/* * Copyright 2016 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ #include #include "dm_services.h" #include "dc.h" #include "resource.h" #include "include/irq_service_interface.h" #include "dcn20/dcn20_resource.h" #include "dcn10/dcn10_hubp.h" #include "dcn10/dcn10_ipp.h" #include "dcn20_hubbub.h" #include "dcn20_mpc.h" #include "dcn20_hubp.h" #include "irq/dcn20/irq_service_dcn20.h" #include "dcn20_dpp.h" #include "dcn20_optc.h" #include "dcn20_hwseq.h" #include "dce110/dce110_hw_sequencer.h" #include "dcn10/dcn10_resource.h" #include "dcn20_opp.h" #ifdef CONFIG_DRM_AMD_DC_DSC_SUPPORT #include "dcn20_dsc.h" #endif #include "dcn20_link_encoder.h" #include "dcn20_stream_encoder.h" #include "dce/dce_clock_source.h" #include "dce/dce_audio.h" #include "dce/dce_hwseq.h" #include "virtual/virtual_stream_encoder.h" #include "dce110/dce110_resource.h" #include "dml/display_mode_vba.h" #include "dcn20_dccg.h" #include "dcn20_vmid.h" #include "navi10_ip_offset.h" #include "dcn/dcn_2_0_0_offset.h" #include "dcn/dcn_2_0_0_sh_mask.h" #include "nbio/nbio_2_3_offset.h" #include "dcn20/dcn20_dwb.h" #include "dcn20/dcn20_mmhubbub.h" #include "mmhub/mmhub_2_0_0_offset.h" #include "mmhub/mmhub_2_0_0_sh_mask.h" #include "reg_helper.h" #include "dce/dce_abm.h" #include "dce/dce_dmcu.h" #include "dce/dce_aux.h" #include "dce/dce_i2c.h" #include "vm_helper.h" #include "amdgpu_socbb.h" /* NV12 SOC BB is currently in FW, mark SW bounding box invalid. */ #define SOC_BOUNDING_BOX_VALID false #define DC_LOGGER_INIT(logger) struct _vcs_dpi_ip_params_st dcn2_0_ip = { .odm_capable = 1, .gpuvm_enable = 0, .hostvm_enable = 0, .gpuvm_max_page_table_levels = 4, .hostvm_max_page_table_levels = 4, .hostvm_cached_page_table_levels = 0, .pte_group_size_bytes = 2048, #ifdef CONFIG_DRM_AMD_DC_DSC_SUPPORT .num_dsc = 6, #else .num_dsc = 0, #endif .rob_buffer_size_kbytes = 168, .det_buffer_size_kbytes = 164, .dpte_buffer_size_in_pte_reqs_luma = 84, .pde_proc_buffer_size_64k_reqs = 48, .dpp_output_buffer_pixels = 2560, .opp_output_buffer_lines = 1, .pixel_chunk_size_kbytes = 8, .pte_chunk_size_kbytes = 2, .meta_chunk_size_kbytes = 2, .writeback_chunk_size_kbytes = 2, .line_buffer_size_bits = 789504, .is_line_buffer_bpp_fixed = 0, .line_buffer_fixed_bpp = 0, .dcc_supported = true, .max_line_buffer_lines = 12, .writeback_luma_buffer_size_kbytes = 12, .writeback_chroma_buffer_size_kbytes = 8, .writeback_chroma_line_buffer_width_pixels = 4, .writeback_max_hscl_ratio = 1, .writeback_max_vscl_ratio = 1, .writeback_min_hscl_ratio = 1, .writeback_min_vscl_ratio = 1, .writeback_max_hscl_taps = 12, .writeback_max_vscl_taps = 12, .writeback_line_buffer_luma_buffer_size = 0, .writeback_line_buffer_chroma_buffer_size = 14643, .cursor_buffer_size = 8, .cursor_chunk_size = 2, .max_num_otg = 6, .max_num_dpp = 6, .max_num_wb = 1, .max_dchub_pscl_bw_pix_per_clk = 4, .max_pscl_lb_bw_pix_per_clk = 2, .max_lb_vscl_bw_pix_per_clk = 4, .max_vscl_hscl_bw_pix_per_clk = 4, .max_hscl_ratio = 8, .max_vscl_ratio = 8, .hscl_mults = 4, .vscl_mults = 4, .max_hscl_taps = 8, .max_vscl_taps = 8, .dispclk_ramp_margin_percent = 1, .underscan_factor = 1.10, .min_vblank_lines = 32, // .dppclk_delay_subtotal = 77, // .dppclk_delay_scl_lb_only = 16, .dppclk_delay_scl = 50, .dppclk_delay_cnvc_formatter = 8, .dppclk_delay_cnvc_cursor = 6, .dispclk_delay_subtotal = 87, // .dcfclk_cstate_latency = 10, // SRExitTime .max_inter_dcn_tile_repeaters = 8, .xfc_supported = true, .xfc_fill_bw_overhead_percent = 10.0, .xfc_fill_constant_bytes = 0, }; struct _vcs_dpi_soc_bounding_box_st dcn2_0_soc = { /* Defaults that get patched on driver load from firmware. */ .clock_limits = { { .state = 0, .dcfclk_mhz = 560.0, .fabricclk_mhz = 560.0, .dispclk_mhz = 513.0, .dppclk_mhz = 513.0, .phyclk_mhz = 540.0, .socclk_mhz = 560.0, .dscclk_mhz = 171.0, .dram_speed_mts = 8960.0, }, { .state = 1, .dcfclk_mhz = 694.0, .fabricclk_mhz = 694.0, .dispclk_mhz = 642.0, .dppclk_mhz = 642.0, .phyclk_mhz = 600.0, .socclk_mhz = 694.0, .dscclk_mhz = 214.0, .dram_speed_mts = 11104.0, }, { .state = 2, .dcfclk_mhz = 875.0, .fabricclk_mhz = 875.0, .dispclk_mhz = 734.0, .dppclk_mhz = 734.0, .phyclk_mhz = 810.0, .socclk_mhz = 875.0, .dscclk_mhz = 245.0, .dram_speed_mts = 14000.0, }, { .state = 3, .dcfclk_mhz = 1000.0, .fabricclk_mhz = 1000.0, .dispclk_mhz = 1100.0, .dppclk_mhz = 1100.0, .phyclk_mhz = 810.0, .socclk_mhz = 1000.0, .dscclk_mhz = 367.0, .dram_speed_mts = 16000.0, }, { .state = 4, .dcfclk_mhz = 1200.0, .fabricclk_mhz = 1200.0, .dispclk_mhz = 1284.0, .dppclk_mhz = 1284.0, .phyclk_mhz = 810.0, .socclk_mhz = 1200.0, .dscclk_mhz = 428.0, .dram_speed_mts = 16000.0, }, /*Extra state, no dispclk ramping*/ { .state = 5, .dcfclk_mhz = 1200.0, .fabricclk_mhz = 1200.0, .dispclk_mhz = 1284.0, .dppclk_mhz = 1284.0, .phyclk_mhz = 810.0, .socclk_mhz = 1200.0, .dscclk_mhz = 428.0, .dram_speed_mts = 16000.0, }, }, .num_states = 5, .sr_exit_time_us = 8.6, .sr_enter_plus_exit_time_us = 10.9, .urgent_latency_us = 4.0, .urgent_latency_pixel_data_only_us = 4.0, .urgent_latency_pixel_mixed_with_vm_data_us = 4.0, .urgent_latency_vm_data_only_us = 4.0, .urgent_out_of_order_return_per_channel_pixel_only_bytes = 4096, .urgent_out_of_order_return_per_channel_pixel_and_vm_bytes = 4096, .urgent_out_of_order_return_per_channel_vm_only_bytes = 4096, .pct_ideal_dram_sdp_bw_after_urgent_pixel_only = 40.0, .pct_ideal_dram_sdp_bw_after_urgent_pixel_and_vm = 40.0, .pct_ideal_dram_sdp_bw_after_urgent_vm_only = 40.0, .max_avg_sdp_bw_use_normal_percent = 40.0, .max_avg_dram_bw_use_normal_percent = 40.0, .writeback_latency_us = 12.0, .ideal_dram_bw_after_urgent_percent = 40.0, .max_request_size_bytes = 256, .dram_channel_width_bytes = 2, .fabric_datapath_to_dcn_data_return_bytes = 64, .dcn_downspread_percent = 0.5, .downspread_percent = 0.38, .dram_page_open_time_ns = 50.0, .dram_rw_turnaround_time_ns = 17.5, .dram_return_buffer_per_channel_bytes = 8192, .round_trip_ping_latency_dcfclk_cycles = 131, .urgent_out_of_order_return_per_channel_bytes = 256, .channel_interleave_bytes = 256, .num_banks = 8, .num_chans = 16, .vmm_page_size_bytes = 4096, .dram_clock_change_latency_us = 404.0, .dummy_pstate_latency_us = 5.0, .writeback_dram_clock_change_latency_us = 23.0, .return_bus_width_bytes = 64, .dispclk_dppclk_vco_speed_mhz = 3850, .xfc_bus_transport_time_us = 20, .xfc_xbuf_latency_tolerance_us = 4, .use_urgent_burst_bw = 0 }; struct _vcs_dpi_soc_bounding_box_st dcn2_0_nv12_soc = { 0 }; #ifndef mmDP0_DP_DPHY_INTERNAL_CTRL #define mmDP0_DP_DPHY_INTERNAL_CTRL 0x210f #define mmDP0_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2 #define mmDP1_DP_DPHY_INTERNAL_CTRL 0x220f #define mmDP1_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2 #define mmDP2_DP_DPHY_INTERNAL_CTRL 0x230f #define mmDP2_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2 #define mmDP3_DP_DPHY_INTERNAL_CTRL 0x240f #define mmDP3_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2 #define mmDP4_DP_DPHY_INTERNAL_CTRL 0x250f #define mmDP4_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2 #define mmDP5_DP_DPHY_INTERNAL_CTRL 0x260f #define mmDP5_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2 #define mmDP6_DP_DPHY_INTERNAL_CTRL 0x270f #define mmDP6_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2 #endif enum dcn20_clk_src_array_id { DCN20_CLK_SRC_PLL0, DCN20_CLK_SRC_PLL1, DCN20_CLK_SRC_PLL2, DCN20_CLK_SRC_PLL3, DCN20_CLK_SRC_PLL4, DCN20_CLK_SRC_PLL5, DCN20_CLK_SRC_TOTAL }; /* begin ********************* * macros to expend register list macro defined in HW object header file */ /* DCN */ /* TODO awful hack. fixup dcn20_dwb.h */ #undef BASE_INNER #define BASE_INNER(seg) DCN_BASE__INST0_SEG ## seg #define BASE(seg) BASE_INNER(seg) #define SR(reg_name)\ .reg_name = BASE(mm ## reg_name ## _BASE_IDX) + \ mm ## reg_name #define SRI(reg_name, block, id)\ .reg_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ mm ## block ## id ## _ ## reg_name #define SRIR(var_name, reg_name, block, id)\ .var_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ mm ## block ## id ## _ ## reg_name #define SRII(reg_name, block, id)\ .reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ mm ## block ## id ## _ ## reg_name #define DCCG_SRII(reg_name, block, id)\ .block ## _ ## reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ mm ## block ## id ## _ ## reg_name /* NBIO */ #define NBIO_BASE_INNER(seg) \ NBIO_BASE__INST0_SEG ## seg #define NBIO_BASE(seg) \ NBIO_BASE_INNER(seg) #define NBIO_SR(reg_name)\ .reg_name = NBIO_BASE(mm ## reg_name ## _BASE_IDX) + \ mm ## reg_name /* MMHUB */ #define MMHUB_BASE_INNER(seg) \ MMHUB_BASE__INST0_SEG ## seg #define MMHUB_BASE(seg) \ MMHUB_BASE_INNER(seg) #define MMHUB_SR(reg_name)\ .reg_name = MMHUB_BASE(mmMM ## reg_name ## _BASE_IDX) + \ mmMM ## reg_name static const struct bios_registers bios_regs = { NBIO_SR(BIOS_SCRATCH_3), NBIO_SR(BIOS_SCRATCH_6) }; #define clk_src_regs(index, pllid)\ [index] = {\ CS_COMMON_REG_LIST_DCN2_0(index, pllid),\ } static const struct dce110_clk_src_regs clk_src_regs[] = { clk_src_regs(0, A), clk_src_regs(1, B), clk_src_regs(2, C), clk_src_regs(3, D), clk_src_regs(4, E), clk_src_regs(5, F) }; static const struct dce110_clk_src_shift cs_shift = { CS_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT) }; static const struct dce110_clk_src_mask cs_mask = { CS_COMMON_MASK_SH_LIST_DCN2_0(_MASK) }; static const struct dce_dmcu_registers dmcu_regs = { DMCU_DCN10_REG_LIST() }; static const struct dce_dmcu_shift dmcu_shift = { DMCU_MASK_SH_LIST_DCN10(__SHIFT) }; static const struct dce_dmcu_mask dmcu_mask = { DMCU_MASK_SH_LIST_DCN10(_MASK) }; static const struct dce_abm_registers abm_regs = { ABM_DCN20_REG_LIST() }; static const struct dce_abm_shift abm_shift = { ABM_MASK_SH_LIST_DCN20(__SHIFT) }; static const struct dce_abm_mask abm_mask = { ABM_MASK_SH_LIST_DCN20(_MASK) }; #define audio_regs(id)\ [id] = {\ AUD_COMMON_REG_LIST(id)\ } static const struct dce_audio_registers audio_regs[] = { audio_regs(0), audio_regs(1), audio_regs(2), audio_regs(3), audio_regs(4), audio_regs(5), audio_regs(6), }; #define DCE120_AUD_COMMON_MASK_SH_LIST(mask_sh)\ SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_INDEX, AZALIA_ENDPOINT_REG_INDEX, mask_sh),\ SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_DATA, AZALIA_ENDPOINT_REG_DATA, mask_sh),\ AUD_COMMON_MASK_SH_LIST_BASE(mask_sh) static const struct dce_audio_shift audio_shift = { DCE120_AUD_COMMON_MASK_SH_LIST(__SHIFT) }; static const struct dce_audio_mask audio_mask = { DCE120_AUD_COMMON_MASK_SH_LIST(_MASK) }; #define stream_enc_regs(id)\ [id] = {\ SE_DCN2_REG_LIST(id)\ } static const struct dcn10_stream_enc_registers stream_enc_regs[] = { stream_enc_regs(0), stream_enc_regs(1), stream_enc_regs(2), stream_enc_regs(3), stream_enc_regs(4), stream_enc_regs(5), }; static const struct dcn10_stream_encoder_shift se_shift = { SE_COMMON_MASK_SH_LIST_DCN20(__SHIFT) }; static const struct dcn10_stream_encoder_mask se_mask = { SE_COMMON_MASK_SH_LIST_DCN20(_MASK) }; #define aux_regs(id)\ [id] = {\ DCN2_AUX_REG_LIST(id)\ } static const struct dcn10_link_enc_aux_registers link_enc_aux_regs[] = { aux_regs(0), aux_regs(1), aux_regs(2), aux_regs(3), aux_regs(4), aux_regs(5) }; #define hpd_regs(id)\ [id] = {\ HPD_REG_LIST(id)\ } static const struct dcn10_link_enc_hpd_registers link_enc_hpd_regs[] = { hpd_regs(0), hpd_regs(1), hpd_regs(2), hpd_regs(3), hpd_regs(4), hpd_regs(5) }; #define link_regs(id, phyid)\ [id] = {\ LE_DCN10_REG_LIST(id), \ UNIPHY_DCN2_REG_LIST(phyid), \ SRI(DP_DPHY_INTERNAL_CTRL, DP, id) \ } static const struct dcn10_link_enc_registers link_enc_regs[] = { link_regs(0, A), link_regs(1, B), link_regs(2, C), link_regs(3, D), link_regs(4, E), link_regs(5, F) }; static const struct dcn10_link_enc_shift le_shift = { LINK_ENCODER_MASK_SH_LIST_DCN20(__SHIFT) }; static const struct dcn10_link_enc_mask le_mask = { LINK_ENCODER_MASK_SH_LIST_DCN20(_MASK) }; #define ipp_regs(id)\ [id] = {\ IPP_REG_LIST_DCN20(id),\ } static const struct dcn10_ipp_registers ipp_regs[] = { ipp_regs(0), ipp_regs(1), ipp_regs(2), ipp_regs(3), ipp_regs(4), ipp_regs(5), }; static const struct dcn10_ipp_shift ipp_shift = { IPP_MASK_SH_LIST_DCN20(__SHIFT) }; static const struct dcn10_ipp_mask ipp_mask = { IPP_MASK_SH_LIST_DCN20(_MASK), }; #define opp_regs(id)\ [id] = {\ OPP_REG_LIST_DCN20(id),\ } static const struct dcn20_opp_registers opp_regs[] = { opp_regs(0), opp_regs(1), opp_regs(2), opp_regs(3), opp_regs(4), opp_regs(5), }; static const struct dcn20_opp_shift opp_shift = { OPP_MASK_SH_LIST_DCN20(__SHIFT) }; static const struct dcn20_opp_mask opp_mask = { OPP_MASK_SH_LIST_DCN20(_MASK) }; #define aux_engine_regs(id)\ [id] = {\ AUX_COMMON_REG_LIST0(id), \ .AUXN_IMPCAL = 0, \ .AUXP_IMPCAL = 0, \ .AUX_RESET_MASK = DP_AUX0_AUX_CONTROL__AUX_RESET_MASK, \ } static const struct dce110_aux_registers aux_engine_regs[] = { aux_engine_regs(0), aux_engine_regs(1), aux_engine_regs(2), aux_engine_regs(3), aux_engine_regs(4), aux_engine_regs(5) }; #define