, }, { .wm_inst = WM_D, .wm_type = WM_TYPE_PSTATE_CHG, .pstate_latency_us = 11.65333, .sr_exit_time_us = 11.5, .sr_enter_plus_exit_time_us = 14.5, .valid = true, }, } }; static DpmClocks314_t dummy_clocks; static struct dcn314_watermarks dummy_wms = { 0 }; static void dcn314_build_watermark_ranges(struct clk_bw_params *bw_params, struct dcn314_watermarks *table) { int i, num_valid_sets; num_valid_sets = 0; for (i = 0; i < WM_SET_COUNT; i++) { /* skip empty entries, the smu array has no holes*/ if (!bw_params->wm_table.entries[i].valid) continue; table->WatermarkRow[WM_DCFCLK][num_valid_sets].WmSetting = bw_params->wm_table.entries[i].wm_inst; table->WatermarkRow[WM_DCFCLK][num_valid_sets].WmType = bw_params->wm_table.entries[i].wm_type; /* We will not select WM based on fclk, so leave it as unconstrained */ table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinClock = 0; table->WatermarkRow[WM_DCFCLK][num_valid_sets].MaxClock = 0xFFFF; if (table->WatermarkRow[WM_DCFCLK][num_valid_sets].WmType == WM_TYPE_PSTATE_CHG) { if (i == 0) table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinMclk = 0; else { /* add 1 to make it non-overlapping with next lvl */ table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinMclk = bw_params->clk_table.entries[i - 1].dcfclk_mhz + 1; } table->WatermarkRow[WM_DCFCLK][num_valid_sets].MaxMclk = bw_params->clk_table.entries[i].dcfclk_mhz; } else { /* unconstrained for memory retraining */ table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinClock = 0; table->WatermarkRow[WM_DCFCLK][num_valid_sets].MaxClock = 0xFFFF; /* Modify previous watermark range to cover up to max */ table->WatermarkRow[WM_DCFCLK][num_valid_sets - 1].MaxClock = 0xFFFF; } num_valid_sets++; } ASSERT(num_valid_sets != 0); /* Must have at least one set of valid watermarks */ /* modify the min and max to make sure we cover the whole range*/ table->WatermarkRow[WM_DCFCLK][0].MinMclk = 0; table->WatermarkRow[WM_DCFCLK][0].MinClock = 0; table->WatermarkRow[WM_DCFCLK][num_valid_sets - 1].MaxMclk = 0xFFFF; table->WatermarkRow[WM_DCFCLK][num_valid_sets - 1].MaxClock = 0xFFFF; /* This is for writeback only, does not matter currently as no writeback support*/ table->WatermarkRow[WM_SOCCLK][0].WmSetting = WM_A; table->WatermarkRow[WM_SOCCLK][0].MinClock = 0; table->WatermarkRow[WM_SOCCLK][0].MaxClock = 0xFFFF; table->WatermarkRow[WM_SOCCLK][0].MinMclk = 0; table->WatermarkRow[WM_SOCCLK][0].MaxMclk = 0xFFFF; } static void dcn314_notify_wm_ranges(struct clk_mgr *clk_mgr_base) { struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base); struct clk_mgr_dcn314 *clk_mgr_dcn314 = TO_CLK_MGR_DCN314(clk_mgr); struct dcn314_watermarks *table = clk_mgr_dcn314->smu_wm_set.wm_set; if (!clk_mgr->smu_ver) return; if (!table || clk_mgr_dcn314->smu_wm_set.mc_address.quad_part == 0) return; memset(table, 0, sizeof(*table)); dcn314_build_watermark_ranges(clk_mgr_base->bw_params, table); dcn314_smu_set_dram_addr_high(clk_mgr, clk_mgr_dcn314->smu_wm_set.mc_address.high_part); dcn314_smu_set_dram_addr_low(clk_mgr, clk_mgr_dcn314->smu_wm_set.mc_address.low_part); dcn314_smu_transfer_wm_table_dram_2_smu(clk_mgr); } static void dcn314_get_dpm_table_from_smu(struct clk_mgr_internal *clk_mgr, struct dcn314_smu_dpm_clks *smu_dpm_clks) { DpmClocks314_t *table = smu_dpm_clks->dpm_clks; if (!clk_mgr->smu_ver) return; if (!table || smu_dpm_clks->mc_address.quad_part == 0) return; memset(table, 