/* * Copyright 2020 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #define SWSMU_CODE_LAYER_L2 #include "amdgpu.h" #include "amdgpu_smu.h" #include "smu_v13_0.h" #include "smu13_driver_if_yellow_carp.h" #include "yellow_carp_ppt.h" #include "smu_v13_0_1_ppsmc.h" #include "smu_v13_0_1_pmfw.h" #include "smu_cmn.h" /* * DO NOT use these for err/warn/info/debug messages. * Use dev_err, dev_warn, dev_info and dev_dbg instead. * They are more MGPU friendly. */ #undef pr_err #undef pr_warn #undef pr_info #undef pr_debug #define FEATURE_MASK(feature) (1ULL << feature) #define SMC_DPM_FEATURE ( \ FEATURE_MASK(FEATURE_CCLK_DPM_BIT) | \ FEATURE_MASK(FEATURE_VCN_DPM_BIT) | \ FEATURE_MASK(FEATURE_FCLK_DPM_BIT) | \ FEATURE_MASK(FEATURE_SOCCLK_DPM_BIT) | \ FEATURE_MASK(FEATURE_MP0CLK_DPM_BIT) | \ FEATURE_MASK(FEATURE_LCLK_DPM_BIT) | \ FEATURE_MASK(FEATURE_SHUBCLK_DPM_BIT) | \ FEATURE_MASK(FEATURE_DCFCLK_DPM_BIT)| \ FEATURE_MASK(FEATURE_GFX_DPM_BIT)) static struct cmn2asic_msg_mapping yellow_carp_message_map[SMU_MSG_MAX_COUNT] = { MSG_MAP(TestMessage, PPSMC_MSG_TestMessage, 1), MSG_MAP(GetSmuVersion, PPSMC_MSG_GetSmuVersion, 1), MSG_MAP(GetDriverIfVersion, PPSMC_MSG_GetDriverIfVersion, 1), MSG_MAP(EnableGfxOff, PPSMC_MSG_EnableGfxOff, 1), MSG_MAP(AllowGfxOff, PPSMC_MSG_AllowGfxOff, 1), MSG_MAP(DisallowGfxOff, PPSMC_MSG_DisallowGfxOff, 1), MSG_MAP(PowerDownVcn, PPSMC_MSG_PowerDownVcn, 1), MSG_MAP(PowerUpVcn, PPSMC_MSG_PowerUpVcn, 1), MSG_MAP(SetHardMinVcn, PPSMC_MSG_SetHardMinVcn, 1), MSG_MAP(PrepareMp1ForUnload, PPSMC_MSG_PrepareMp1ForUnload, 1), MSG_MAP(SetDriverDramAddrHigh, PPSMC_MSG_SetDriverDramAddrHigh, 1), MSG_MAP(SetDriverDramAddrLow, PPSMC_MSG_SetDriverDramAddrLow, 1), MSG_MAP(TransferTableSmu2Dram, PPSMC_MSG_TransferTableSmu2Dram, 1), MSG_MAP(TransferTableDram2Smu, PPSMC_MSG_TransferTableDram2Smu, 1), MSG_MAP(GfxDeviceDriverReset, PPSMC_MSG_GfxDeviceDriverReset, 1), MSG_MAP(GetEnabledSmuFeatures, PPSMC_MSG_GetEnabledSmuFeatures, 1), MSG_MAP(SetHardMinSocclkByFreq, PPSMC_MSG_SetHardMinSocclkByFreq, 1), MSG_MAP(SetSoftMinVcn, PPSMC_MSG_SetSoftMinVcn, 1), MSG_MAP(GetGfxclkFrequency, PPSMC_MSG_GetGfxclkFrequency, 1), MSG_MAP(GetFclkFrequency, PPSMC_MSG_GetFclkFrequency, 1), MSG_MAP(SetSoftMaxGfxClk, PPSMC_MSG_SetSoftMaxGfxClk, 1), MSG_MAP(SetHardMinGfxClk, PPSMC_MSG_SetHardMinGfxClk, 1), MSG_MAP(SetSoftMaxSocclkByFreq, PPSMC_MSG_SetSoftMaxSocclkByFreq, 1), MSG_MAP(SetSoftMaxFclkByFreq, PPSMC_MSG_SetSoftMaxFclkByFreq, 1), MSG_MAP(SetSoftMaxVcn, PPSMC_MSG_SetSoftMaxVcn, 1), MSG_MAP(SetPowerLimitPercentage, PPSMC_MSG_SetPowerLimitPercentage, 1), MSG_MAP(PowerDownJpeg, PPSMC_MSG_PowerDownJpeg, 1), MSG_MAP(PowerUpJpeg, PPSMC_MSG_PowerUpJpeg, 1), MSG_MAP(SetHardMinFclkByFreq, PPSMC_MSG_SetHardMinFclkByFreq, 1), MSG_MAP(SetSoftMinSocclkByFreq, PPSMC_MSG_SetSoftMinSocclkByFreq, 1), }; static struct cmn2asic_mapping