tf_regs(id)\ [id] = {\ TF_REG_LIST_DCN20(id),\ } static const struct dcn2_dpp_registers tf_regs[] = { tf_regs(0), tf_regs(1), tf_regs(2), tf_regs(3), tf_regs(4), tf_regs(5), }; static const struct dcn2_dpp_shift tf_shift = { TF_REG_LIST_SH_MASK_DCN20(__SHIFT) }; static const struct dcn2_dpp_mask tf_mask = { TF_REG_LIST_SH_MASK_DCN20(_MASK) }; #define dwbc_regs_dcn2(id)\ [id] = {\ DWBC_COMMON_REG_LIST_DCN2_0(id),\ } static const struct dcn20_dwbc_registers dwbc20_regs[] = { dwbc_regs_dcn2(0), }; static const struct dcn20_dwbc_shift dwbc20_shift = { DWBC_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT) }; static const struct dcn20_dwbc_mask dwbc20_mask = { DWBC_COMMON_MASK_SH_LIST_DCN2_0(_MASK) }; #define mcif_wb_regs_dcn2(id)\ [id] = {\ MCIF_WB_COMMON_REG_LIST_DCN2_0(id),\ } static const struct dcn20_mmhubbub_registers mcif_wb20_regs[] = { mcif_wb_regs_dcn2(0), }; static const struct dcn20_mmhubbub_shift mcif_wb20_shift = { MCIF_WB_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT) }; static const struct dcn20_mmhubbub_mask mcif_wb20_mask = { MCIF_WB_COMMON_MASK_SH_LIST_DCN2_0(_MASK) }; static const struct dcn20_mpc_registers mpc_regs = { MPC_REG_LIST_DCN2_0(0), MPC_REG_LIST_DCN2_0(1), MPC_REG_LIST_DCN2_0(2), MPC_REG_LIST_DCN2_0(3), MPC_REG_LIST_DCN2_0(4), MPC_REG_LIST_DCN2_0(5), MPC_OUT_MUX_REG_LIST_DCN2_0(0), MPC_OUT_MUX_REG_LIST_DCN2_0(1), MPC_OUT_MUX_REG_LIST_DCN2_0(2), MPC_OUT_MUX_REG_LIST_DCN2_0(3), MPC_OUT_MUX_REG_LIST_DCN2_0(4), MPC_OUT_MUX_REG_LIST_DCN2_0(5), }; static const struct dcn20_mpc_shift mpc_shift = { MPC_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT) }; static const struct dcn20_mpc_mask mpc_mask = { MPC_COMMON_MASK_SH_LIST_DCN2_0(_MASK) }; #define tg_regs(id)\ [id] = {TG_COMMON_REG_LIST_DCN2_0(id)} static const struct dcn_optc_registers tg_regs[] = { tg_regs(0), tg_regs(1), tg_regs(2), tg_regs(3), tg_regs(4), tg_regs(5) }; static const struct dcn_optc_shift tg_shift = { TG_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT) }; static const struct dcn_optc_mask tg_mask = { TG_COMMON_MASK_SH_LIST_DCN2_0(_MASK) }; #define hubp_regs(id)\ [id] = {\ HUBP_REG_LIST_DCN20(id)\ } static const struct dcn_hubp2_registers hubp_regs[] = { hubp_regs(0), hubp_regs(1), hubp_regs(2), hubp_regs(3), hubp_regs(4), hubp_regs(5) }; static const struct dcn_hubp2_shift hubp_shift = { HUBP_MASK_SH_LIST_DCN20(__SHIFT) }; static const struct dcn_hubp2_mask hubp_mask = { HUBP_MASK_SH_LIST_DCN20(_MASK) }; static const struct dcn_hubbub_registers hubbub_reg = { HUBBUB_REG_LIST_DCN20(0) }; static const struct dcn_hubbub_shift hubbub_shift = { HUBBUB_MASK_SH_LIST_DCN20(__SHIFT) }; static const struct dcn_hubbub_mask hubbub_mask = { HUBBUB_MASK_SH_LIST_DCN20(_MASK) }; #define vmid_regs(id)\ [id] = {\ DCN20_VMID_REG_LIST(id)\ } static const struct dcn_vmid_registers vmid_regs[] = { vmid_regs(0), vmid_regs(1), vmid_regs(2), vmid_regs(3), vmid_regs(4), vmid_regs(5), vmid_regs(6), vmid_regs(7), vmid_regs(8), vmid_regs(9), vmid_regs(10), vmid_regs(11), vmid_regs(12), vmid_regs(13), vmid_regs(14), vmid_regs(15) }; static const struct dcn20_vmid_shift vmid_shifts = { DCN20_VMID_MASK_SH_LIST(__SHIFT) }; static const struct dcn20_vmid_mask vmid_masks = { DCN20_VMID_MASK_SH_LIST(_MASK) }; #ifdef CONFIG_DRM_AMD_DC_DSC_SUPPORT #define dsc_regsDCN20(id)\ [id] = {\ DSC_REG_LIST_DCN20(id)\ } static const struct dcn20_dsc_registers dsc_regs[] = { dsc_regsDCN20(0), dsc_regsDCN20(1), dsc_regsDCN20(2), dsc_regsDCN20(3), dsc_regsDCN20(4), dsc_regsDCN20(5) }; static const struct dcn20_dsc_shift dsc_shift = { DSC_REG_LIST_SH_MASK_DCN20(__SHIFT) }; static const struct dcn20_dsc_mask dsc_mask = { DSC_REG_LIST_SH_MASK_DCN20(_MASK) }; #endif static const struct dccg_registers dccg_regs = { DCCG_REG_LIST_DCN2() }; static const struct dccg_shift dccg_shift = { DCCG_MASK_SH_LIST_DCN2(__SHIFT) }; static const struct dccg_mask dccg_mask = { DCCG_MASK_SH_LIST_DCN2(_MASK) }; static const struct resource_caps res_cap_nv10 = { .num_timing_generator = 6, .num_opp = 6, .num_video_plane = 6, .num_audio = 7, .num_stream_encoder = 6, .num_pll = 6, .num_dwb = 1, .num_ddc = 6, .num_vmid = 16, #ifdef CONFIG_DRM_AMD_DC_DSC_SUPPORT .num_dsc = 6, #endif }; static const struct dc_plane_cap plane_cap = { .type = DC_PLANE_TYPE_DCN_UNIVERSAL, .blends_with_above = true, .blends_with_below = true, .per_pixel_alpha = true, .pixel_format_support = { .argb8888 = true, .nv12 = true, .fp16 = true }, .max_upscale_factor = { .argb8888 = 16000, .nv12 = 16000, .fp16 = 1 }, .max_downscale_factor = { .argb8888 = 250, .nv12 = 250, .fp16 = 1 } }; static const struct resource_caps res_cap_nv14 = { .num_timing_generator = 5, .num_opp = 5, .num_video_plane = 5, .num_audio = 6, .num_stream_encoder = 5, .num_pll = 5, .num_dwb = 0, .num_ddc = 5, }; static const struct dc_debug_options debug_defaults_drv = { .disable_dmcu = true, .force_abm_enable = false, .timing_trace = false, .clock_trace = true, .disable_pplib_clock_request = true, .pipe_split_policy = MPC_SPLIT_DYNAMIC, .force_single_disp_pipe_split = true, .disable_dcc = DCC_ENABLE, .vsr_support = true, .performance_trace = false, .max_downscale_src_width = 5120,/*upto 5K*/ .disable_pplib_wm_range = false, .scl_reset_length10 = true, .sanity_checks = false, .disable_tri_buf = true, .underflow_assert_delay_us = 0xFFFFFFFF, }; static const struct dc_debug_options debug_defaults_diags = { .disable_dmcu = true, .force_abm_enable = false, .timing_trace = true, .clock_trace = true, .disable_dpp_power_gate = true, .disable_hubp_power_gate = true, .disable_clock_gate = true, .disable_pplib_clock_request = true, .disable_pplib_wm_range = true, .disable_stutter = true, .scl_reset_length10 = true, .underflow_assert_delay_us = 0xFFFFFFFF, }; void dcn20_dpp_destroy(struct dpp **dpp) { kfree(TO_DCN20_DPP(*dpp)); *dpp = NULL; } struct dpp *dcn20_dpp_create( struct dc_context *ctx, uint32_t inst) { struct dcn20_dpp *dpp = kzalloc(sizeof(struct dcn20_dpp), GFP_KERNEL); if (!dpp) return NULL; if (dpp2_construct(dpp, ctx, inst, &tf_regs[inst], &tf_shift, &tf_mask)) return &dpp->base; BREAK_TO_DEBUGGER(); kfree(dpp); return NULL; } struct input_pixel_processor *dcn20_ipp_create( struct dc_context *ctx, uint32_t inst) { struct dcn10_ipp *ipp = kzalloc(sizeof(struct dcn10_ipp), GFP_KERNEL); if (!ipp) { BREAK_TO_DEBUGGER(); return NULL; } dcn20_ipp_construct(ipp, ctx, inst, &ipp_regs[inst], &ipp_shift, &ipp_mask); return &ipp->base; } struct output_pixel_processor *dcn20_opp_create( struct dc_context *ctx, uint32_t inst) { struct dcn20_opp *opp = kzalloc(sizeof(struct dcn20_opp), GFP_KERNEL); if (!opp) { BREAK_TO_DEBUGGER(); return NULL; } dcn20_opp_construct(opp, ctx, inst, &opp_regs[inst], &opp_shift, &opp_mask); return &opp->base; } struct dce_aux *dcn20_aux_engine_create( struct dc_context *ctx, uint32_t inst) { struct aux_engine_dce110 *aux_engine = kzalloc(sizeof(struct aux_engine_dce110), GFP_KERNEL); if (!aux_engine) return NULL; dce110_aux_engine_construct(aux_engine, ctx, inst, SW_AUX_TIMEOUT_PERIOD_MULTIPLIER * AUX_TIMEOUT_PERIOD, &aux_engine_regs[inst]); return &aux_engine->base; } #define i2c_inst_regs(id) { I2C_HW_ENGINE_COMMON_REG_LIST(id) } static const struct dce_i2c_registers i2c_hw_regs[] = { i2c_inst_regs(1), i2c_inst_regs(2), i2c_inst_regs(3), i2c_inst_regs(4), i2c_inst_regs(5), i2c_inst_regs(6), }; static const struct dce_i2c_shift i2c_shifts = { I2C_COMMON_MASK_SH_LIST_DCN2(__SHIFT) }; static const struct dce_i2c_mask i2c_masks = { I2C_COMMON_MASK_SH_LIST_DCN2(_MASK) }; struct dce_i2c_hw *dcn20_i2c_hw_create( struct dc_context *ctx, uint32_t inst) { struct dce_i2c_hw *dce_i2c_hw = kzalloc(sizeof(struct dce_i2c_hw), GFP_KERNEL); if (!dce_i2c_hw) return NULL; dcn2_i2c_hw_construct(dce_i2c_hw, ctx, inst, &i2c_hw_regs[inst], &i2c_shifts, &i2c_masks); return dce_i2c_hw; } struct mpc *dcn20_mpc_create(struct dc_context *ctx) { struct dcn20_mpc *mpc20 = kzalloc(sizeof(struct dcn20_mpc), GFP_KERNEL); if (!mpc20) return NULL; dcn20_mpc_construct(mpc20, ctx, &mpc_regs, &mpc_shift, &mpc_mask, 6); return &mpc20->base; } struct hubbub *dcn20_hubbub_create(struct dc_context *ctx) { int i; struct dcn20_hubbub *hubbub = kzalloc(sizeof(struct dcn20_hubbub), GFP_KERNEL); if (!hubbub) return NULL; hubbub2_construct(hubbub, ctx, &hubbub_reg, &hubbub_shift, &hubbub_mask); for (i = 0; i < res_cap_nv10.num_vmid; i++) { struct dcn20_vmid *vmid = &hubbub->vmid[i]; vmid->ctx = ctx; vmid->regs = &vmid_regs[i]; vmid->shifts = &vmid_shifts; vmid->masks = &vmid_masks; } return &hubbub->base; } struct timing_generator *dcn20_timing_generator_create( struct dc_context *ctx, uint32_t instance) { struct optc *tgn10 = kzalloc(sizeof(struct optc), GFP_KERNEL); if (!tgn10) return NULL; tgn10->base.inst = instance; tgn10->base.ctx = ctx; tgn10->tg_regs = &tg_regs[instance]; tgn10->tg_shift = &tg_shift; tgn10->tg_mask = &tg_mask; dcn20_timing_generator_init(tgn10); return &tgn10->base; } static const struct encoder_feature_support link_enc_feature = { .max_hdmi_deep_color = COLOR_DEPTH_121212, .max_hdmi_pixel_clock = 600000, .hdmi_ycbcr420_supported = true, .dp_ycbcr420_supported = true, .flags.bits.IS_HBR2_CAPABLE = true, .flags.bits.IS_HBR3_CAPABLE = true, .flags.bits.IS_TPS3_CAPABLE = true, .flags.bits.IS_TPS4_CAPABLE = true }; struct link_encoder *dcn20_link_encoder_create( const struct encoder_init_data *enc_init_data) { struct dcn20_link_encoder *enc20 = kzalloc(sizeof(struct dcn20_link_encoder), GFP_KERNEL); if (!enc20) return NULL; dcn20_link_encoder_construct(enc20, enc_init_data, &link_enc_feature, &link_enc_regs[enc_init_data->transmitter], &link_enc_aux_regs[enc_init_data->channel - 1], &link_enc_hpd_regs[enc_init_data->hpd_source], &le_shift, &le_mask); return &enc20->enc10.base; } struct clock_source *dcn20_clock_source_create( struct dc_context *ctx, struct dc_bios *bios, enum clock_source_id id, const struct dce110_clk_src_regs *regs, bool dp_clk_src) { struct dce110_clk_src *clk_src = kzalloc(sizeof(struct dce110_clk_src), GFP_KERNEL); if (!clk_src) return NULL; if (dcn20_clk_src_construct(clk_src, ctx, bios, id, regs, &cs_shift, &cs_mask)) { clk_src->base.dp_clk_src = dp_clk_src; return &clk_src->base; } BREAK_TO_DEBUGGER(); return NULL; } static void read_dce_straps( struct dc_context *ctx, struct resource_straps *straps) { generic_reg_get(ctx, mmDC_PINSTRAPS + BASE(mmDC_PINSTRAPS_BASE_IDX), FN(DC_PINSTRAPS, DC_PINSTRAPS_AUDIO), &straps->dc_pinstraps_audio); } static struct audio *dcn20_create_audio( struct dc_context *ctx, unsigned int inst) { return dce_audio_create(ctx, inst, &audio_regs[inst], &audio_shift, &audio_mask); } struct stream_encoder *dcn20_stream_encoder_create( enum engine_id eng_id, struct dc_context *ctx) { struct dcn10_stream_encoder *enc1 = kzalloc(sizeof(struct dcn10_stream_encoder), GFP_KERNEL); if (!enc1) return NULL; dcn20_stream_encoder_construct(enc1, ctx, ctx->dc_bios, eng_id, &stream_enc_regs[eng_id], &se_shift, &se_mask); return &enc1->base; } static const struct dce_hwseq_registers hwseq_reg = { HWSEQ_DCN2_REG_LIST() }; static const struct dce_hwseq_shift hwseq_shift = { HWSEQ_DCN2_MASK_SH_LIST(__SHIFT) }; static const struct dce_hwseq_mask hwseq_mask = { HWSEQ_DCN2_MASK_SH_LIST(_MASK) }; struct dce_hwseq *dcn20_hwseq_create( struct dc_context *ctx) { struct dce_hwseq *hws = kzalloc(sizeof(struct dce_hwseq), GFP_KERNEL); if (hws) { hws->ctx = ctx; hws->regs = &hwseq_reg; hws->shifts = &hwseq_shift; hws->masks = &hwseq_mask; } return hws; } static const struct resource_create_funcs res_create_funcs = { .read_dce_straps = read_dce_straps, .create_audio = dcn20_create_audio, .create_stream_encoder = dcn20_stream_encoder_create, .create_hwseq = dcn20_hwseq_create, }; static const struct resource_create_funcs res_create_maximus_funcs = { .read_dce_straps = NULL, .create_audio = NULL, .create_stream_encoder = NULL, .create_hwseq = dcn20_hwseq_create, }; void dcn20_clock_source_destroy(struct clock_source **clk_src) { kfree(TO_DCE110_CLK_SRC(*clk_src)); *clk_src = NULL; } #ifdef CONFIG_DRM_AMD_DC_DSC_SUPPORT struct display_stream_compressor *dcn20_dsc_create( struct dc_context *ctx, uint32_t inst) { struct dcn20_dsc *dsc = kzalloc(sizeof(struct dcn20_dsc), GFP_KERNEL); if (!dsc) { BREAK_TO_DEBUGGER(); return NULL; } dsc2_construct(dsc, ctx, inst, &dsc_regs[inst], &dsc_shift, &dsc_mask); return &dsc->base; } void dcn20_dsc_destroy(struct display_stream_compressor **dsc) { kfree(container_of(*dsc, struct dcn20_dsc, base)); *dsc = NULL; } #endif static void destruct(struct dcn20_resource_pool *pool) { unsigned int i; for (i = 0; i < pool->base.stream_enc_count; i++) { if (pool->base.stream_enc[i] != NULL) { kfree(DCN10STRENC_FROM_STRENC(pool->base.stream_enc[i])); pool->base.stream_enc[i] = NULL; } } #ifdef CONFIG_DRM_AMD_DC_DSC_SUPPORT for (i = 0; i < pool->base.res_cap->num_dsc; i++) { if (pool->base.dscs[i] != NULL) dcn20_dsc_destroy(&pool->base.dscs[i]); } #endif if (pool->base.mpc != NULL) { kfree(TO_DCN20_MPC(pool->base.mpc)); pool->base.mpc = NULL; } if (pool->base.hubbub != NULL) { kfree(pool->base.hubbub); pool->base.hubbub = NULL; } for (i = 0; i < pool->base.pipe_count; i++) { if (pool->base.dpps[i] != NULL) dcn20_dpp_destroy(&pool->base.dpps[i]); if (pool->base.ipps[i] != NULL) pool->base.ipps[i]->funcs->ipp_destroy(&pool->base.ipps[i]); if (pool->base.hubps[i] != NULL) { kfree(TO_DCN20_HUBP(pool->base.hubps[i])); pool->base.hubps[i] = NULL; } if (pool->base.irqs != NULL) { dal_irq_service_destroy(&pool->base.irqs); } } for (i = 0; i < pool->base.res_cap->num_ddc; i++) { if (pool->base.engines[i] != NULL) dce110_engine_destroy(&pool->base.engines[i]); if (pool->base.hw_i2cs[i] != NULL) { kfree(pool->base.hw_i2cs[i]); pool->base.hw_i2cs[i] = NULL; } if (pool->base.sw_i2cs[i] != NULL) { kfree(pool->base.sw_i2cs[i]); pool->base.sw_i2cs[i] = NULL; } } for (i = 0; i < pool->base.res_cap->num_opp; i++) { if (pool->base.opps[i] != NULL) pool->base.opps[i]->funcs->opp_destroy(&pool->base.opps[i]); } for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) { if (pool->base.timing_generators[i] != NULL) { kfree(DCN10TG_FROM_TG(pool->base.timing_generators[i])); pool->base.timing_generators[i] = NULL; } } for (i = 0; i < pool->base.res_cap->num_dwb; i++) { if (pool->base.dwbc[i] != NULL) { kfree(TO_DCN20_DWBC(pool->base.dwbc[i])); pool->base.dwbc[i] = NULL; } if (pool->base.mcif_wb[i] != NULL) { kfree(TO_DCN20_MMHUBBUB(pool->base.mcif_wb[i])); pool->base.mcif_wb[i] = NULL; } } for (i = 0; i < pool->base.audio_count; i++) { if (pool->base.audios[i]) dce_aud_destroy(&pool->base.audios[i]); } for (i = 0; i < pool->base.clk_src_count; i++) { if (pool->base.clock_sources[i] != NULL) { dcn20_clock_source_destroy(&pool->base.clock_sources[i]); pool->base.clock_sources[i] = NULL; } } if (pool->base.dp_clock_source != NULL) { dcn20_clock_source_destroy(&pool->base.dp_clock_source); pool->base.dp_clock_source = NULL; } if (pool->base.abm != NULL) dce_abm_destroy(&pool->base.abm); if (pool->base.dmcu != NULL) dce_dmcu_destroy(&pool->base.dmcu); if (pool->base.dccg != NULL) dcn_dccg_destroy(&pool->base.dccg); if (pool->base.pp_smu != NULL) dcn20_pp_smu_destroy(&pool->base.pp_smu); } struct hubp *dcn20_hubp_create( struct dc_context *ctx, uint32_t inst) { struct dcn20_hubp *hubp2 = kzalloc(sizeof(struct dcn20_hubp), GFP_KERNEL); if (!hubp2) return NULL; if (hubp2_construct(hubp2, ctx, inst, &hubp_regs[inst], &hubp_shift, &hubp_mask)) return &hubp2->base; BREAK_TO_DEBUGGER(); kfree(hubp2); return NULL; } static void get_pixel_clock_parameters( struct pipe_ctx *pipe_ctx, struct pixel_clk_params *pixel_clk_params) { const struct dc_stream_state *stream = pipe_ctx->stream; struct pipe_ctx *odm_pipe; int opp_cnt = 1; for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) opp_cnt++; pixel_clk_params->requested_pix_clk_100hz = stream->timing.pix_clk_100hz; pixel_clk_params->encoder_object_id = stream->link->link_enc->id; pixel_clk_params->signal_type = pipe_ctx->stream->signal; pixel_clk_params->controller_id = pipe_ctx->stream_res.tg->inst + 1; /* TODO: un-hardcode*/ pixel_clk_params->requested_sym_clk = LINK_RATE_LOW * LINK_RATE_REF_FREQ_IN_KHZ; pixel_clk_params->flags.ENABLE_SS = 0; pixel_clk_params->color_depth = stream->timing.display_color_depth; pixel_clk_params->flags.DISPLAY_BLANKED = 1; pixel_clk_params->pixel_encoding = stream->timing.pixel_encoding; if (stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR422) pixel_clk_params->color_depth = COLOR_DEPTH_888; if (opp_cnt == 4) pixel_clk_params->requested_pix_clk_100hz /= 4; else if (optc1_is_two_pixels_per_containter(&stream->timing) || opp_cnt == 2) pixel_clk_params->requested_pix_clk_100hz /= 2; if (stream->timing.timing_3d_format == TIMING_3D_FORMAT_HW_FRAME_PACKING) pixel_clk_params->requested_pix_clk_100hz *= 2; } static void build_clamping_params(struct dc_stream_state *stream) { stream->clamping.clamping_level = CLAMPING_FULL_RANGE; stream->clamping.c_depth = stream->timing.display_color_depth; stream->clamping.pixel_encoding = stream->timing.pixel_encoding; } static enum dc_status build_pipe_hw_param(struct pipe_ctx *pipe_ctx) { get_pixel_clock_parameters(pipe_ctx, &pipe_ctx->stream_res.pix_clk_params); pipe_ctx->clock_source->funcs->get_pix_clk_dividers( pipe_ctx->clock_source, &pipe_ctx->stream_res.pix_clk_params, &pipe_ctx->pll_settings); pipe_ctx->stream->clamping.pixel_encoding = pipe_ctx->stream->timing.pixel_encoding; resource_build_bit_depth_reduction_params(pipe_ctx->stream, &pipe_ctx->stream->bit_depth_params); build_clamping_params(pipe_ctx->stream); return DC_OK; } enum dc_status dcn20_build_mapped_resource(const struct dc *dc, struct dc_state *context, struct dc_stream_state *stream) { enum dc_status status = DC_OK; struct pipe_ctx *pipe_ctx = resource_get_head_pipe_for_stream(&context->res_ctx, stream); /*TODO Seems unneeded anymore */ /* if (old_context && resource_is_stream_unchanged(old_context, stream)) { if (stream != NULL && old_context->streams[i] != NULL) { todo: shouldn't have to copy missing parameter here resource_build_bit_depth_reduction_params(stream, &stream->bit_depth_params); stream->clamping.pixel_encoding = stream->timing.pixel_encoding; resource_build_bit_depth_reduction_params(stream, &stream->bit_depth_params); build_clamping_params(stream); continue; } } */ if (!pipe_ctx) return DC_ERROR_UNEXPECTED; status = build_pipe_hw_param(pipe_ctx); return status; } #ifdef CONFIG_DRM_AMD_DC_DSC_SUPPORT static void acquire_dsc(struct resource_context *res_ctx, const struct resource_pool *pool, struct display_stream_compressor **dsc) { int i; ASSERT(*dsc == NULL); *dsc = NULL; /* Find first free DSC */ for (i = 0; i < pool->res_cap->num_dsc; i++) if (!res_ctx->is_dsc_acquired[i]) { *dsc = pool->dscs[i]; res_ctx->is_dsc_acquired[i] = true; break; } } static void release_dsc(struct resource_context *res_ctx, const struct resource_pool *pool, struct display_stream_compressor **dsc) { int i; for (i = 0; i < pool->res_cap->num_dsc; i++) if (pool->dscs[i] == *dsc) { res_ctx->is_dsc_acquired[i] = false; *dsc = NULL; break; } } #endif #ifdef CONFIG_DRM_AMD_DC_DSC_SUPPORT static enum dc_status add_dsc_to_stream_resource(struct dc *dc, struct dc_state *dc_ctx, struct dc_stream_state *dc_stream) { enum dc_status result = DC_OK; int i; const struct resource_pool *pool = dc->res_pool; /* Get a DSC if required and available */ for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe_ctx = &dc_ctx->res_ctx.pipe_ctx[i]; if (pipe_ctx->stream != dc_stream) continue; acquire_dsc(&dc_ctx->res_ctx, pool, &pipe_ctx->stream_res.dsc); /* The number of DSCs can be less than the number of pipes */ if (!pipe_ctx->stream_res.dsc) { dm_output_to_console("No DSCs available\n"); result = DC_NO_DSC_RESOURCE; } break; } return result; } static enum dc_status remove_dsc_from_stream_resource(struct dc *dc, struct dc_state *new_ctx, struct dc_stream_state *dc_stream) { struct pipe_ctx *pipe_ctx = NULL; int i; for (i = 0; i < MAX_PIPES; i++) { if (new_ctx->res_ctx.pipe_ctx[i].stream == dc_stream && !new_ctx->res_ctx.pipe_ctx[i].top_pipe) { pipe_ctx = &new_ctx->res_ctx.pipe_ctx[i]; if (pipe_ctx->stream_res.dsc) release_dsc(&new_ctx->res_ctx, dc->res_pool, &pipe_ctx->stream_res.dsc); } } if (!pipe_ctx) return DC_ERROR_UNEXPECTED; else return DC_OK; } #endif enum dc_status dcn20_add_stream_to_ctx(struct dc *dc, struct dc_state *new_ctx, struct dc_stream_state *dc_stream) { enum dc_status result = DC_ERROR_UNEXPECTED; result = resource_map_pool_resources(dc, new_ctx, dc_stream); if (result == DC_OK) result = resource_map_phy_clock_resources(dc, new_ctx, dc_stream); #ifdef CONFIG_DRM_AMD_DC_DSC_SUPPORT /* Get a DSC if required and available */ if (result == DC_OK && dc_stream->timing.flags.DSC) result = add_dsc_to_stream_resource(dc, new_ctx, dc_stream); #endif if (result == DC_OK) result = dcn20_build_mapped_resource(dc, new_ctx, dc_stream); return result; } enum dc_status dcn20_remove_stream_from_ctx(struct dc *dc, struct dc_state *new_ctx, struct dc_stream_state *dc_stream) { enum dc_status result = DC_OK; #ifdef CONFIG_DRM_AMD_DC_DSC_SUPPORT result = remove_dsc_from_stream_resource(dc, new_ctx, dc_stream); #endif return result; } static void swizzle_to_dml_params( enum swizzle_mode_values swizzle, unsigned int *sw_mode) { switch (swizzle) { case DC_SW_LINEAR: *sw_mode = dm_sw_linear; break; case DC_SW_4KB_S: *sw_mode = dm_sw_4kb_s; break; case DC_SW_4KB_S_X: *sw_mode = dm_sw_4kb_s_x; break; case DC_SW_4KB_D: *sw_mode = dm_sw_4kb_d; break; case DC_SW_4KB_D_X: *sw_mode = dm_sw_4kb_d_x; break; case DC_SW_64KB_S: *sw_mode = dm_sw_64kb_s; break; case DC_SW_64KB_S_X: *sw_mode = dm_sw_64kb_s_x; break; case DC_SW_64KB_S_T: *sw_mode = dm_sw_64kb_s_t; break; case DC_SW_64KB_D: *sw_mode = dm_sw_64kb_d; break; case DC_SW_64KB_D_X: *sw_mode = dm_sw_64kb_d_x; break; case DC_SW_64KB_D_T: *sw_mode = dm_sw_64kb_d_t; break; case DC_SW_64KB_R_X: *sw_mode = dm_sw_64kb_r_x; break; case DC_SW_VAR_S: *sw_mode = dm_sw_var_s; break; case DC_SW_VAR_S_X: *sw_mode = dm_sw_var_s_x; break; case DC_SW_VAR_D: *sw_mode = dm_sw_var_d; break; case DC_SW_VAR_D_X: *sw_mode = dm_sw_var_d_x; break; default: ASSERT(0); /* Not supported */ break; } } static bool dcn20_split_stream_for_odm( struct resource_context *res_ctx, const struct resource_pool *pool, struct pipe_ctx *prev_odm_pipe, struct pipe_ctx *next_odm_pipe) { int pipe_idx = next_odm_pipe->pipe_idx; *next_odm_pipe = *prev_odm_pipe; next_odm_pipe->pipe_idx = pipe_idx; next_odm_pipe->plane_res.mi = pool->mis[next_odm_pipe->pipe_idx]; next_odm_pipe->plane_res.hubp = pool->hubps[next_odm_pipe->pipe_idx]; next_odm_pipe->plane_res.ipp = pool->ipps[next_odm_pipe->pipe_idx]; next_odm_pipe->plane_res.xfm = pool->transforms[next_odm_pipe->pipe_idx]; next_odm_pipe->plane_res.dpp = pool->dpps[next_odm_pipe->pipe_idx]; next_odm_pipe->plane_res.mpcc_inst = pool->dpps[next_odm_pipe->pipe_idx]->inst; #ifdef CONFIG_DRM_AMD_DC_DSC_SUPPORT next_odm_pipe->stream_res.dsc = NULL; #endif if (prev_odm_pipe->next_odm_pipe && prev_odm_pipe->next_odm_pipe != next_odm_pipe) { ASSERT(!next_odm_pipe->next_odm_pipe); next_odm_pipe->next_odm_pipe = prev_odm_pipe->next_odm_pipe; next_odm_pipe->next_odm_pipe->prev_odm_pipe = next_odm_pipe; } prev_odm_pipe->next_odm_pipe = next_odm_pipe; next_odm_pipe->prev_odm_pipe = prev_odm_pipe; ASSERT(next_odm_pipe->top_pipe == NULL); if (prev_odm_pipe->plane_state) { struct scaler_data *sd = &prev_odm_pipe->plane_res.scl_data; int new_width; /* HACTIVE halved for odm combine */ sd->h_active /= 2; /* Calculate new vp and recout for left pipe */ /* Need at least 16 pixels width per side */ if (sd->recout.x + 16 >= sd->h_active) return false; new_width = sd->h_active - sd->recout.x; sd->viewport.width -= dc_fixpt_floor(dc_fixpt_mul_int( sd->ratios.horz, sd->recout.width - new_width)); sd->viewport_c.width -= dc_fixpt_floor(dc_fixpt_mul_int( sd->ratios.horz_c, sd->recout.width - new_width)); sd->recout.width = new_width; /* Calculate new vp and recout for right pipe */ sd = &next_odm_pipe->plane_res.scl_data; /* HACTIVE halved for odm combine */ sd->h_active /= 2; /* Need at least 16 pixels width per side */ if (new_width <= 16) return false; new_width = sd->recout.width + sd->recout.x - sd->h_active; sd->viewport.width -= dc_fixpt_floor(dc_fixpt_mul_int( sd->ratios.horz, sd->recout.width - new_width)); sd->viewport_c.width -= dc_fixpt_floor(dc_fixpt_mul_int( sd->ratios.horz_c, sd->recout.width - new_width)); sd->recout.width = new_width; sd->viewport.x += dc_fixpt_floor(dc_fixpt_mul_int( sd->ratios.horz, sd->h_active - sd->recout.x)); sd->viewport_c.x += dc_fixpt_floor(dc_fixpt_mul_int( sd->ratios.horz_c, sd->h_active - sd->recout.x)); sd->recout.x = 0; } next_odm_pipe->stream_res.opp = pool->opps[next_odm_pipe->pipe_idx]; #ifdef CONFIG_DRM_AMD_DC_DSC_SUPPORT if (next_odm_pipe->stream->timing.flags.DSC == 1) { acquire_dsc(res_ctx, pool, &next_odm_pipe->stream_res.dsc); ASSERT(next_odm_pipe->stream_res.dsc); if (next_odm_pipe->stream_res.dsc == NULL) return false; } #endif return true; } static void dcn20_split_stream_for_mpc( struct resource_context *res_ctx, const struct resource_pool *pool, struct pipe_ctx *primary_pipe, struct pipe_ctx *secondary_pipe) { int pipe_idx = secondary_pipe->pipe_idx; struct pipe_ctx *sec_bot_pipe = secondary_pipe->bottom_pipe; *secondary_pipe = *primary_pipe; secondary_pipe->bottom_pipe = sec_bot_pipe; secondary_pipe->pipe_idx = pipe_idx; secondary_pipe->plane_res.mi = pool->mis[secondary_pipe->pipe_idx]; secondary_pipe->plane_res.hubp = pool->hubps[secondary_pipe->pipe_idx]; secondary_pipe->plane_res.ipp = pool->ipps[secondary_pipe->pipe_idx]; secondary_pipe->plane_res.xfm = pool->transforms[secondary_pipe->pipe_idx]; secondary_pipe->plane_res.dpp = pool->dpps[secondary_pipe->pipe_idx]; secondary_pipe->plane_res.mpcc_inst = pool->dpps[secondary_pipe->pipe_idx]->inst; #ifdef CONFIG_DRM_AMD_DC_DSC_SUPPORT secondary_pipe->stream_res.dsc = NULL; #endif if (primary_pipe->bottom_pipe && primary_pipe->bottom_pipe != secondary_pipe) { ASSERT(!secondary_pipe->bottom_pipe); secondary_pipe->bottom_pipe = primary_pipe->bottom_pipe; secondary_pipe->bottom_pipe->top_pipe = secondary_pipe; } primary_pipe->bottom_pipe = secondary_pipe; secondary_pipe->top_pipe = primary_pipe; ASSERT(primary_pipe->plane_state); resource_build_scaling_params(primary_pipe); resource_build_scaling_params(secondary_pipe); } void dcn20_populate_dml_writeback_from_context( struct dc *dc, struct resource_context *res_ctx, display_e2e_pipe_params_st *pipes) { int pipe_cnt, i; for (i = 0, pipe_cnt = 0; i < dc->res_pool->pipe_count; i++) { struct dc_writeback_info *wb_info = &res_ctx->pipe_ctx[i].stream->writeback_info[0]; if (!res_ctx->pipe_ctx[i].stream) continue; /* Set writeback information */ pipes[pipe_cnt].dout.wb_enable = (wb_info->wb_enabled == true) ? 