0, sizeof(*table)); dcn314_smu_set_dram_addr_high(clk_mgr, smu_dpm_clks->mc_address.high_part); dcn314_smu_set_dram_addr_low(clk_mgr, smu_dpm_clks->mc_address.low_part); dcn314_smu_transfer_dpm_table_smu_2_dram(clk_mgr); } static inline bool is_valid_clock_value(uint32_t clock_value) { return clock_value > 1 && clock_value < 100000; } static unsigned int convert_wck_ratio(uint8_t wck_ratio) { switch (wck_ratio) { case WCK_RATIO_1_2: return 2; case WCK_RATIO_1_4: return 4; default: break; } return 1; } static uint32_t find_max_clk_value(const uint32_t clocks[], uint32_t num_clocks) { uint32_t max = 0; int i; for (i = 0; i < num_clocks; ++i) { if (clocks[i] > max) max = clocks[i]; } return max; } static void dcn314_clk_mgr_helper_populate_bw_params(struct clk_mgr_internal *clk_mgr, struct integrated_info *bios_info, const DpmClocks314_t *clock_table) { struct clk_bw_params *bw_params = clk_mgr->base.bw_params; struct clk_limit_table_entry def_max = bw_params->clk_table.entries[bw_params->clk_table.num_entries - 1]; uint32_t max_pstate = 0, max_fclk = 0, min_pstate = 0, max_dispclk = 0, max_dppclk = 0; int i; /* Find highest valid fclk pstate */ for (i = 0; i < clock_table->NumDfPstatesEnabled; i++) { if (is_valid_clock_value(clock_table->DfPstateTable[i].FClk) && clock_table->DfPstateTable[i].FClk > max_fclk) { max_fclk = clock_table->DfPstateTable[i].FClk; max_pstate = i; } } /* We expect the table to contain at least one valid fclk entry. */ ASSERT(is_valid_clock_value(max_fclk)); /* Dispclk and dppclk can be max at any voltage, same number of levels for both */ if (clock_table->NumDispClkLevelsEnabled <= NUM_DISPCLK_DPM_LEVELS && clock_table->NumDispClkLevelsEnabled <= NUM_DPPCLK_DPM_LEVELS) { max_dispclk = find_max_clk_value(clock_table->DispClocks, clock_table->NumDispClkLevelsEnabled); max_dppclk = find_max_clk_value(clock_table->DppClocks, clock_table->NumDispClkLevelsEnabled); } else { /* Invalid number of entries in the table from PMFW. */ ASSERT(0); } /* Base the clock table on dcfclk, need at least one entry regardless of pmfw table */ for (i = 0; i < clock_table->NumDcfClkLevelsEnabled; i++) { uint32_t min_fclk = clock_table->DfPstateTable[0].FClk; int j; for (j = 1; j < clock_table->NumDfPstatesEnabled; j++) { if (is_valid_clock_value(clock_table->DfPstateTable[j].FClk) && clock_table->DfPstateTable[j].FClk < min_fclk && clock_table->DfPstateTable[j].Voltage <= clock_table->SocVoltage[i]) { min_fclk = clock_table->DfPstateTable[j].FClk; min_pstate = j; } } /* First search defaults for the clocks we don't read using closest lower or equal default dcfclk */ for (j = bw_params->clk_table.num_entries - 1; j > 0; j--) if (bw_params->clk_table.entries[j].dcfclk_mhz <= clock_table->DcfClocks[i]) break; bw_params->clk_table.entries[i].phyclk_mhz = bw_params->clk_table.entries[j].phyclk_mhz; bw_params->clk_table.entries[i].phyclk_d18_mhz = bw_params->clk_table.entries[j].phyclk_d18_mhz; bw_params->clk_table.entries[i].dtbclk_mhz = bw_params->clk_table.entries[j].dtbclk_mhz; /* Now update clocks we do read */ bw_params->clk_table.entries[i].fclk_mhz = min_fclk; bw_params->clk_table.entries[i].memclk_mhz = clock_table->DfPstateTable[min_pstate].MemClk; bw_params->clk_table.entries[i].voltage = clock_table->DfPstateTable[min_pstate].Voltage; bw_params->clk_table.entries[i].dcfclk_mhz = clock_table->DcfClocks[i]; bw_params->clk_table.entries[i].socclk_mhz = clock_table->SocClocks[i]; bw_params->clk_table.entries[i].dispclk_mhz = max_dispclk; bw_params->clk_table.entries[i].dppclk_mhz = max_dppclk; bw_params->clk_table.entries[i].wck_ratio = convert_wck_ratio( clock_table->DfPstateTable[min_pstate].WckRatio); }; /* Make sure to include at least one entry at highest pstate */ if (max_pstate != min_pstate || i == 0) { if (i > MAX_NUM_DPM_LVL - 1) i = MAX_NUM_DPM_LVL - 1; bw_params->clk_table.entries[i].fclk_mhz = max_fclk; bw_params->clk_table.entries[i].memclk_mhz = clock_table->DfPstateTable[max_pstate].MemClk; bw_params->clk_table.entries[i].voltage = clock_table->DfPstateTable[max_pstate].Voltage; bw_params->clk_table.entries[i].dcfclk_mhz = find_max_clk_value(clock_table->DcfClocks, NUM_DCFCLK_DPM_LEVELS); bw_params->clk_table.entries[i].socclk_mhz = find_max_clk_value(clock_table->SocClocks, NUM_SOCCLK_DPM_LEVELS); bw_params->clk_table.entries[i].dispclk_mhz = max_dispclk; bw_params->clk_table.entries[i].dppclk_mhz = max_dppclk; bw_params->clk_table.entries[i].wck_ratio = convert_wck_ratio( clock_table->DfPstateTable[max_pstate].WckRatio); i++; } bw_params->clk_table.num_entries = i--; /* Make sure all highest clocks are included*/ bw_params->clk_table.entries[i].socclk_mhz = find_max_clk_value(clock_table->SocClocks, NUM_SOCCLK_DPM_LEVELS); bw_params->clk_table.entries[i].dispclk_mhz = find_max_clk_value(clock_table->DispClocks, NUM_DISPCLK_DPM_LEVELS); bw_params->clk_table.entries[i].dppclk_mhz = find_max_clk_value(clock_table->DppClocks, NUM_DPPCLK_DPM_LEVELS); ASSERT(clock_table->DcfClocks[i] == find_max_clk_value(clock_table->DcfClocks, NUM_DCFCLK_DPM_LEVELS)); bw_params->clk_table.entries[i].phyclk_mhz = def_max.phyclk_mhz; bw_params->clk_table.entries[i].phyclk_d18_mhz = def_max.phyclk_d18_mhz; bw_params->clk_table.entries[i].dtbclk_mhz = def_max.dtbclk_mhz; /* * Set any 0 clocks to max default setting. Not an issue for * power since we aren't doing switching in such case anyway */ for (i = 0; i < bw_params->clk_table.num_entries; i++) { if (!bw_params->clk_table.entries[i].fclk_mhz) { bw_params->clk_table.entries[i].fclk_mhz = def_max.fclk_mhz; bw_params->clk_table.entries[i].memclk_mhz = def_max.memclk_mhz; bw_params->clk_table.entries[i].voltage = def_max.voltage; } if (!bw_params->clk_table.entries[i].dcfclk_mhz) bw_params->clk_table.entries[i].dcfclk_mhz = def_max.dcfclk_mhz; if (!bw_params->clk_table.entries[i].socclk_mhz) bw_params->clk_table.entries[i].socclk_mhz = def_max.socclk_mhz; if (!bw_params->clk_table.entries[i].dispclk_mhz) bw_params->clk_table.entries[i].dispclk_mhz = def_max.dispclk_mhz; if (!bw_params->clk_table.entries[i].dppclk_mhz) bw_params->clk_table.entries[i].dppclk_mhz = def_max.dppclk_mhz; if (!bw_params->clk_table.entries[i].phyclk_mhz) bw_params->clk_table.entries[i].phyclk_mhz = def_max.phyclk_mhz; if (!bw_params->clk_table.entries[i].phyclk_d18_mhz) bw_params->clk_table.entries[i].phyclk_d18_mhz = def_max.phyclk_d18_mhz; if (!bw_params->clk_table.entries[i].dtbclk_mhz) bw_params->clk_table.entries[i].dtbclk_mhz = def_max.dtbclk_mhz; } ASSERT(bw_params->clk_table.entries[i-1].dcfclk_mhz); bw_params->vram_type = bios_info->memory_type; bw_params->num_channels = bios_info->ma_channel_number ? bios_info->ma_channel_number : 4; for (i = 0; i < WM_SET_COUNT; i++) { bw_params->wm_table.entries[i].wm_inst = i; if (i >= bw_params->clk_table.num_entries) { bw_params->wm_table.entries[i].valid = false; continue; } bw_params->wm_table.entries[i].wm_type = WM_TYPE_PSTATE_CHG; bw_params->wm_table.entries[i].valid = true; } } static struct clk_mgr_funcs dcn314_funcs = { .get_dp_ref_clk_frequency = dce12_get_dp_ref_freq_khz, .get_dtb_ref_clk_frequency = dcn31_get_dtb_ref_freq_khz, .update_clocks = dcn314_update_clocks, .init_clocks = dcn31_init_clocks, .enable_pme_wa = dcn314_enable_pme_wa, .are_clock_states_equal = dcn314_are_clock_states_equal, .notify_wm_ranges = dcn314_notify_wm_ranges }; extern struct clk_mgr_funcs dcn3_fpga_funcs; void dcn314_clk_mgr_construct( struct dc_context *ctx, struct clk_mgr_dcn314 *clk_mgr, struct pp_smu_funcs *pp_smu, struct dccg *dccg) { struct dcn314_smu_dpm_clks smu_dpm_clks = { 0 }; clk_mgr->base.base.ctx = ctx; clk_mgr->base.base.funcs = &dcn314_funcs; clk_mgr->base.pp_smu = pp_smu; clk_mgr->base.dccg = dccg; clk_mgr->base.dfs_bypass_disp_clk = 0; clk_mgr->base.dprefclk_ss_percentage = 0; clk_mgr->base.dprefclk_ss_divider = 1000; clk_mgr->base.ss_on_dprefclk = false; clk_mgr->base.dfs_ref_freq_khz = 48000; clk_mgr->smu_wm_set.wm_set = (struct dcn314_watermarks *)dm_helpers_allocate_gpu_mem( clk_mgr->base.base.ctx, DC_MEM_ALLOC_TYPE_FRAME_BUFFER, sizeof(struct dcn314_watermarks), &clk_mgr->smu_wm_set.mc_address.quad_part); if (!clk_mgr->smu_wm_set.wm_set) { clk_mgr->smu_wm_set.wm_set = &dummy_wms; clk_mgr->smu_wm_set.mc_address.quad_part = 0; } ASSERT(clk_mgr->smu_wm_set.wm_set); smu_dpm_clks.dpm_clks = (DpmClocks314_t *)dm_helpers_allocate_gpu_mem( clk_mgr->base.base.ctx, DC_MEM_ALLOC_TYPE_FRAME_BUFFER, sizeof(DpmClocks314_t), &smu_dpm_clks.mc_address.quad_part); if (smu_dpm_clks.dpm_clks == NULL) { smu_dpm_clks.dpm_clks = &dummy_clocks; smu_dpm_clks.mc_address.quad_part = 0; } ASSERT(smu_dpm_clks.dpm_clks); if (IS_FPGA_MAXIMUS_DC(ctx->dce_environment)) { clk_mgr->base.base.funcs = &dcn3_fpga_funcs; } else { struct clk_log_info log_info = {0}; clk_mgr->base.smu_ver = dcn314_smu_get_smu_version(&clk_mgr->base); if (clk_mgr->base.smu_ver) clk_mgr->base.smu_present = true; /* TODO: Check we get what we expect during bringup */ clk_mgr->base.base.dentist_vco_freq_khz = get_vco_frequency_from_reg(&clk_mgr->base); if (ctx->dc_bios->integrated_info->memory_type == LpDdr5MemType) dcn314_bw_params.wm_table = lpddr5_wm_table; else dcn314_bw_params.wm_table = ddr5_wm_table; /* Saved clocks configured at boot for debug purposes */ dcn314_dump_clk_registers(&clk_mgr->base.base.boot_snapshot, &clk_mgr->base.base, &log_info); } clk_mgr->base.base.dprefclk_khz = 600000; clk_mgr->base.base.clks.ref_dtbclk_khz = 600000; dce_clock_read_ss_info(&clk_mgr->base); /*if bios enabled SS, driver needs to adjust dtb clock, only enable with correct bios*/ //clk_mgr->base.dccg->ref_dtbclk_khz = dce_adjust_dp_ref_freq_for_ss(clk_mgr_internal, clk_mgr->base.base.dprefclk_khz); clk_mgr->base.base.bw_params = &dcn314_bw_params; if (clk_mgr->base.base.ctx->dc->debug.pstate_enabled) { dcn314_get_dpm_table_from_smu(&clk_mgr->base, &smu_dpm_clks); if (ctx->dc_bios && ctx->dc_bios->integrated_info && ctx->dc->config.use_default_clock_table == false) { dcn314_clk_mgr_helper_populate_bw_params( &clk_mgr->base, ctx->dc_bios->integrated_info, smu_dpm_clks.dpm_clks); } } if (smu_dpm_clks.dpm_clks && smu_dpm_clks.mc_address.quad_part != 0) dm_helpers_free_gpu_mem(clk_mgr->base.base.ctx, DC_MEM_ALLOC_TYPE_FRAME_BUFFER, smu_dpm_clks.dpm_clks); } void dcn314_clk_mgr_destroy(struct clk_mgr_internal *clk_mgr_int) { struct clk_mgr_dcn314 *clk_mgr = TO_CLK_MGR_DCN314(clk_mgr_int); if (clk_mgr->smu_wm_set.wm_set && clk_mgr->smu_wm_set.mc_address.quad_part != 0) dm_helpers_free_gpu_mem(clk_mgr_int->base.ctx, DC_MEM_ALLOC_TYPE_FRAME_BUFFER, clk_mgr->smu_wm_set.wm_set); }