1 : 0; pipes[pipe_cnt].dout.num_active_wb++; pipes[pipe_cnt].dout.wb.wb_src_height = wb_info->dwb_params.cnv_params.crop_height; pipes[pipe_cnt].dout.wb.wb_src_width = wb_info->dwb_params.cnv_params.crop_width; pipes[pipe_cnt].dout.wb.wb_dst_width = wb_info->dwb_params.dest_width; pipes[pipe_cnt].dout.wb.wb_dst_height = wb_info->dwb_params.dest_height; pipes[pipe_cnt].dout.wb.wb_htaps_luma = 1; pipes[pipe_cnt].dout.wb.wb_vtaps_luma = 1; pipes[pipe_cnt].dout.wb.wb_htaps_chroma = wb_info->dwb_params.scaler_taps.h_taps_c; pipes[pipe_cnt].dout.wb.wb_vtaps_chroma = wb_info->dwb_params.scaler_taps.v_taps_c; pipes[pipe_cnt].dout.wb.wb_hratio = 1.0; pipes[pipe_cnt].dout.wb.wb_vratio = 1.0; if (wb_info->dwb_params.out_format == dwb_scaler_mode_yuv420) { if (wb_info->dwb_params.output_depth == DWB_OUTPUT_PIXEL_DEPTH_8BPC) pipes[pipe_cnt].dout.wb.wb_pixel_format = dm_420_8; else pipes[pipe_cnt].dout.wb.wb_pixel_format = dm_420_10; } else pipes[pipe_cnt].dout.wb.wb_pixel_format = dm_444_32; pipe_cnt++; } } int dcn20_populate_dml_pipes_from_context( struct dc *dc, struct resource_context *res_ctx, display_e2e_pipe_params_st *pipes) { int pipe_cnt, i; bool synchronized_vblank = true; for (i = 0, pipe_cnt = -1; i < dc->res_pool->pipe_count; i++) { if (!res_ctx->pipe_ctx[i].stream) continue; if (pipe_cnt < 0) { pipe_cnt = i; continue; } if (!resource_are_streams_timing_synchronizable( res_ctx->pipe_ctx[pipe_cnt].stream, res_ctx->pipe_ctx[i].stream)) { synchronized_vblank = false; break; } } for (i = 0, pipe_cnt = 0; i < dc->res_pool->pipe_count; i++) { struct dc_crtc_timing *timing = &res_ctx->pipe_ctx[i].stream->timing; int output_bpc; if (!res_ctx->pipe_ctx[i].stream) continue; /* todo: pipes[pipe_cnt].pipe.src.dynamic_metadata_enable = 0; pipes[pipe_cnt].pipe.src.dcc = 0; pipes[pipe_cnt].pipe.src.vm = 0;*/ #ifdef CONFIG_DRM_AMD_DC_DSC_SUPPORT pipes[pipe_cnt].dout.dsc_enable = res_ctx->pipe_ctx[i].stream->timing.flags.DSC; /* todo: rotation?*/ pipes[pipe_cnt].dout.dsc_slices = res_ctx->pipe_ctx[i].stream->timing.dsc_cfg.num_slices_h; #endif if (res_ctx->pipe_ctx[i].stream->use_dynamic_meta) { pipes[pipe_cnt].pipe.src.dynamic_metadata_enable = true; /* 1/2 vblank */ pipes[pipe_cnt].pipe.src.dynamic_metadata_lines_before_active = (timing->v_total - timing->v_addressable - timing->v_border_top - timing->v_border_bottom) / 2; /* 36 bytes dp, 32 hdmi */ pipes[pipe_cnt].pipe.src.dynamic_metadata_xmit_bytes = dc_is_dp_signal(res_ctx->pipe_ctx[i].stream->signal) ? 36 : 32; } pipes[pipe_cnt].pipe.src.dcc = false; pipes[pipe_cnt].pipe.src.dcc_rate = 1; pipes[pipe_cnt].pipe.dest.synchronized_vblank_all_planes = synchronized_vblank; pipes[pipe_cnt].pipe.dest.hblank_start = timing->h_total - timing->h_front_porch; pipes[pipe_cnt].pipe.dest.hblank_end = pipes[pipe_cnt].pipe.dest.hblank_start - timing->h_addressable - timing->h_border_left - timing->h_border_right; pipes[pipe_cnt].pipe.dest.vblank_start = timing->v_total - timing->v_front_porch; pipes[pipe_cnt].pipe.dest.vblank_end = pipes[pipe_cnt].pipe.dest.vblank_start - timing->v_addressable - timing->v_border_top - timing->v_border_bottom; pipes[pipe_cnt].pipe.dest.htotal = timing->h_total; pipes[pipe_cnt].pipe.dest.vtotal = timing->v_total; pipes[pipe_cnt].pipe.dest.hactive = timing->h_addressable; pipes[pipe_cnt].pipe.dest.vactive = timing->v_addressable; pipes[pipe_cnt].pipe.dest.interlaced = timing->flags.INTERLACE; pipes[pipe_cnt].pipe.dest.pixel_rate_mhz = timing->pix_clk_100hz/10000.0; if (timing->timing_3d_format == TIMING_3D_FORMAT_HW_FRAME_PACKING) pipes[pipe_cnt].pipe.dest.pixel_rate_mhz *= 2; pipes[pipe_cnt].pipe.dest.otg_inst = res_ctx->pipe_ctx[i].stream_res.tg->inst; pipes[pipe_cnt].dout.dp_lanes = 4; pipes[pipe_cnt].pipe.dest.vtotal_min = res_ctx->pipe_ctx[i].stream->adjust.v_total_min; pipes[pipe_cnt].pipe.dest.vtotal_max = res_ctx->pipe_ctx[i].stream->adjust.v_total_max; pipes[pipe_cnt].pipe.dest.odm_combine = res_ctx->pipe_ctx[i].prev_odm_pipe || res_ctx->pipe_ctx[i].next_odm_pipe; pipes[pipe_cnt].pipe.src.hsplit_grp = res_ctx->pipe_ctx[i].pipe_idx; if (res_ctx->pipe_ctx[i].top_pipe && res_ctx->pipe_ctx[i].top_pipe->plane_state == res_ctx->pipe_ctx[i].plane_state) pipes[pipe_cnt].pipe.src.hsplit_grp = res_ctx->pipe_ctx[i].top_pipe->pipe_idx; else if (res_ctx->pipe_ctx[i].prev_odm_pipe) { struct pipe_ctx *first_pipe = res_ctx->pipe_ctx[i].prev_odm_pipe; while (first_pipe->prev_odm_pipe) first_pipe = first_pipe->prev_odm_pipe; pipes[pipe_cnt].pipe.src.hsplit_grp = first_pipe->pipe_idx; } switch (res_ctx->pipe_ctx[i].stream->signal) { case SIGNAL_TYPE_DISPLAY_PORT_MST: case SIGNAL_TYPE_DISPLAY_PORT: pipes[pipe_cnt].dout.output_type = dm_dp; break; case SIGNAL_TYPE_EDP: pipes[pipe_cnt].dout.output_type = dm_edp; break; case SIGNAL_TYPE_HDMI_TYPE_A: case SIGNAL_TYPE_DVI_SINGLE_LINK: case SIGNAL_TYPE_DVI_DUAL_LINK: pipes[pipe_cnt].dout.output_type = dm_hdmi; break; default: /* In case there is no signal, set dp with 4 lanes to allow max config */ pipes[pipe_cnt].dout.output_type = dm_dp; pipes[pipe_cnt].dout.dp_lanes = 4; } switch (res_ctx->pipe_ctx[i].stream->timing.display_color_depth) { case COLOR_DEPTH_666: output_bpc = 6; break; case COLOR_DEPTH_888: output_bpc = 8; break; case COLOR_DEPTH_101010: output_bpc = 10; break; case COLOR_DEPTH_121212: output_bpc = 12; break; case COLOR_DEPTH_141414: output_bpc = 14; break; case COLOR_DEPTH_161616: output_bpc = 16; break; #ifdef CONFIG_DRM_AMD_DC_DCN2_0 case COLOR_DEPTH_999: output_bpc = 9; break; case COLOR_DEPTH_111111: output_bpc = 11; break; #endif default: output_bpc = 8; break; } switch (res_ctx->pipe_ctx[i].stream->timing.pixel_encoding) { case PIXEL_ENCODING_RGB: case PIXEL_ENCODING_YCBCR444: pipes[pipe_cnt].dout.output_format = dm_444; pipes[pipe_cnt].dout.output_bpp = output_bpc * 3; break; case PIXEL_ENCODING_YCBCR420: pipes[pipe_cnt].dout.output_format = dm_420; pipes[pipe_cnt].dout.output_bpp = (output_bpc * 3) / 2; break; case PIXEL_ENCODING_YCBCR422: if (true) /* todo */ pipes[pipe_cnt].dout.output_format = dm_s422; else pipes[pipe_cnt].dout.output_format = dm_n422; pipes[pipe_cnt].dout.output_bpp = output_bpc * 2; break; default: pipes[pipe_cnt].dout.output_format = dm_444; pipes[pipe_cnt].dout.output_bpp = output_bpc * 3; } /* todo: default max for now, until there is logic reflecting this in dc*/ pipes[pipe_cnt].dout.output_bpc = 12; /* * Use max cursor settings for calculations to minimize * bw calculations due to cursor on/off */ pipes[pipe_cnt].pipe.src.num_cursors = 2; pipes[pipe_cnt].pipe.src.cur0_src_width = 256; pipes[pipe_cnt].pipe.src.cur0_bpp = dm_cur_32bit; pipes[pipe_cnt].pipe.src.cur1_src_width = 256; pipes[pipe_cnt].pipe.src.cur1_bpp = dm_cur_32bit; if (!res_ctx->pipe_ctx[i].plane_state) { pipes[pipe_cnt].pipe.src.source_scan = dm_horz; pipes[pipe_cnt].pipe.src.sw_mode = dm_sw_linear; pipes[pipe_cnt].pipe.src.macro_tile_size = dm_64k_tile; pipes[pipe_cnt].pipe.src.viewport_width = timing->h_addressable; if (pipes[pipe_cnt].pipe.src.viewport_width > 1920) pipes[pipe_cnt].pipe.src.viewport_width = 1920; pipes[pipe_cnt].pipe.src.viewport_height = timing->v_addressable; if (pipes[pipe_cnt].pipe.src.viewport_height > 1080) pipes[pipe_cnt].pipe.src.viewport_height = 1080; pipes[pipe_cnt].pipe.src.data_pitch = ((pipes[pipe_cnt].pipe.src.viewport_width + 63) / 64) * 64; /* linear sw only */ pipes[pipe_cnt].pipe.src.source_format = dm_444_32; pipes[pipe_cnt].pipe.dest.recout_width = pipes[pipe_cnt].pipe.src.viewport_width; /*vp_width/hratio*/ pipes[pipe_cnt].pipe.dest.recout_height = pipes[pipe_cnt].pipe.src.viewport_height; /*vp_height/vratio*/ pipes[pipe_cnt].pipe.dest.full_recout_width = pipes[pipe_cnt].pipe.dest.recout_width; /*when is_hsplit != 1*/ pipes[pipe_cnt].pipe.dest.full_recout_height = pipes[pipe_cnt].pipe.dest.recout_height; /*when is_hsplit != 1*/ pipes[pipe_cnt].pipe.scale_ratio_depth.lb_depth = dm_lb_16; pipes[pipe_cnt].pipe.scale_ratio_depth.hscl_ratio = 1.0; pipes[pipe_cnt].pipe.scale_ratio_depth.vscl_ratio = 1.0; pipes[pipe_cnt].pipe.scale_ratio_depth.scl_enable = 0; /*Lb only or Full scl*/ pipes[pipe_cnt].pipe.scale_taps.htaps = 1; pipes[pipe_cnt].pipe.scale_taps.vtaps = 1; pipes[pipe_cnt].pipe.src.is_hsplit = 0; pipes[pipe_cnt].pipe.dest.odm_combine = 0; pipes[pipe_cnt].pipe.dest.vtotal_min = timing->v_total; pipes[pipe_cnt].pipe.dest.vtotal_max = timing->v_total; } else { struct dc_plane_state *pln = res_ctx->pipe_ctx[i].plane_state; struct scaler_data *scl = &res_ctx->pipe_ctx[i].plane_res.scl_data; pipes[pipe_cnt].pipe.src.immediate_flip = pln->flip_immediate; pipes[pipe_cnt].pipe.src.is_hsplit = (res_ctx->pipe_ctx[i].bottom_pipe && res_ctx->pipe_ctx[i].bottom_pipe->plane_state == pln) || (res_ctx->pipe_ctx[i].top_pipe && res_ctx->pipe_ctx[i].top_pipe->plane_state == pln); pipes[pipe_cnt].pipe.src.source_scan = pln->rotation == ROTATION_ANGLE_90 || pln->rotation == ROTATION_ANGLE_270 ? dm_vert : dm_horz; pipes[pipe_cnt].pipe.src.viewport_y_y = scl->viewport.y; pipes[pipe_cnt].pipe.src.viewport_y_c = scl->viewport_c.y; pipes[pipe_cnt].pipe.src.viewport_width = scl->viewport.width; pipes[pipe_cnt].pipe.src.viewport_width_c = scl->viewport_c.width; pipes[pipe_cnt].pipe.src.viewport_height = scl->viewport.height; pipes[pipe_cnt].pipe.src.viewport_height_c = scl->viewport_c.height; if (pln->format >= SURFACE_PIXEL_FORMAT_VIDEO_BEGIN) { pipes[pipe_cnt].pipe.src.data_pitch = pln->plane_size.surface_pitch; pipes[pipe_cnt].pipe.src.data_pitch_c = pln->plane_size.chroma_pitch; pipes[pipe_cnt].pipe.src.meta_pitch = pln->dcc.meta_pitch; pipes[pipe_cnt].pipe.src.meta_pitch_c = pln->dcc.meta_pitch_c; } else { pipes[pipe_cnt].pipe.src.data_pitch = pln->plane_size.surface_pitch; pipes[pipe_cnt].pipe.src.meta_pitch = pln->dcc.meta_pitch; } pipes[pipe_cnt].pipe.src.dcc = pln->dcc.enable; pipes[pipe_cnt].pipe.dest.recout_width = scl->recout.width; pipes[pipe_cnt].pipe.dest.recout_height = scl->recout.height; pipes[pipe_cnt].pipe.dest.full_recout_width = scl->recout.width; pipes[pipe_cnt].pipe.dest.full_recout_height = scl->recout.height; if (res_ctx->pipe_ctx[i].bottom_pipe && res_ctx->pipe_ctx[i].bottom_pipe->plane_state == pln) { pipes[pipe_cnt].pipe.dest.full_recout_width += res_ctx->pipe_ctx[i].bottom_pipe->plane_res.scl_data.recout.width; pipes[pipe_cnt].pipe.dest.full_recout_height += res_ctx->pipe_ctx[i].bottom_pipe->plane_res.scl_data.recout.height; } else if (res_ctx->pipe_ctx[i].top_pipe && res_ctx->pipe_ctx[i].top_pipe->plane_state == pln) { pipes[pipe_cnt].pipe.dest.full_recout_width += res_ctx->pipe_ctx[i].top_pipe->plane_res.scl_data.recout.width; pipes[pipe_cnt].pipe.dest.full_recout_height += res_ctx->pipe_ctx[i].top_pipe->plane_res.scl_data.recout.height; } pipes[pipe_cnt].pipe.scale_ratio_depth.lb_depth = dm_lb_16; pipes[pipe_cnt].pipe.scale_ratio_depth.hscl_ratio = (double) scl->ratios.horz.value / (1ULL<<32); pipes[pipe_cnt].pipe.scale_ratio_depth.hscl_ratio_c = (double) scl->ratios.horz_c.value / (1ULL<<32); pipes[pipe_cnt].pipe.scale_ratio_depth.vscl_ratio = (double) scl->ratios.vert.value / (1ULL<<32); pipes[pipe_cnt].pipe.scale_ratio_depth.vscl_ratio_c = (double) scl->ratios.vert_c.value / (1ULL<<32); pipes[pipe_cnt].pipe.scale_ratio_depth.scl_enable = scl->ratios.vert.value != dc_fixpt_one.value || scl->ratios.horz.value != dc_fixpt_one.value || scl->ratios.vert_c.value != dc_fixpt_one.value || scl->ratios.horz_c.value != dc_fixpt_one.value /*Lb only or Full scl*/ || dc->debug.always_scale; /*support always scale*/ pipes[pipe_cnt].pipe.scale_taps.htaps = scl->taps.h_taps; pipes[pipe_cnt].pipe.scale_taps.htaps_c = scl->taps.h_taps_c; pipes[pipe_cnt].pipe.scale_taps.vtaps = scl->taps.v_taps; pipes[pipe_cnt].pipe.scale_taps.vtaps_c = scl->taps.v_taps_c; pipes[pipe_cnt].pipe.src.macro_tile_size = swizzle_mode_to_macro_tile_size(pln->tiling_info.gfx9.swizzle); swizzle_to_dml_params(pln->tiling_info.gfx9.swizzle, &pipes[pipe_cnt].pipe.src.sw_mode); switch (pln->format) { case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr: case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb: pipes[pipe_cnt].pipe.src.source_format = dm_420_8; break; case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr: case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb: pipes[pipe_cnt].pipe.src.source_format = dm_420_10; break; case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616: case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F: case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F: pipes[pipe_cnt].pipe.src.source_format = dm_444_64; break; case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555: case SURFACE_PIXEL_FORMAT_GRPH_RGB565: pipes[pipe_cnt].pipe.src.source_format = dm_444_16; break; case SURFACE_PIXEL_FORMAT_GRPH_PALETA_256_COLORS: pipes[pipe_cnt].pipe.src.source_format = dm_444_8; break; default: pipes[pipe_cnt].pipe.src.source_format = dm_444_32; break; } } pipe_cnt++; } /* populate writeback information */ dc->res_pool->funcs->populate_dml_writeback_from_context(dc, res_ctx, pipes); return pipe_cnt; } unsigned int dcn20_calc_max_scaled_time( unsigned int time_per_pixel, enum mmhubbub_wbif_mode mode, unsigned int urgent_watermark) { unsigned int time_per_byte = 0; unsigned int total_y_free_entry = 0x200; /* two memory piece for luma */ unsigned int total_c_free_entry = 0x140; /* two memory piece for chroma */ unsigned int small_free_entry, max_free_entry; unsigned int buf_lh_capability; unsigned int max_scaled_time; if (mode == PACKED_444) /* packed mode */ time_per_byte = time_per_pixel/4; else if (mode == PLANAR_420_8BPC) time_per_byte = time_per_pixel; else if (mode == PLANAR_420_10BPC) /* p010 */ time_per_byte = time_per_pixel * 819/1024; if (time_per_byte == 0) time_per_byte = 1; small_free_entry = (total_y_free_entry > total_c_free_entry) ? total_c_free_entry : total_y_free_entry; max_free_entry = (mode == PACKED_444) ? total_y_free_entry + total_c_free_entry : small_free_entry; buf_lh_capability = max_free_entry*time_per_byte*32/16; /* there is 4bit fraction */ max_scaled_time = buf_lh_capability - urgent_watermark; return max_scaled_time; } void dcn20_set_mcif_arb_params( struct dc *dc, struct dc_state *context, display_e2e_pipe_params_st *pipes, int pipe_cnt) { enum mmhubbub_wbif_mode wbif_mode; struct mcif_arb_params *wb_arb_params; int i, j, k, dwb_pipe; /* Writeback MCIF_WB arbitration parameters */ dwb_pipe = 0; for (i = 0; i < dc->res_pool->pipe_count; i++) { if (!context->res_ctx.pipe_ctx[i].stream) continue; for (j = 0; j < MAX_DWB_PIPES; j++) { if (context->res_ctx.pipe_ctx[i].stream->writeback_info[j].wb_enabled == false) continue; //wb_arb_params = &context->res_ctx.pipe_ctx[i].stream->writeback_info[j].mcif_arb_params; wb_arb_params = &context->bw_ctx.bw.dcn.bw_writeback.mcif_wb_arb[dwb_pipe]; if (context->res_ctx.pipe_ctx[i].stream->writeback_info[j].dwb_params.out_format == dwb_scaler_mode_yuv420) { if (context->res_ctx.pipe_ctx[i].stream->writeback_info[j].dwb_params.output_depth == DWB_OUTPUT_PIXEL_DEPTH_8BPC) wbif_mode = PLANAR_420_8BPC; else wbif_mode = PLANAR_420_10BPC; } else wbif_mode = PACKED_444; for (k = 0; k < sizeof(wb_arb_params->cli_watermark)/sizeof(wb_arb_params->cli_watermark[0]); k++) { wb_arb_params->cli_watermark[k] = get_wm_writeback_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; wb_arb_params->pstate_watermark[k] = get_wm_writeback_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; } wb_arb_params->time_per_pixel = 16.0 / context->res_ctx.pipe_ctx[i].stream->phy_pix_clk; /* 4 bit fraction, ms */ wb_arb_params->slice_lines = 32; wb_arb_params->arbitration_slice = 2; wb_arb_params->max_scaled_time = dcn20_calc_max_scaled_time(wb_arb_params->time_per_pixel, wbif_mode, wb_arb_params->cli_watermark[0]); /* assume 4 watermark sets have the same value */ dwb_pipe++; if (dwb_pipe >= MAX_DWB_PIPES) return; } if (dwb_pipe >= MAX_DWB_PIPES) return; } } #ifdef CONFIG_DRM_AMD_DC_DSC_SUPPORT static bool dcn20_validate_dsc(struct dc *dc, struct dc_state *new_ctx) { int i; /* Validate DSC config, dsc count validation is already done */ for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe_ctx = &new_ctx->res_ctx.pipe_ctx[i]; struct dc_stream_state *stream = pipe_ctx->stream; struct dsc_config dsc_cfg; struct pipe_ctx *odm_pipe; int opp_cnt = 1; for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) opp_cnt++; /* Only need to validate top pipe */ if (pipe_ctx->top_pipe || pipe_ctx->prev_odm_pipe || !stream || !stream->timing.flags.DSC) continue; dsc_cfg.pic_width = (stream->timing.h_addressable + stream->timing.h_border_left + stream->timing.h_border_right) / opp_cnt; dsc_cfg.pic_height = stream->timing.v_addressable + stream->timing.v_border_top + stream->timing.v_border_bottom; dsc_cfg.pixel_encoding = stream->timing.pixel_encoding; dsc_cfg.color_depth = stream->timing.display_color_depth; dsc_cfg.dc_dsc_cfg = stream->timing.dsc_cfg; dsc_cfg.dc_dsc_cfg.num_slices_h /= opp_cnt; if (!pipe_ctx->stream_res.dsc->funcs->dsc_validate_stream(pipe_ctx->stream_res.dsc, &dsc_cfg)) return false; } return true; } #endif static struct pipe_ctx *dcn20_find_secondary_pipe(struct dc *dc, struct resource_context *res_ctx, const struct resource_pool *pool, const struct pipe_ctx *primary_pipe) { struct pipe_ctx *secondary_pipe = NULL; if (dc && primary_pipe) { int j; int preferred_pipe_idx = 0; /* first check the prev dc state: * if this primary pipe has a bottom pipe in prev. state * and if the bottom pipe is still available (which it should be), * pick that pipe as secondary * Same logic applies for ODM pipes. Since mpo is not allowed with odm * check in else case. */ if (dc->current_state->res_ctx.pipe_ctx[primary_pipe->pipe_idx].bottom_pipe) { preferred_pipe_idx = dc->current_state->res_ctx.pipe_ctx[primary_pipe->pipe_idx].bottom_pipe->pipe_idx; if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) { secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx]; secondary_pipe->pipe_idx = preferred_pipe_idx; } } else if (dc->current_state->res_ctx.pipe_ctx[primary_pipe->pipe_idx].next_odm_pipe) { preferred_pipe_idx = dc->current_state->res_ctx.pipe_ctx[primary_pipe->pipe_idx].next_odm_pipe->pipe_idx; if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) { secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx]; secondary_pipe->pipe_idx = preferred_pipe_idx; } } /* * if this primary pipe does not have a bottom pipe in prev. state * start backward and find a pipe that did not used to be a bottom pipe in * prev. dc state. This way we make sure we keep the same assignment as * last state and will not have to reprogram every pipe */ if (secondary_pipe == NULL) { for (j = dc->res_pool->pipe_count - 1; j >= 0; j--) { if (dc->current_state->res_ctx.pipe_ctx[j].top_pipe == NULL) { preferred_pipe_idx = j; if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) { secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx]; secondary_pipe->pipe_idx = preferred_pipe_idx; break; } } } } /* * We should never hit this assert unless assignments are shuffled around * if this happens we will prob. hit a vsync tdr */ ASSERT(secondary_pipe); /* * search backwards for the second pipe to keep pipe * assignment more consistent */ if (secondary_pipe == NULL) { for (j = dc->res_pool->pipe_count - 1; j >= 0; j--) { preferred_pipe_idx = j; if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) { secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx]; secondary_pipe->pipe_idx = preferred_pipe_idx; break; } } } } return secondary_pipe; } bool dcn20_fast_validate_bw( struct dc *dc, struct dc_state *context, display_e2e_pipe_params_st *pipes, int *pipe_cnt_out, int *pipe_split_from, int *vlevel_out) { bool out = false; int pipe_cnt, i, pipe_idx, vlevel, vlevel_unsplit; bool odm_capable = context->bw_ctx.dml.ip.odm_capable; bool force_split = false; #ifdef CONFIG_DRM_AMD_DC_DSC_SUPPORT bool failed_non_odm_dsc = false; #endif int split_threshold = dc->res_pool->pipe_count / 2; bool avoid_split = dc->debug.pipe_split_policy != MPC_SPLIT_DYNAMIC; ASSERT(pipes); if (!pipes) return false; /* merge previously split odm pipes since mode support needs to make the decision */ for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; struct pipe_ctx *odm_pipe = pipe->next_odm_pipe; if (pipe->prev_odm_pipe) continue; pipe->next_odm_pipe = NULL; while (odm_pipe) { struct pipe_ctx *next_odm_pipe = odm_pipe->next_odm_pipe; odm_pipe->plane_state = NULL; odm_pipe->stream = NULL; odm_pipe->top_pipe = NULL; odm_pipe->bottom_pipe = NULL; odm_pipe->prev_odm_pipe = NULL; odm_pipe->next_odm_pipe = NULL; #ifdef CONFIG_DRM_AMD_DC_DSC_SUPPORT if (odm_pipe->stream_res.dsc) release_dsc(&context->res_ctx, dc->res_pool, &odm_pipe->stream_res.dsc); #endif /* Clear plane_res and stream_res */ memset(&odm_pipe->plane_res, 0, sizeof(odm_pipe->plane_res)); memset(&odm_pipe->stream_res, 0, sizeof(odm_pipe->stream_res)); odm_pipe = next_odm_pipe; } if (pipe->plane_state) resource_build_scaling_params(pipe); } /* merge previously mpc split pipes since mode support needs to make the decision */ for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; struct pipe_ctx *hsplit_pipe = pipe->bottom_pipe; if (!hsplit_pipe || hsplit_pipe->plane_state != pipe->plane_state) continue; pipe->bottom_pipe = hsplit_pipe->bottom_pipe; if (hsplit_pipe->bottom_pipe) hsplit_pipe->bottom_pipe->top_pipe = pipe; hsplit_pipe->plane_state = NULL; hsplit_pipe->stream = NULL; hsplit_pipe->top_pipe = NULL; hsplit_pipe->bottom_pipe = NULL; /* Clear plane_res and stream_res */ memset(&hsplit_pipe->plane_res, 0, sizeof(hsplit_pipe->plane_res)); memset(&hsplit_pipe->stream_res, 0, sizeof(hsplit_pipe->stream_res)); if (pipe->plane_state) resource_build_scaling_params(pipe); } if (dc->res_pool->funcs->populate_dml_pipes) pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, &context->res_ctx, pipes); else pipe_cnt = dcn20_populate_dml_pipes_from_context(dc, &context->res_ctx, pipes); *pipe_cnt_out = pipe_cnt; if (!pipe_cnt) { out = true; goto validate_out; } context->bw_ctx.dml.ip.odm_capable = 0; vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt); context->bw_ctx.dml.ip.odm_capable = odm_capable; #ifdef CONFIG_DRM_AMD_DC_DSC_SUPPORT /* 1 dsc per stream dsc validation */ if (vlevel <= context->bw_ctx.dml.soc.num_states) if (!dcn20_validate_dsc(dc, context)) { failed_non_odm_dsc = true; vlevel = context->bw_ctx.dml.soc.num_states + 1; } #endif if (vlevel > context->bw_ctx.dml.soc.num_states && odm_capable) vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt); if (vlevel > context->bw_ctx.dml.soc.num_states) goto validate_fail; if ((context->stream_count > split_threshold && dc->current_state->stream_count <= split_threshold) || (context->stream_count <= split_threshold && dc->current_state->stream_count > split_threshold)) context->commit_hints.full_update_needed = true; /*initialize pipe_just_split_from to invalid idx*/ for (i = 0; i < MAX_PIPES; i++) pipe_split_from[i] = -1; /* Single display only conditionals get set here */ for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; bool exit_loop = false; if (!pipe->stream || pipe->top_pipe) continue; if (dc->debug.force_single_disp_pipe_split) { if (!force_split) force_split = true; else { force_split = false; exit_loop = true; } } if (dc->debug.pipe_split_policy == MPC_SPLIT_AVOID_MULT_DISP) { if (avoid_split) avoid_split = false; else { avoid_split = true; exit_loop = true; } } if (exit_loop) break; } if (context->stream_count > split_threshold) avoid_split = true; vlevel_unsplit = vlevel; for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { if (!context->res_ctx.pipe_ctx[i].stream) continue; for (; vlevel_unsplit <= context->bw_ctx.dml.soc.num_states; vlevel_unsplit++) if (context->bw_ctx.dml.vba.NoOfDPP[vlevel_unsplit][0][pipe_idx] == 1) break; pipe_idx++; } for (i = 0, pipe_idx = -1; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; struct pipe_ctx *hsplit_pipe = pipe->bottom_pipe; bool need_split = true; bool need_split3d; if (!pipe->stream || pipe_split_from[i] >= 0) continue; pipe_idx++; if (dc->debug.force_odm_combine & (1 << pipe->stream_res.tg->inst)) { force_split = true; context->bw_ctx.dml.vba.ODMCombineEnabled[pipe_idx] = true; context->bw_ctx.dml.vba.ODMCombineEnablePerState[vlevel][pipe_idx] = true; } if (force_split && context->bw_ctx.dml.vba.NoOfDPP[vlevel][context->bw_ctx.dml.vba.maxMpcComb][pipe_idx] == 1) context->bw_ctx.dml.vba.RequiredDPPCLK[vlevel][context->bw_ctx.dml.vba.maxMpcComb][pipe_idx] /= 2; if (!pipe->top_pipe && !pipe->plane_state && context->bw_ctx.dml.vba.ODMCombineEnabled[pipe_idx]) { hsplit_pipe = dcn20_find_secondary_pipe(dc, &context->res_ctx, dc->res_pool, pipe); ASSERT(hsplit_pipe); if (!dcn20_split_stream_for_odm( &context->res_ctx, dc->res_pool, pipe, hsplit_pipe)) goto validate_fail; pipe_split_from[hsplit_pipe->pipe_idx] = pipe_idx; dcn20_build_mapped_resource(dc, context, pipe->stream); } if (!pipe->plane_state) continue; /* Skip 2nd half of already split pipe */ if (pipe->top_pipe && pipe->plane_state == pipe->top_pipe->plane_state) continue; need_split3d = ((pipe->stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE || pipe->stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM) && (pipe->stream->timing.timing_3d_format == TIMING_3D_FORMAT_TOP_AND_BOTTOM || pipe->stream->timing.timing_3d_format == TIMING_3D_FORMAT_SIDE_BY_SIDE)); if (avoid_split && vlevel_unsplit <= context->bw_ctx.dml.soc.num_states && !force_split && !need_split3d) { need_split = false; vlevel = vlevel_unsplit; context->bw_ctx.dml.vba.maxMpcComb = 0; } else need_split = context->bw_ctx.dml.vba.NoOfDPP[vlevel][context->bw_ctx.dml.vba.maxMpcComb][pipe_idx] == 2; /* We do not support mpo + odm at the moment */ if (hsplit_pipe && hsplit_pipe->plane_state != pipe->plane_state && context->bw_ctx.dml.vba.ODMCombineEnabled[pipe_idx]) goto validate_fail; if (need_split3d || need_split || force_split) { if (!hsplit_pipe || hsplit_pipe->plane_state != pipe->plane_state) { /* pipe not split previously needs split */ hsplit_pipe = dcn20_find_secondary_pipe(dc, &context->res_ctx, dc->res_pool, pipe); ASSERT(hsplit_pipe || force_split); if (!hsplit_pipe) continue; if (context->bw_ctx.dml.vba.ODMCombineEnabled[pipe_idx]) { if (!dcn20_split_stream_for_odm( &context->res_ctx, dc->res_pool, pipe, hsplit_pipe)) goto validate_fail; } else dcn20_split_stream_for_mpc( &context->res_ctx, dc->res_pool, pipe, hsplit_pipe); pipe_split_from[hsplit_pipe->pipe_idx] = pipe_idx; } } else if (hsplit_pipe && hsplit_pipe->plane_state == pipe->plane_state) { /* merge should already have been done */ ASSERT(0); } } #ifdef CONFIG_DRM_AMD_DC_DSC_SUPPORT /* Actual dsc count per stream dsc validation*/ if (failed_non_odm_dsc && !dcn20_validate_dsc(dc, context)) { context->bw_ctx.dml.vba.ValidationStatus[context->bw_ctx.dml.vba.soc.num_states] = DML_FAIL_DSC_VALIDATION_FAILURE; goto validate_fail; } #endif *vlevel_out = vlevel; out = true; goto validate_out; validate_fail: out = false; validate_out: return out; } void dcn20_calculate_wm( struct dc *dc, struct dc_state *context, display_e2e_pipe_params_st *pipes, int *out_pipe_cnt, int *pipe_split_from, int vlevel) { int pipe_cnt, i, pipe_idx; for (i = 0, pipe_idx = 0, pipe_cnt = 0; i < dc->res_pool->pipe_count; i++) { if (!context->res_ctx.pipe_ctx[i].stream) continue; pipes[pipe_cnt].clks_cfg.refclk_mhz = dc->res_pool->ref_clocks.dchub_ref_clock_inKhz / 1000.0; pipes[pipe_cnt].clks_cfg.dispclk_mhz = context->bw_ctx.dml.vba.RequiredDISPCLK[vlevel][context->bw_ctx.dml.vba.maxMpcComb]; if (pipe_split_from[i] < 0) { pipes[pipe_cnt].clks_cfg.dppclk_mhz = context->bw_ctx.dml.vba.RequiredDPPCLK[vlevel][context->bw_ctx.dml.vba.maxMpcComb][pipe_idx]; if (context->bw_ctx.dml.vba.BlendingAndTiming[pipe_idx] == pipe_idx) pipes[pipe_cnt].pipe.dest.odm_combine = context->bw_ctx.dml.vba.ODMCombineEnablePerState[vlevel][pipe_idx]; else pipes[pipe_cnt].pipe.dest.odm_combine = 0; pipe_idx++; } else { pipes[pipe_cnt].clks_cfg.dppclk_mhz = context->bw_ctx.dml.vba.RequiredDPPCLK[vlevel][context->bw_ctx.dml.vba.maxMpcComb][pipe_split_from[i]]; if (context->bw_ctx.dml.vba.BlendingAndTiming[pipe_split_from[i]] == pipe_split_from[i]) pipes[pipe_cnt].pipe.dest.odm_combine = context->bw_ctx.dml.vba.ODMCombineEnablePerState[vlevel][pipe_split_from[i]]; else pipes[pipe_cnt].pipe.dest.odm_combine = 0; } if (dc->config.forced_clocks) { pipes[pipe_cnt].clks_cfg.dispclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dispclk_mhz; pipes[pipe_cnt].clks_cfg.dppclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dppclk_mhz; } if (dc->debug.min_disp_clk_khz > pipes[pipe_cnt].clks_cfg.dispclk_mhz * 1000) pipes[pipe_cnt].clks_cfg.dispclk_mhz = dc->debug.min_disp_clk_khz / 1000.0; if (dc->debug.min_dpp_clk_khz > pipes[pipe_cnt].clks_cfg.dppclk_mhz * 1000) pipes[pipe_cnt].clks_cfg.dppclk_mhz = dc->debug.min_dpp_clk_khz / 1000.0; pipe_cnt++; } if (pipe_cnt != pipe_idx) { if (dc->res_pool->funcs->populate_dml_pipes) pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, &context->res_ctx, pipes); else pipe_cnt = dcn20_populate_dml_pipes_from_context(dc, &context->res_ctx, pipes); } *out_pipe_cnt = pipe_cnt; pipes[0].clks_cfg.voltage = vlevel; pipes[0].clks_cfg.dcfclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel].dcfclk_mhz; pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel].socclk_mhz; /* only pipe 0 is read for voltage and dcf/soc clocks */ if (vlevel < 1) { pipes[0].clks_cfg.voltage = 1; pipes[0].clks_cfg.dcfclk_mhz = context->bw_ctx.dml.soc.clock_limits[1].dcfclk_mhz; pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[1].socclk_mhz; } context->bw_ctx.bw.dcn.watermarks.b.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.b.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; if (vlevel < 2) { pipes[0].clks_cfg.voltage = 2; pipes[0].clks_cfg.dcfclk_mhz = context->bw_ctx.dml.soc.clock_limits[2].dcfclk_mhz; pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[2].socclk_mhz; } context->bw_ctx.bw.dcn.watermarks.c.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.c.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; if (vlevel < 3) { pipes[0].clks_cfg.voltage = 3; pipes[0].clks_cfg.dcfclk_mhz = context->bw_ctx.dml.soc.clock_limits[2].dcfclk_mhz; pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[2].socclk_mhz; } context->bw_ctx.bw.dcn.watermarks.d.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.d.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; pipes[0].clks_cfg.voltage = vlevel; pipes[0].clks_cfg.dcfclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel].dcfclk_mhz; pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel].socclk_mhz; context->bw_ctx.bw.dcn.watermarks.a.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.a.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; } void dcn20_calculate_dlg_params( struct dc *dc, struct dc_state *context, display_e2e_pipe_params_st *pipes, int pipe_cnt, int vlevel) { int i, j, pipe_idx, pipe_idx_unsplit; bool visited[MAX_PIPES] = { 0 }; /* Writeback MCIF_WB arbitration parameters */ dc->res_pool->funcs->set_mcif_arb_params(dc, context, pipes, pipe_cnt); context->bw_ctx.bw.dcn.clk.dispclk_khz = context->bw_ctx.dml.vba.DISPCLK * 1000; context->bw_ctx.bw.dcn.clk.dcfclk_khz = context->bw_ctx.dml.vba.DCFCLK * 1000; context->bw_ctx.bw.dcn.clk.socclk_khz = context->bw_ctx.dml.vba.SOCCLK * 1000; context->bw_ctx.bw.dcn.clk.dramclk_khz = context->bw_ctx.dml.vba.DRAMSpeed * 1000 / 16; context->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz = context->bw_ctx.dml.vba.DCFCLKDeepSleep * 1000; context->bw_ctx.bw.dcn.clk.fclk_khz = 0; context->bw_ctx.bw.dcn.clk.p_state_change_support = context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] != dm_dram_clock_change_unsupported; context->bw_ctx.bw.dcn.clk.dppclk_khz = 0; /* * An artifact of dml pipe split/odm is that pipes get merged back together for * calculation. Therefore we need to only extract for first pipe in ascending index order * and copy into the other split half. */ for (i = 0, pipe_idx = 0, pipe_idx_unsplit = 0; i < dc->res_pool->pipe_count; i++) { if (!context->res_ctx.pipe_ctx[i].stream) continue; if (!visited[pipe_idx]) { display_pipe_source_params_st *src = &pipes[pipe_idx_unsplit].pipe.src; display_pipe_dest_params_st *dst = &pipes[pipe_idx_unsplit].pipe.dest; dst->vstartup_start = context->bw_ctx.dml.vba.VStartup[pipe_idx_unsplit]; dst->vupdate_offset = context->bw_ctx.dml.vba.VUpdateOffsetPix[pipe_idx_unsplit]; dst->vupdate_width = context->bw_ctx.dml.vba.VUpdateWidthPix[pipe_idx_unsplit]; dst->vready_offset = context->bw_ctx.dml.vba.VReadyOffsetPix[pipe_idx_unsplit]; /* * j iterates inside pipes array, unlike i which iterates inside * pipe_ctx array */ if (src->is_hsplit) for (j = pipe_idx + 1; j < pipe_cnt; j++) { display_pipe_source_params_st *src_j = &pipes[j].pipe.src; display_pipe_dest_params_st *dst_j = &pipes[j].pipe.dest; if (src_j->is_hsplit && !visited[j] && src->hsplit_grp == src_j->hsplit_grp) { dst_j->vstartup_start = context->bw_ctx.dml.vba.VStartup[pipe_idx_unsplit]; dst_j->vupdate_offset = context->bw_ctx.dml.vba.VUpdateOffsetPix[pipe_idx_unsplit]; dst_j->vupdate_width = context->bw_ctx.dml.vba.VUpdateWidthPix[pipe_idx_unsplit]; dst_j->vready_offset = context->bw_ctx.dml.vba.VReadyOffsetPix[pipe_idx_unsplit]; visited[j] = true; } } visited[pipe_idx] = true; pipe_idx_unsplit++; } pipe_idx++; } for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { if (!context->res_ctx.pipe_ctx[i].stream) continue; if (context->bw_ctx.bw.dcn.clk.dppclk_khz < pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000) context->bw_ctx.bw.dcn.clk.dppclk_khz = pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000; context->res_ctx.pipe_ctx[i].plane_res.bw.dppclk_khz = pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000; ASSERT(visited[pipe_idx]); context->res_ctx.pipe_ctx[i].pipe_dlg_param = pipes[pipe_idx].pipe.dest; pipe_idx++; } /*save a original dppclock copy*/ context->bw_ctx.bw.dcn.clk.bw_dppclk_khz = context->bw_ctx.bw.dcn.clk.dppclk_khz; context->bw_ctx.bw.dcn.clk.bw_dispclk_khz = context->bw_ctx.bw.dcn.clk.dispclk_khz; context->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz = context->bw_ctx.dml.soc.clock_limits[vlevel].dppclk_mhz * 1000; context->bw_ctx.bw.dcn.clk.max_supported_dispclk_khz = context->bw_ctx.dml.soc.clock_limits[vlevel].dispclk_mhz * 1000; for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { bool cstate_en = context->bw_ctx.dml.vba.PrefetchMode[vlevel][context->bw_ctx.dml.vba.maxMpcComb] != 2; if (!context->res_ctx.pipe_ctx[i].stream) continue; context->bw_ctx.dml.funcs.rq_dlg_get_dlg_reg(&context->bw_ctx.dml, &context->res_ctx.pipe_ctx[i].dlg_regs, &context->res_ctx.pipe_ctx[i].ttu_regs, pipes, pipe_cnt, pipe_idx, cstate_en, context->bw_ctx.bw.dcn.clk.p_state_change_support, false, false, false); context->bw_ctx.dml.funcs.rq_dlg_get_rq_reg(&context->bw_ctx.dml, &context->res_ctx.pipe_ctx[i].rq_regs, pipes[pipe_idx].pipe); pipe_idx++; } } static bool dcn20_validate_bandwidth_internal(struct dc *dc, struct dc_state *context, bool fast_validate) { bool out = false; BW_VAL_TRACE_SETUP(); int vlevel = 0; int pipe_split_from[MAX_PIPES]; int pipe_cnt = 0; display_e2e_pipe_params_st *pipes = kzalloc(dc->res_pool->pipe_count * sizeof(display_e2e_pipe_params_st), GFP_KERNEL); DC_LOGGER_INIT(dc->ctx->logger); BW_VAL_TRACE_COUNT(); out = dcn20_fast_validate_bw(dc, context, pipes, &pipe_cnt, pipe_split_from, &vlevel); if (pipe_cnt == 0) goto validate_out; if (!out) goto validate_fail; BW_VAL_TRACE_END_VOLTAGE_LEVEL(); if (fast_validate) { BW_VAL_TRACE_SKIP(fast); goto validate_out; } dcn20_calculate_wm(dc, context, pipes, &pipe_cnt, pipe_split_from, vlevel); dcn20_calculate_dlg_params(dc, context, pipes, pipe_cnt, vlevel); BW_VAL_TRACE_END_WATERMARKS(); goto validate_out; validate_fail: DC_LOG_WARNING("Mode Validation Warning: %s failed validation.\n", dml_get_status_message(context->bw_ctx.dml.vba.ValidationStatus[context->bw_ctx.dml.vba.soc.num_states])); BW_VAL_TRACE_SKIP(fail); out = false; validate_out: kfree(pipes); BW_VAL_TRACE_FINISH(); return out; } bool dcn20_validate_bandwidth(struct dc *dc, struct dc_state *context, bool fast_validate) { bool voltage_supported = false; bool full_pstate_supported = false; bool dummy_pstate_supported = false; double p_state_latency_us = context->bw_ctx.dml.soc.dram_clock_change_latency_us; if (fast_validate) return dcn20_validate_bandwidth_internal(dc, context, true); // Best case, we support full UCLK switch latency voltage_supported = dcn20_validate_bandwidth_internal(dc, context, false); full_pstate_supported = context->bw_ctx.bw.dcn.clk.p_state_change_support; if (context->bw_ctx.dml.soc.dummy_pstate_latency_us == 0 || (voltage_supported && full_pstate_supported)) { context->bw_ctx.bw.dcn.clk.p_state_change_support = true; goto restore_dml_state; } // Fallback: Try to only support G6 temperature read latency context->bw_ctx.dml.soc.dram_clock_change_latency_us = context->bw_ctx.dml.soc.dummy_pstate_latency_us; voltage_supported = dcn20_validate_bandwidth_internal(dc, context, false); dummy_pstate_supported = context->bw_ctx.bw.dcn.clk.p_state_change_support; if (voltage_supported && dummy_pstate_supported) { context->bw_ctx.bw.dcn.clk.p_state_change_support = false; goto restore_dml_state; } // ERROR: fallback is supposed to always work. ASSERT(false); restore_dml_state: memcpy(&context->bw_ctx.dml, &dc->dml, sizeof(struct display_mode_lib)); context->bw_ctx.dml.soc.dram_clock_change_latency_us = p_state_latency_us; return voltage_supported; } struct pipe_ctx *dcn20_acquire_idle_pipe_for_layer( struct dc_state *state, const struct resource_pool *pool, struct dc_stream_state *stream) { struct resource_context *res_ctx = &state->res_ctx; struct pipe_ctx *head_pipe = resource_get_head_pipe_for_stream(res_ctx, stream); struct pipe_ctx *idle_pipe = find_idle_secondary_pipe(res_ctx, pool, head_pipe); if (!head_pipe) ASSERT(0); if (!idle_pipe) return NULL; idle_pipe->stream = head_pipe->stream; idle_pipe->stream_res.tg = head_pipe->stream_res.tg; idle_pipe->stream_res.opp = head_pipe->stream_res.opp; idle_pipe->plane_res.hubp = pool->hubps[idle_pipe->pipe_idx]; idle_pipe->plane_res.ipp = pool->ipps[idle_pipe->pipe_idx]; idle_pipe->plane_res.dpp = pool->dpps[idle_pipe->pipe_idx]; idle_pipe->plane_res.mpcc_inst = pool->dpps[idle_pipe->pipe_idx]->inst; return idle_pipe; } bool dcn20_get_dcc_compression_cap(const struct dc *dc, const struct dc_dcc_surface_param *input, struct dc_surface_dcc_cap *output) { return dc->res_pool->hubbub->funcs->get_dcc_compression_cap( dc->res_pool->hubbub, input, output); } static void dcn20_destroy_resource_pool(struct resource_pool **pool) { struct dcn20_resource_pool *dcn20_pool = TO_DCN20_RES_POOL(*pool); destruct(dcn20_pool); kfree(dcn20_pool); *pool = NULL; } static struct dc_cap_funcs cap_funcs = { .get_dcc_compression_cap = dcn20_get_dcc_compression_cap }; enum dc_status dcn20_get_default_swizzle_mode(struct dc_plane_state *plane_state) { enum dc_status result = DC_OK; enum surface_pixel_format surf_pix_format = plane_state->format; unsigned int bpp = resource_pixel_format_to_bpp(surf_pix_format); enum swizzle_mode_values swizzle = DC_SW_LINEAR; if (bpp == 64) swizzle = DC_SW_64KB_D; else swizzle = DC_SW_64KB_S; plane_state->tiling_info.gfx9.swizzle = swizzle; return result; } static struct resource_funcs dcn20_res_pool_funcs = { .destroy = dcn20_destroy_resource_pool, .link_enc_create = dcn20_link_encoder_create, .validate_bandwidth = dcn20_validate_bandwidth, .acquire_idle_pipe_for_layer = dcn20_acquire_idle_pipe_for_layer, .add_stream_to_ctx = dcn20_add_stream_to_ctx, .remove_stream_from_ctx = dcn20_remove_stream_from_ctx, .populate_dml_writeback_from_context = dcn20_populate_dml_writeback_from_context, .get_default_swizzle_mode = dcn20_get_default_swizzle_mode, .set_mcif_arb_params = dcn20_set_mcif_arb_params, .find_first_free_match_stream_enc_for_link = dcn10_find_first_free_match_stream_enc_for_link }; bool dcn20_dwbc_create(struct dc_context *ctx, struct resource_pool *pool) { int i; uint32_t pipe_count = pool->res_cap->num_dwb; ASSERT(pipe_count > 0); for (i = 0; i < pipe_count; i++) { struct dcn20_dwbc *dwbc20 = kzalloc(sizeof(struct dcn20_dwbc), GFP_KERNEL); if (!dwbc20) { dm_error("DC: failed to create dwbc20!\n"); return false; } dcn20_dwbc_construct(dwbc20, ctx, &dwbc20_regs[i], &dwbc20_shift, &dwbc20_mask, i); pool->dwbc[i] = &dwbc20->base; } return true; } bool dcn20_mmhubbub_create(struct dc_context *ctx, struct resource_pool *pool) { int i; uint32_t pipe_count = pool->res_cap->num_dwb; ASSERT(pipe_count > 0); for (i = 0; i < pipe_count; i++) { struct dcn20_mmhubbub *mcif_wb20 = kzalloc(sizeof(struct dcn20_mmhubbub), GFP_KERNEL); if (!mcif_wb20) { dm_error("DC: failed to create mcif_wb20!\n"); return false; } dcn20_mmhubbub_construct(mcif_wb20, ctx, &mcif_wb20_regs[i], &mcif_wb20_shift, &mcif_wb20_mask, i); pool->mcif_wb[i] = &mcif_wb20->base; } return true; } struct pp_smu_funcs *dcn20_pp_smu_create(struct dc_context *ctx) { struct pp_smu_funcs *pp_smu = kzalloc(sizeof(*pp_smu), GFP_KERNEL); if (!pp_smu) return pp_smu; dm_pp_get_funcs(ctx, pp_smu); if (pp_smu->ctx.ver != PP_SMU_VER_NV) pp_smu = memset(pp_smu, 0, sizeof(struct pp_smu_funcs)); return pp_smu; } void dcn20_pp_smu_destroy(struct pp_smu_funcs **pp_smu) { if (pp_smu && *pp_smu) { kfree(*pp_smu); *pp_smu = NULL; } } static void cap_soc_clocks( struct _vcs_dpi_soc_bounding_box_st *bb, struct pp_smu_nv_clock_table max_clocks) { int i; // First pass - cap all clocks higher than the reported max for (i = 0; i < bb->num_states; i++) { if ((bb->clock_limits[i].dcfclk_mhz > (max_clocks.dcfClockInKhz / 1000)) && max_clocks.dcfClockInKhz != 0) bb->clock_limits[i].dcfclk_mhz = (max_clocks.dcfClockInKhz / 1000); if ((bb->clock_limits[i].dram_speed_mts > (max_clocks.uClockInKhz / 1000) * 16) && max_clocks.uClockInKhz != 0) bb->clock_limits[i].dram_speed_mts = (max_clocks.uClockInKhz / 1000) * 16; if ((bb->clock_limits[i].fabricclk_mhz > (max_clocks.fabricClockInKhz / 1000)) && max_clocks.fabricClockInKhz != 0) bb->clock_limits[i].fabricclk_mhz = (max_clocks.fabricClockInKhz / 1000); if ((bb->clock_limits[i].dispclk_mhz > (max_clocks.displayClockInKhz / 1000)) && max_clocks.displayClockInKhz != 0) bb->clock_limits[i].dispclk_mhz = (max_clocks.displayClockInKhz / 1000); if ((bb->clock_limits[i].dppclk_mhz > (max_clocks.dppClockInKhz / 1000)) && max_clocks.dppClockInKhz != 0) bb->clock_limits[i].dppclk_mhz = (max_clocks.dppClockInKhz / 1000); if ((bb->clock_limits[i].phyclk_mhz > (max_clocks.phyClockInKhz / 1000)) && max_clocks.phyClockInKhz != 0) bb->clock_limits[i].phyclk_mhz = (max_clocks.phyClockInKhz / 1000); if ((bb->clock_limits[i].socclk_mhz > (max_clocks.socClockInKhz / 1000)) && max_clocks.socClockInKhz != 0) bb->clock_limits[i].socclk_mhz = (max_clocks.socClockInKhz / 1000); if ((bb->clock_limits[i].dscclk_mhz > (max_clocks.dscClockInKhz / 1000)) && max_clocks.dscClockInKhz != 0) bb->clock_limits[i].dscclk_mhz = (max_clocks.dscClockInKhz / 1000); } // Second pass - remove all duplicate clock states for (i = bb->num_states - 1; i > 1; i--) { bool duplicate = true; if (bb->clock_limits[i-1].dcfclk_mhz != bb->clock_limits[i].dcfclk_mhz) duplicate = false; if (bb->clock_limits[i-1].dispclk_mhz != bb->clock_limits[i].dispclk_mhz) duplicate = false; if (bb->clock_limits[i-1].dppclk_mhz != bb->clock_limits[i].dppclk_mhz) duplicate = false; if (bb->clock_limits[i-1].dram_speed_mts != bb->clock_limits[i].dram_speed_mts) duplicate = false; if (bb->clock_limits[i-1].dscclk_mhz != bb->clock_limits[i].dscclk_mhz) duplicate = false; if (bb->clock_limits[i-1].fabricclk_mhz != bb->clock_limits[i].fabricclk_mhz) duplicate = false; if (bb->clock_limits[i-1].phyclk_mhz != bb->clock_limits[i].phyclk_mhz) duplicate = false; if (bb->clock_limits[i-1].socclk_mhz != bb->clock_limits[i].socclk_mhz) duplicate = false; if (duplicate) bb->num_states--; } } static void update_bounding_box(struct dc *dc, struct _vcs_dpi_soc_bounding_box_st *bb, struct pp_smu_nv_clock_table *max_clocks, unsigned int *uclk_states, unsigned int num_states) { struct _vcs_dpi_voltage_scaling_st calculated_states[MAX_CLOCK_LIMIT_STATES] = {0}; int i; int num_calculated_states = 0; int min_dcfclk = 0; if (num_states == 0) return; if (dc->bb_overrides.min_dcfclk_mhz > 0) min_dcfclk = dc->bb_overrides.min_dcfclk_mhz; else // Accounting for SOC/DCF relationship, we can go as high as // 506Mhz in Vmin. We need to code 507 since SMU will round down to 506. min_dcfclk = 507; for (i = 0; i < num_states; i++) { int min_fclk_required_by_uclk; calculated_states[i].state = i; calculated_states[i].dram_speed_mts = uclk_states[i] * 16 / 1000; // FCLK:UCLK ratio is 1.08 min_fclk_required_by_uclk = mul_u64_u32_shr(BIT_ULL(32) * 1080 / 1000000, uclk_states[i], 32); calculated_states[i].fabricclk_mhz = (min_fclk_required_by_uclk < min_dcfclk) ? min_dcfclk : min_fclk_required_by_uclk; calculated_states[i].socclk_mhz = (calculated_states[i].fabricclk_mhz > max_clocks->socClockInKhz / 1000) ? max_clocks->socClockInKhz / 1000 : calculated_states[i].fabricclk_mhz; calculated_states[i].dcfclk_mhz = (calculated_states[i].fabricclk_mhz > max_clocks->dcfClockInKhz / 1000) ? max_clocks->dcfClockInKhz / 1000 : calculated_states[i].fabricclk_mhz; calculated_states[i].dispclk_mhz = max_clocks->displayClockInKhz / 1000; calculated_states[i].dppclk_mhz = max_clocks->displayClockInKhz / 1000; calculated_states[i].dscclk_mhz = max_clocks->displayClockInKhz / (1000 * 3); calculated_states[i].phyclk_mhz = max_clocks->phyClockInKhz / 1000; num_calculated_states++; } calculated_states[num_calculated_states - 1].socclk_mhz = max_clocks->socClockInKhz / 1000; calculated_states[num_calculated_states - 1].fabricclk_mhz = max_clocks->socClockInKhz / 1000; calculated_states[num_calculated_states - 1].dcfclk_mhz = max_clocks->dcfClockInKhz / 1000; memcpy(bb->clock_limits, calculated_states, sizeof(bb->clock_limits)); bb->num_states = num_calculated_states; // Duplicate the last state, DML always an extra state identical to max state to work memcpy(&bb->clock_limits[num_calculated_states], &bb->clock_limits[num_calculated_states - 1], sizeof(struct _vcs_dpi_voltage_scaling_st)); bb->clock_limits[num_calculated_states].state = bb->num_states; } static void patch_bounding_box(struct dc *dc, struct _vcs_dpi_soc_bounding_box_st *bb) { kernel_fpu_begin(); if ((int)(bb->sr_exit_time_us * 1000) != dc->bb_overrides.sr_exit_time_ns && dc->bb_overrides.sr_exit_time_ns) { bb->sr_exit_time_us = dc->bb_overrides.sr_exit_time_ns / 1000.0; } if ((int)(bb->sr_enter_plus_exit_time_us * 1000) != dc->bb_overrides.sr_enter_plus_exit_time_ns && dc->bb_overrides.sr_enter_plus_exit_time_ns) { bb->sr_enter_plus_exit_time_us = dc->bb_overrides.sr_enter_plus_exit_time_ns / 1000.0; } if ((int)(bb->urgent_latency_us * 1000) != dc->bb_overrides.urgent_latency_ns && dc->bb_overrides.urgent_latency_ns) { bb->urgent_latency_us = dc->bb_overrides.urgent_latency_ns / 1000.0; } if ((int)(bb->dram_clock_change_latency_us * 1000) != dc->bb_overrides.dram_clock_change_latency_ns && dc->bb_overrides.dram_clock_change_latency_ns) { bb->dram_clock_change_latency_us = dc->bb_overrides.dram_clock_change_latency_ns / 1000.0; } kernel_fpu_end(); } static struct _vcs_dpi_soc_bounding_box_st *get_asic_rev_soc_bb( uint32_t hw_internal_rev) { if (ASICREV_IS_NAVI12_P(hw_internal_rev)) return &dcn2_0_nv12_soc; return &dcn2_0_soc; } static struct _vcs_dpi_ip_params_st *get_asic_rev_ip_params( uint32_t hw_internal_rev) { /* NV12 and NV10 */ return &dcn2_0_ip; } static enum dml_project get_dml_project_version(uint32_t hw_internal_rev) { return DML_PROJECT_NAVI10v2; } #define fixed16_to_double(x) (((double) x) / ((double) (1 << 16))) #define fixed16_to_double_to_cpu(x) fixed16_to_double(le32_to_cpu(x)) static bool init_soc_bounding_box(struct dc *dc, struct dcn20_resource_pool *pool) { const struct gpu_info_soc_bounding_box_v1_0 *bb = dc->soc_bounding_box; struct _vcs_dpi_soc_bounding_box_st *loaded_bb = get_asic_rev_soc_bb(dc->ctx->asic_id.hw_internal_rev); struct _vcs_dpi_ip_params_st *loaded_ip = get_asic_rev_ip_params(dc->ctx->asic_id.hw_internal_rev); DC_LOGGER_INIT(dc->ctx->logger); if (!bb && !SOC_BOUNDING_BOX_VALID) { DC_LOG_ERROR("%s: not valid soc bounding box/n", __func__); return false; } if (bb && !SOC_BOUNDING_BOX_VALID) { int i; dcn2_0_nv12_soc.sr_exit_time_us = fixed16_to_double_to_cpu(bb->sr_exit_time_us); dcn2_0_nv12_soc.sr_enter_plus_exit_time_us = fixed16_to_double_to_cpu(bb->sr_enter_plus_exit_time_us); dcn2_0_nv12_soc.urgent_latency_us = fixed16_to_double_to_cpu(bb->urgent_latency_us); dcn2_0_nv12_soc.urgent_latency_pixel_data_only_us = fixed16_to_double_to_cpu(bb->urgent_latency_pixel_data_only_us); dcn2_0_nv12_soc.urgent_latency_pixel_mixed_with_vm_data_us = fixed16_to_double_to_cpu(bb->urgent_latency_pixel_mixed_with_vm_data_us); dcn2_0_nv12_soc.urgent_latency_vm_data_only_us = fixed16_to_double_to_cpu(bb->urgent_latency_vm_data_only_us); dcn2_0_nv12_soc.urgent_out_of_order_return_per_channel_pixel_only_bytes = le32_to_cpu(bb->urgent_out_of_order_return_per_channel_pixel_only_bytes); dcn2_0_nv12_soc.urgent_out_of_order_return_per_channel_pixel_and_vm_bytes = le32_to_cpu(bb->urgent_out_of_order_return_per_channel_pixel_and_vm_bytes); dcn2_0_nv12_soc.urgent_out_of_order_return_per_channel_vm_only_bytes = le32_to_cpu(bb->urgent_out_of_order_return_per_channel_vm_only_bytes); dcn2_0_nv12_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only = fixed16_to_double_to_cpu(bb->pct_ideal_dram_sdp_bw_after_urgent_pixel_only); dcn2_0_nv12_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_and_vm = fixed16_to_double_to_cpu(bb->pct_ideal_dram_sdp_bw_after_urgent_pixel_and_vm); dcn2_0_nv12_soc.pct_ideal_dram_sdp_bw_after_urgent_vm_only = fixed16_to_double_to_cpu(bb->pct_ideal_dram_sdp_bw_after_urgent_vm_only); dcn2_0_nv12_soc.max_avg_sdp_bw_use_normal_percent = fixed16_to_double_to_cpu(bb->max_avg_sdp_bw_use_normal_percent); dcn2_0_nv12_soc.max_avg_dram_bw_use_normal_percent = fixed16_to_double_to_cpu(bb->max_avg_dram_bw_use_normal_percent); dcn2_0_nv12_soc.writeback_latency_us = fixed16_to_double_to_cpu(bb->writeback_latency_us); dcn2_0_nv12_soc.ideal_dram_bw_after_urgent_percent = fixed16_to_double_to_cpu(bb->ideal_dram_bw_after_urgent_percent); dcn2_0_nv12_soc.max_request_size_bytes = le32_to_cpu(bb->max_request_size_bytes); dcn2_0_nv12_soc.dram_channel_width_bytes = le32_to_cpu(bb->dram_channel_width_bytes); dcn2_0_nv12_soc.fabric_datapath_to_dcn_data_return_bytes = le32_to_cpu(bb->fabric_datapath_to_dcn_data_return_bytes); dcn2_0_nv12_soc.dcn_downspread_percent = fixed16_to_double_to_cpu(bb->dcn_downspread_percent); dcn2_0_nv12_soc.downspread_percent = fixed16_to_double_to_cpu(bb->downspread_percent); dcn2_0_nv12_soc.dram_page_open_time_ns = fixed16_to_double_to_cpu(bb->dram_page_open_time_ns); dcn2_0_nv12_soc.dram_rw_turnaround_time_ns = fixed16_to_double_to_cpu(bb->dram_rw_turnaround_time_ns); dcn2_0_nv12_soc.dram_return_buffer_per_channel_bytes = le32_to_cpu(bb->dram_return_buffer_per_channel_bytes); dcn2_0_nv12_soc.round_trip_ping_latency_dcfclk_cycles = le32_to_cpu(bb->round_trip_ping_latency_dcfclk_cycles); dcn2_0_nv12_soc.urgent_out_of_order_return_per_channel_bytes = le32_to_cpu(bb->urgent_out_of_order_return_per_channel_bytes); dcn2_0_nv12_soc.channel_interleave_bytes = le32_to_cpu(bb->channel_interleave_bytes); dcn2_0_nv12_soc.num_banks = le32_to_cpu(bb->num_banks); dcn2_0_nv12_soc.num_chans = le32_to_cpu(bb->num_chans); dcn2_0_nv12_soc.vmm_page_size_bytes = le32_to_cpu(bb->vmm_page_size_bytes); dcn2_0_nv12_soc.dram_clock_change_latency_us = fixed16_to_double_to_cpu(bb->dram_clock_change_latency_us); // HACK!! Lower uclock latency switch time so we don't switch dcn2_0_nv12_soc.dram_clock_change_latency_us = 10; dcn2_0_nv12_soc.writeback_dram_clock_change_latency_us = fixed16_to_double_to_cpu(bb->writeback_dram_clock_change_latency_us); dcn2_0_nv12_soc.return_bus_width_bytes = le32_to_cpu(bb->return_bus_width_bytes); dcn2_0_nv12_soc.dispclk_dppclk_vco_speed_mhz = le32_to_cpu(bb->dispclk_dppclk_vco_speed_mhz); dcn2_0_nv12_soc.xfc_bus_transport_time_us = le32_to_cpu(bb->xfc_bus_transport_time_us); dcn2_0_nv12_soc.xfc_xbuf_latency_tolerance_us = le32_to_cpu(bb->xfc_xbuf_latency_tolerance_us); dcn2_0_nv12_soc.use_urgent_burst_bw = le32_to_cpu(bb->use_urgent_burst_bw); dcn2_0_nv12_soc.num_states = le32_to_cpu(bb->num_states); for (i = 0; i < dcn2_0_nv12_soc.num_states; i++) { dcn2_0_nv12_soc.clock_limits[i].state = le32_to_cpu(bb->clock_limits[i].state); dcn2_0_nv12_soc.clock_limits[i].dcfclk_mhz = fixed16_to_double_to_cpu(bb->clock_limits[i].dcfclk_mhz); dcn2_0_nv12_soc.clock_limits[i].fabricclk_mhz = fixed16_to_double_to_cpu(bb->clock_limits[i].fabricclk_mhz); dcn2_0_nv12_soc.clock_limits[i].dispclk_mhz = fixed16_to_double_to_cpu(bb->clock_limits[i].dispclk_mhz); dcn2_0_nv12_soc.clock_limits[i].dppclk_mhz = fixed16_to_double_to_cpu(bb->clock_limits[i].dppclk_mhz); dcn2_0_nv12_soc.clock_limits[i].phyclk_mhz = fixed16_to_double_to_cpu(bb->clock_limits[i].phyclk_mhz); dcn2_0_nv12_soc.clock_limits[i].socclk_mhz = fixed16_to_double_to_cpu(bb->clock_limits[i].socclk_mhz); dcn2_0_nv12_soc.clock_limits[i].dscclk_mhz = fixed16_to_double_to_cpu(bb->clock_limits[i].dscclk_mhz); dcn2_0_nv12_soc.clock_limits[i].dram_speed_mts = fixed16_to_double_to_cpu(bb->clock_limits[i].dram_speed_mts); } } if (pool->base.pp_smu) { struct pp_smu_nv_clock_table max_clocks = {0}; unsigned int uclk_states[8] = {0}; unsigned int num_states = 0; enum pp_smu_status status; bool clock_limits_available = false; bool uclk_states_available = false; if (pool->base.pp_smu->nv_funcs.get_uclk_dpm_states) { status = (pool->base.pp_smu->nv_funcs.get_uclk_dpm_states) (&pool->base.pp_smu->nv_funcs.pp_smu, uclk_states, &num_states); uclk_states_available = (status == PP_SMU_RESULT_OK); } if (pool->base.pp_smu->nv_funcs.get_maximum_sustainable_clocks) { status = (*pool->base.pp_smu->nv_funcs.get_maximum_sustainable_clocks) (&pool->base.pp_smu->nv_funcs.pp_smu, &max_clocks); /* SMU cannot set DCF clock to anything equal to or higher than SOC clock */ if (max_clocks.dcfClockInKhz >= max_clocks.socClockInKhz) max_clocks.dcfClockInKhz = max_clocks.socClockInKhz - 1000; clock_limits_available = (status == PP_SMU_RESULT_OK); } if (clock_limits_available && uclk_states_available && num_states) update_bounding_box(dc, loaded_bb, &max_clocks, uclk_states, num_states); else if (clock_limits_available) cap_soc_clocks(loaded_bb, max_clocks); } loaded_ip->max_num_otg = pool->base.res_cap->num_timing_generator; loaded_ip->max_num_dpp = pool->base.pipe_count; patch_bounding_box(dc, loaded_bb); return true; } static bool construct( uint8_t num_virtual_links, struct dc *dc, struct dcn20_resource_pool *pool) { int i; struct dc_context *ctx = dc->ctx; struct irq_service_init_data init_data; struct _vcs_dpi_soc_bounding_box_st *loaded_bb = get_asic_rev_soc_bb(ctx->asic_id.hw_internal_rev); struct _vcs_dpi_ip_params_st *loaded_ip = get_asic_rev_ip_params(ctx->asic_id.hw_internal_rev); enum dml_project dml_project_version = get_dml_project_version(ctx->asic_id.hw_internal_rev); ctx->dc_bios->regs = &bios_regs; pool->base.funcs = &dcn20_res_pool_funcs; if (ASICREV_IS_NAVI14_M(ctx->asic_id.hw_internal_rev)) { pool->base.res_cap = &res_cap_nv14; pool->base.pipe_count = 5; pool->base.mpcc_count = 5; } else { pool->base.res_cap = &res_cap_nv10; pool->base.pipe_count = 6; pool->base.mpcc_count = 6; } /************************************************* * Resource + asic cap harcoding * *************************************************/ pool->base.underlay_pipe_index = NO_UNDERLAY_PIPE; dc->caps.max_downscale_ratio = 200; dc->caps.i2c_speed_in_khz = 100; dc->caps.max_cursor_size = 256; dc->caps.dmdata_alloc_size = 2048; dc->caps.max_slave_planes = 1; dc->caps.post_blend_color_processing = true; dc->caps.force_dp_tps4_for_cp2520 = true; dc->caps.hw_3d_lut = true; if (dc->ctx->dce_environment == DCE_ENV_PRODUCTION_DRV) { dc->debug = debug_defaults_drv; } else if (dc->ctx->dce_environment == DCE_ENV_FPGA_MAXIMUS) { pool->base.pipe_count = 4; pool->base.mpcc_count = pool->base.pipe_count; dc->debug = debug_defaults_diags; } else { dc->debug = debug_defaults_diags; } //dcn2.0x dc->work_arounds.dedcn20_305_wa = true; // Init the vm_helper if (dc->vm_helper) vm_helper_init(dc->vm_helper, 16); /************************************************* * Create resources * *************************************************/ pool->base.clock_sources[DCN20_CLK_SRC_PLL0] = dcn20_clock_source_create(ctx, ctx->dc_bios, CLOCK_SOURCE_COMBO_PHY_PLL0, &clk_src_regs[0], false); pool->base.clock_sources[DCN20_CLK_SRC_PLL1] = dcn20_clock_source_create(ctx, ctx->dc_bios, CLOCK_SOURCE_COMBO_PHY_PLL1, &clk_src_regs[1], false); pool->base.clock_sources[DCN20_CLK_SRC_PLL2] = dcn20_clock_source_create(ctx, ctx->dc_bios, CLOCK_SOURCE_COMBO_PHY_PLL2, &clk_src_regs[2], false); pool->base.clock_sources[DCN20_CLK_SRC_PLL3] = dcn20_clock_source_create(ctx, ctx->dc_bios, CLOCK_SOURCE_COMBO_PHY_PLL3, &clk_src_regs[3], false); pool->base.clock_sources[DCN20_CLK_SRC_PLL4] = dcn20_clock_source_create(ctx, ctx->dc_bios, CLOCK_SOURCE_COMBO_PHY_PLL4, &clk_src_regs[4], false); pool->base.clock_sources[DCN20_CLK_SRC_PLL5] = dcn20_clock_source_create(ctx, ctx->dc_bios, CLOCK_SOURCE_COMBO_PHY_PLL5, &clk_src_regs[5], false); pool->base.clk_src_count = DCN20_CLK_SRC_TOTAL; /* todo: not reuse phy_pll registers */ pool->base.dp_clock_source = dcn20_clock_source_create(ctx, ctx->dc_bios, CLOCK_SOURCE_ID_DP_DTO, &clk_src_regs[0], true); for (i = 0; i < pool->base.clk_src_count; i++) { if (pool->base.clock_sources[i] == NULL) { dm_error("DC: failed to create clock sources!\n"); BREAK_TO_DEBUGGER(); goto create_fail; } } pool->base.dccg = dccg2_create(ctx, &dccg_regs, &dccg_shift, &dccg_mask); if (pool->base.dccg == NULL) { dm_error("DC: failed to create dccg!\n"); BREAK_TO_DEBUGGER(); goto create_fail; } pool->base.dmcu = dcn20_dmcu_create(ctx, &dmcu_regs, &dmcu_shift, &dmcu_mask); if (pool->base.dmcu == NULL) { dm_error("DC: failed to create dmcu!\n"); BREAK_TO_DEBUGGER(); goto create_fail; } pool->base.abm = dce_abm_create(ctx, &abm_regs, &abm_shift, &abm_mask); if (pool->base.abm == NULL) { dm_error("DC: failed to create abm!\n"); BREAK_TO_DEBUGGER(); goto create_fail; } pool->base.pp_smu = dcn20_pp_smu_create(ctx); if (!init_soc_bounding_box(dc, pool)) { dm_error("DC: failed to initialize soc bounding box!\n"); BREAK_TO_DEBUGGER(); goto create_fail; } dml_init_instance(&dc->dml, loaded_bb, loaded_ip, dml_project_version); if (!dc->debug.disable_pplib_wm_range) { struct pp_smu_wm_range_sets ranges = {0}; int i = 0; ranges.num_reader_wm_sets = 0; if (loaded_bb->num_states == 1) { ranges.reader_wm_sets[0].wm_inst = i; ranges.reader_wm_sets[0].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN; ranges.reader_wm_sets[0].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX; ranges.reader_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN; ranges.reader_wm_sets[0].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX; ranges.num_reader_wm_sets = 1; } else if (loaded_bb->num_states > 1) { for (i = 0; i < 4 && i < loaded_bb->num_states; i++) { ranges.reader_wm_sets[i].wm_inst = i; ranges.reader_wm_sets[i].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN; ranges.reader_wm_sets[i].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX; ranges.reader_wm_sets[i].min_fill_clk_mhz = (i > 0) ? (loaded_bb->clock_limits[i - 1].dram_speed_mts / 16) + 1 : 0; ranges.reader_wm_sets[i].max_fill_clk_mhz = loaded_bb->clock_limits[i].dram_speed_mts / 16; ranges.num_reader_wm_sets = i + 1; } ranges.reader_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN; ranges.reader_wm_sets[ranges.num_reader_wm_sets - 1].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX; } ranges.num_writer_wm_sets = 1; ranges.writer_wm_sets[0].wm_inst = 0; ranges.writer_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN; ranges.writer_wm_sets[0].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX; ranges.writer_wm_sets[0].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN; ranges.writer_wm_sets[0].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX; /* Notify PP Lib/SMU which Watermarks to use for which clock ranges */ if (pool->base.pp_smu->nv_funcs.set_wm_ranges) pool->base.pp_smu->nv_funcs.set_wm_ranges(&pool->base.pp_smu->nv_funcs.pp_smu, &ranges); } init_data.ctx = dc->ctx; pool->base.irqs = dal_irq_service_dcn20_create(&init_data); if (!pool->base.irqs) goto create_fail; /* mem input -> ipp -> dpp -> opp -> TG */ for (i = 0; i < pool->base.pipe_count; i++) { pool->base.hubps[i] = dcn20_hubp_create(ctx, i); if (pool->base.hubps[i] == NULL) { BREAK_TO_DEBUGGER(); dm_error( "DC: failed to create memory input!\n"); goto create_fail; } pool->base.ipps[i] = dcn20_ipp_create(ctx, i); if (pool->base.ipps[i] == NULL) { BREAK_TO_DEBUGGER(); dm_error( "DC: failed to create input pixel processor!\n"); goto create_fail; } pool->base.dpps[i] = dcn20_dpp_create(ctx, i); if (pool->base.dpps[i] == NULL) { BREAK_TO_DEBUGGER(); dm_error( "DC: failed to create dpps!\n"); goto create_fail; } } for (i = 0; i < pool->base.res_cap->num_ddc; i++) { pool->base.engines[i] = dcn20_aux_engine_create(ctx, i); if (pool->base.engines[i] == NULL) { BREAK_TO_DEBUGGER(); dm_error( "DC:failed to create aux engine!!\n"); goto create_fail; } pool->base.hw_i2cs[i] = dcn20_i2c_hw_create(ctx, i); if (pool->base.hw_i2cs[i] == NULL) { BREAK_TO_DEBUGGER(); dm_error( "DC:failed to create hw i2c!!\n"); goto create_fail; } pool->base.sw_i2cs[i] = NULL; } for (i = 0; i < pool->base.res_cap->num_opp; i++) { pool->base.opps[i] = dcn20_opp_create(ctx, i); if (pool->base.opps[i] == NULL) { BREAK_TO_DEBUGGER(); dm_error( "DC: failed to create output pixel processor!\n"); goto create_fail; } } for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) { pool->base.timing_generators[i] = dcn20_timing_generator_create( ctx, i); if (pool->base.timing_generators[i] == NULL) { BREAK_TO_DEBUGGER(); dm_error("DC: failed to create tg!\n"); goto create_fail; } } pool->base.timing_generator_count = i; pool->base.mpc = dcn20_mpc_create(ctx); if (pool->base.mpc == NULL) { BREAK_TO_DEBUGGER(); dm_error("DC: failed to create mpc!\n"); goto create_fail; } pool->base.hubbub = dcn20_hubbub_create(ctx); if (pool->base.hubbub == NULL) { BREAK_TO_DEBUGGER(); dm_error("DC: failed to create hubbub!\n"); goto create_fail; } #ifdef CONFIG_DRM_AMD_DC_DSC_SUPPORT for (i = 0; i < pool->base.res_cap->num_dsc; i++) { pool->base.dscs[i] = dcn20_dsc_create(ctx, i); if (pool->base.dscs[i] == NULL) { BREAK_TO_DEBUGGER(); dm_error("DC: failed to create display stream compressor %d!\n", i); goto create_fail; } } #endif if (!dcn20_dwbc_create(ctx, &pool->base)) { BREAK_TO_DEBUGGER(); dm_error("DC: failed to create dwbc!\n"); goto create_fail; } if (!dcn20_mmhubbub_create(ctx, &pool->base)) { BREAK_TO_DEBUGGER(); dm_error("DC: failed to create mcif_wb!\n"); goto create_fail; } if (!resource_construct(num_virtual_links, dc, &pool->base, (!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment) ? &res_create_funcs : &res_create_maximus_funcs))) goto create_fail; dcn20_hw_sequencer_construct(dc); dc->caps.max_planes = pool->base.pipe_count; for (i = 0; i < dc->caps.max_planes; ++i) dc->caps.planes[i] = plane_cap; dc->cap_funcs = cap_funcs; return true; create_fail: destruct(pool); return false; } struct resource_pool *dcn20_create_resource_pool( const struct dc_init_data *init_data, struct dc *dc) { struct dcn20_resource_pool *pool = kzalloc(sizeof(struct dcn20_resource_pool), GFP_KERNEL); if (!pool) return NULL; if (construct(init_data->num_virtual_links, dc, pool)) return &pool->base; BREAK_TO_DEBUGGER(); kfree(pool); return NULL; }