yellow_carp_feature_mask_map[SMU_FEATURE_COUNT] = { FEA_MAP(CCLK_DPM), FEA_MAP(FAN_CONTROLLER), FEA_MAP(PPT), FEA_MAP(TDC), FEA_MAP(THERMAL), FEA_MAP(ULV), FEA_MAP(VCN_DPM), FEA_MAP_REVERSE(FCLK), FEA_MAP_REVERSE(SOCCLK), FEA_MAP(LCLK_DPM), FEA_MAP(SHUBCLK_DPM), FEA_MAP(DCFCLK_DPM), FEA_MAP_HALF_REVERSE(GFX), FEA_MAP(DS_GFXCLK), FEA_MAP(DS_SOCCLK), FEA_MAP(DS_LCLK), FEA_MAP(DS_DCFCLK), FEA_MAP(DS_FCLK), FEA_MAP(DS_MP1CLK), FEA_MAP(DS_MP0CLK), FEA_MAP(GFX_DEM), FEA_MAP(PSI), FEA_MAP(PROCHOT), FEA_MAP(CPUOFF), FEA_MAP(STAPM), FEA_MAP(S0I3), FEA_MAP(PERF_LIMIT), FEA_MAP(CORE_DLDO), FEA_MAP(RSMU_LOW_POWER), FEA_MAP(SMN_LOW_POWER), FEA_MAP(THM_LOW_POWER), FEA_MAP(SMUIO_LOW_POWER), FEA_MAP(MP1_LOW_POWER), FEA_MAP(DS_VCN), FEA_MAP(CPPC), FEA_MAP(DF_CSTATES), FEA_MAP(MSMU_LOW_POWER), FEA_MAP(ATHUB_PG), }; static struct cmn2asic_mapping yellow_carp_table_map[SMU_TABLE_COUNT] = { TAB_MAP_VALID(WATERMARKS), TAB_MAP_VALID(SMU_METRICS), TAB_MAP_VALID(CUSTOM_DPM), TAB_MAP_VALID(DPMCLOCKS), }; static int yellow_carp_init_smc_tables(struct smu_context *smu) { struct smu_table_context *smu_table = &smu->smu_table; struct smu_table *tables = smu_table->tables; SMU_TABLE_INIT(tables, SMU_TABLE_WATERMARKS, sizeof(Watermarks_t), PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); SMU_TABLE_INIT(tables, SMU_TABLE_DPMCLOCKS, sizeof(DpmClocks_t), PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); SMU_TABLE_INIT(tables, SMU_TABLE_SMU_METRICS, sizeof(SmuMetrics_t), PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); smu_table->clocks_table = kzalloc(sizeof(DpmClocks_t), GFP_KERNEL); if (!smu_table->clocks_table) goto err0_out; smu_table->metrics_table = kzalloc(sizeof(SmuMetrics_t), GFP_KERNEL); if (!smu_table->metrics_table) goto err1_out; smu_table->metrics_time = 0; smu_table->watermarks_table = kzalloc(sizeof(Watermarks_t), GFP_KERNEL); if (!smu_table->watermarks_table) goto err2_out; smu_table->gpu_metrics_table_size = sizeof(struct gpu_metrics_v2_1); smu_table->gpu_metrics_table = kzalloc(smu_table->gpu_metrics_table_size, GFP_KERNEL); if (!smu_table->gpu_metrics_table) goto err3_out; return 0; err3_out: kfree(smu_table->watermarks_table); err2_out: kfree(smu_table->metrics_table); err1_out: kfree(smu_table->clocks_table); err0_out: return -ENOMEM; } static int yellow_carp_fini_smc_tables(struct smu_context *smu) { struct smu_table_context *smu_table = &smu->smu_table; kfree(smu_table->clocks_table); smu_table->clocks_table = NULL; kfree(smu_table->metrics_table); smu_table->metrics_table = NULL; kfree(smu_table->watermarks_table); smu_table->watermarks_table = NULL; return 0; } static int yellow_carp_system_features_control(struct smu_context *smu, bool en) { struct smu_feature *feature = &smu->smu_feature; struct amdgpu_device *adev = smu->adev; uint32_t feature_mask[2]; int ret = 0; if (!en && !adev->in_s0ix) ret = smu_cmn_send_smc_msg(smu, SMU_MSG_PrepareMp1ForUnload, NULL); bitmap_zero(feature->enabled, feature->feature_num); bitmap_zero(feature->supported, feature->feature_num); if (!en) return ret; ret = smu_cmn_get_enabled_32_bits_mask(smu, feature_mask, 2); if (ret) return ret; bitmap_copy(feature->enabled, (unsigned long *)&feature_mask, feature->feature_num); bitmap_copy(feature->supported, (unsigned long *)&feature_mask, feature->feature_num); return 0; } static int yellow_carp_dpm_set_vcn_enable(struct smu_context *smu, bool enable) { int ret = 0; /* vcn dpm on is a prerequisite for vcn power gate messages */ if (enable) ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_PowerUpVcn, 0, NULL); else ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_PowerDownVcn, 0, NULL); return ret; } static int yellow_carp_dpm_set_jpeg_enable(struct smu_context *smu, bool enable) { int ret = 0; if (enable) ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_PowerUpJpeg, 0, NULL); else ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_PowerDownJpeg, 0, NULL); return ret; } static bool yellow_carp_is_dpm_running(struct smu_context *smu) { int ret = 0; uint32_t feature_mask[2]; uint64_t feature_enabled; ret = smu_cmn_get_enabled_32_bits_mask(smu, feature_mask, 2); if (ret) return false; feature_enabled = (uint64_t)feature_mask[1] << 32 | feature_mask[0]; return !!(feature_enabled & SMC_DPM_FEATURE); } static int yellow_carp_post_smu_init(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; int ret = 0; /* allow message will be sent after enable message on Yellow Carp*/ ret = smu_cmn_send_smc_msg(smu, SMU_MSG_EnableGfxOff, NULL); if (ret) dev_err(adev->dev, "Failed to Enable GfxOff!\n"); return ret; } static int yellow_carp_mode_reset(struct smu_context *smu, int type) { int ret = 0, index = 0; index = smu_cmn_to_asic_specific_index(smu, CMN2ASIC_MAPPING_MSG, SMU_MSG_GfxDeviceDriverReset); if (index < 0) return index == -EACCES ? 0 : index; ret = smu_cmn_send_smc_msg_with_param(smu, (uint16_t)index, type, NULL); if (ret) dev_err(smu->adev->dev, "Failed to mode reset!\n"); return ret; } static int yellow_carp_mode2_reset(struct smu_context *smu) { return yellow_carp_mode_reset(smu, SMU_RESET_MODE_2); } static int yellow_carp_get_smu_metrics_data(struct smu_context *smu, MetricsMember_t member, uint32_t *value) { struct smu_table_context *smu_table = &smu->smu_table; SmuMetrics_t *metrics = (SmuMetrics_t *)smu_table->metrics_table; int ret = 0; mutex_lock(&smu->metrics_lock); ret = smu_cmn_get_metrics_table_locked(smu, NULL, false); if (ret) { mutex_unlock(&smu->metrics_lock); return ret; } switch (member) { case METRICS_AVERAGE_GFXCLK: *value = metrics->GfxclkFrequency; break; case METRICS_AVERAGE_SOCCLK: *value = metrics->SocclkFrequency; break; case METRICS_AVERAGE_VCLK: *value = metrics->VclkFrequency; break; case METRICS_AVERAGE_DCLK: *value = metrics->DclkFrequency; break; case METRICS_AVERAGE_UCLK: *value = metrics->MemclkFrequency; break; case METRICS_AVERAGE_GFXACTIVITY: *value = metrics->GfxActivity / 100; break; case METRICS_AVERAGE_VCNACTIVITY: *value = metrics->UvdActivity; break; case METRICS_AVERAGE_SOCKETPOWER: *value = (metrics->CurrentSocketPower << 8) / 1000; break; case METRICS_TEMPERATURE_EDGE: *value = metrics->GfxTemperature / 100 * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; break; case METRICS_TEMPERATURE_HOTSPOT: *value = metrics->SocTemperature / 100 * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; break; case METRICS_THROTTLER_STATUS: *value = metrics->ThrottlerStatus; break; case METRICS_VOLTAGE_VDDGFX: *value = metrics->Voltage[0]; break; case METRICS_VOLTAGE_VDDSOC: *value = metrics->Voltage[1]; break; case METRICS_SS_APU_SHARE: /* return the percentage of APU power with respect to APU's power limit. * percentage is reported, this isn't boost value. Smartshift power * boost/shift is only when the percentage is more than 100. */ if (metrics->StapmOpnLimit > 0) *value = (metrics->ApuPower * 100) / metrics->StapmOpnLimit; else *value = 0; break; case METRICS_SS_DGPU_SHARE: /* return the percentage of dGPU power with respect to dGPU's power limit. * percentage is reported, this isn't boost value. Smartshift power * boost/shift is only when the percentage is more than 100. */ if ((metrics->dGpuPower > 0) && (metrics->StapmCurrentLimit > metrics->StapmOpnLimit)) *value = (metrics->dGpuPower * 100) / (metrics->StapmCurrentLimit - metrics->StapmOpnLimit); else *value = 0; break; default: *value = UINT_MAX; break; } mutex_unlock(&smu->metrics_lock); return ret; } static int yellow_carp_read_sensor(struct smu_context *smu, enum amd_pp_sensors sensor, void *data, uint32_t *size) { int ret = 0; if (!data || !size) return -EINVAL; mutex_lock(&smu->sensor_lock); switch (sensor) { case AMDGPU_PP_SENSOR_GPU_LOAD: ret = yellow_carp_get_smu_metrics_data(smu, METRICS_AVERAGE_GFXACTIVITY, (uint32_t *)data); *size = 4; break; case AMDGPU_PP_SENSOR_GPU_POWER: ret = yellow_carp_get_smu_metrics_data(smu, METRICS_AVERAGE_SOCKETPOWER, (uint32_t *)data); *size = 4; break; case AMDGPU_PP_SENSOR_EDGE_TEMP: ret = yellow_carp_get_smu_metrics_data(smu, METRICS_TEMPERATURE_EDGE, (uint32_t *)data); *size = 4; break; case AMDGPU_PP_SENSOR_HOTSPOT_TEMP: ret = yellow_carp_get_smu_metrics_data(smu, METRICS_TEMPERATURE_HOTSPOT, (uint32_t *)data); *size = 4; break; case AMDGPU_PP_SENSOR_GFX_MCLK: ret = yellow_carp_get_smu_metrics_data(smu, METRICS_AVERAGE_UCLK, (uint32_t *)data); *(uint32_t *)data *= 100; *size = 4; break; case AMDGPU_PP_SENSOR_GFX_SCLK: ret = yellow_carp_get_smu_metrics_data(smu, METRICS_AVERAGE_GFXCLK, (uint32_t *)data); *(uint32_t *)data *= 100; *size = 4; break; case AMDGPU_PP_SENSOR_VDDGFX: ret = yellow_carp_get_smu_metrics_data(smu, METRICS_VOLTAGE_VDDGFX, (uint32_t *)data); *size = 4; break; case AMDGPU_PP_SENSOR_VDDNB: ret = yellow_carp_get_smu_metrics_data(smu, METRICS_VOLTAGE_VDDSOC, (uint32_t *)data); *size = 4; break; case AMDGPU_PP_SENSOR_SS_APU_SHARE: ret = yellow_carp_get_smu_metrics_data(smu, METRICS_SS_APU_SHARE, (uint32_t *)data); *size = 4; break; case AMDGPU_PP_SENSOR_SS_DGPU_SHARE: ret = yellow_carp_get_smu_metrics_data(smu, METRICS_SS_DGPU_SHARE, (uint32_t *)data); *size = 4; break; default: ret = -EOPNOTSUPP; break; } mutex_unlock(&smu->sensor_lock); return ret; } static int yellow_carp_set_watermarks_table(struct smu_context *smu, struct pp_smu_wm_range_sets *clock_ranges) { int i; int ret = 0; Watermarks_t *table = smu->smu_table.watermarks_table; if (!table || !clock_ranges) return -EINVAL; if (clock_ranges) { if (clock_ranges->num_reader_wm_sets > NUM_WM_RANGES || clock_ranges->num_writer_wm_sets > NUM_WM_RANGES) return -EINVAL; for (i = 0; i < clock_ranges->num_reader_wm_sets; i++) { table->WatermarkRow[WM_DCFCLK][i].MinClock = clock_ranges->reader_wm_sets[i].min_drain_clk_mhz; table->WatermarkRow[WM_DCFCLK][i].MaxClock = clock_ranges->reader_wm_sets[i].max_drain_clk_mhz; table->WatermarkRow[WM_DCFCLK][i].MinMclk = clock_ranges->reader_wm_sets[i].min_fill_clk_mhz; table->WatermarkRow[WM_DCFCLK][i].MaxMclk = clock_ranges->reader_wm_sets[i].max_fill_clk_mhz; table->WatermarkRow[WM_DCFCLK][i].WmSetting = clock_ranges->reader_wm_sets[i].wm_inst; } for (i = 0; i < clock_ranges->num_writer_wm_sets; i++) { table->WatermarkRow[WM_SOCCLK][i].MinClock = clock_ranges->writer_wm_sets[i].min_fill_clk_mhz; table->WatermarkRow[WM_SOCCLK][i].MaxClock = clock_ranges->writer_wm_sets[i].max_fill_clk_mhz; table->WatermarkRow[WM_SOCCLK][i].MinMclk = clock_ranges->writer_wm_sets[i].min_drain_clk_mhz; table->WatermarkRow[WM_SOCCLK][i].MaxMclk = clock_ranges->writer_wm_sets[i].max_drain_clk_mhz; table->WatermarkRow[WM_SOCCLK][i].WmSetting = clock_ranges->writer_wm_sets[i].wm_inst; } smu->watermarks_bitmap |= WATERMARKS_EXIST; } /* pass data to smu controller */ if ((smu->watermarks_bitmap & WATERMARKS_EXIST) && !(smu->watermarks_bitmap & WATERMARKS_LOADED)) { ret = smu_cmn_write_watermarks_table(smu); if (ret) { dev_err(smu->adev->dev, "Failed to update WMTABLE!"); return ret; } smu->watermarks_bitmap |= WATERMARKS_LOADED; } return 0; } static ssize_t yellow_carp_get_gpu_metrics(struct smu_context *smu, void **table) { struct smu_table_context *smu_table = &smu->smu_table; struct gpu_metrics_v2_1 *gpu_metrics = (struct gpu_metrics_v2_1 *)smu_table->gpu_metrics_table; SmuMetrics_t metrics; int ret = 0; ret = smu_cmn_get_metrics_table(smu, &metrics, true); if (ret) return ret; smu_cmn_init_soft_gpu_metrics(gpu_metrics, 2, 1); gpu_metrics->temperature_gfx = metrics.GfxTemperature; gpu_metrics->temperature_soc = metrics.SocTemperature; memcpy(&gpu_metrics->temperature_core[0], &metrics.CoreTemperature[0], sizeof(uint16_t) * 8); gpu_metrics->temperature_l3[0] = metrics.L3Temperature; gpu_metrics->average_gfx_activity = metrics.GfxActivity; gpu_metrics->average_mm_activity = metrics.UvdActivity; gpu_metrics->average_socket_power = metrics.CurrentSocketPower; gpu_metrics->average_gfx_power = metrics.Power[0]; gpu_metrics->average_soc_power = metrics.Power[1]; memcpy(&gpu_metrics->average_core_power[0], &metrics.CorePower[0], sizeof(uint16_t) * 8); gpu_metrics->average_gfxclk_frequency = metrics.GfxclkFrequency; gpu_metrics->average_socclk_frequency = metrics.SocclkFrequency; gpu_metrics->average_uclk_frequency = metrics.MemclkFrequency; gpu_metrics->average_fclk_frequency = metrics.MemclkFrequency; gpu_metrics->average_vclk_frequency = metrics.VclkFrequency; gpu_metrics->average_dclk_frequency = metrics.DclkFrequency; memcpy(&gpu_metrics->current_coreclk[0], &metrics.CoreFrequency[0], sizeof(uint16_t) * 8); gpu_metrics->current_l3clk[0] = metrics.L3Frequency; gpu_metrics->throttle_status = metrics.ThrottlerStatus; gpu_metrics->system_clock_counter = ktime_get_boottime_ns(); *table = (void *)gpu_metrics; return sizeof(struct gpu_metrics_v2_1); } static int yellow_carp_set_default_dpm_tables(struct smu_context *smu) { struct smu_table_context *smu_table = &smu->smu_table; return smu_cmn_update_table(smu, SMU_TABLE_DPMCLOCKS, 0, smu_table->clocks_table, false); } static int yellow_carp_od_edit_dpm_table(struct smu_context *smu, enum PP_OD_DPM_TABLE_COMMAND type, long input[], uint32_t size) { struct smu_dpm_context *smu_dpm = &(smu->smu_dpm); int ret = 0; /* Only allowed in manual mode */ if (smu_dpm->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL) return -EINVAL; switch (type) { case PP_OD_EDIT_SCLK_VDDC_TABLE: if (size != 2) { dev_err(smu->adev->dev, "Input parameter number not correct\n"); return -EINVAL; } if (input[0] == 0) { if (input[1] < smu->gfx_default_hard_min_freq) { dev_warn(smu->adev->dev, "Fine grain setting minimum sclk (%ld) MHz is less than the minimum allowed (%d) MHz\n", input[1], smu->gfx_default_hard_min_freq); return -EINVAL; } smu->gfx_actual_hard_min_freq = input[1]; } else if (input[0] == 1) { if (input[1] > smu->gfx_default_soft_max_freq) { dev_warn(smu->adev->dev, "Fine grain setting maximum sclk (%ld) MHz is greater than the maximum allowed (%d) MHz\n", input[1], smu->gfx_default_soft_max_freq); return -EINVAL; } smu->gfx_actual_soft_max_freq = input[1]; } else { return -EINVAL; } break; case PP_OD_RESTORE_DEFAULT_TABLE: if (size != 0) { dev_err(smu->adev->dev, "Input parameter number not correct\n"); return -EINVAL; } else { smu->gfx_actual_hard_min_freq = smu->gfx_default_hard_min_freq; smu->gfx_actual_soft_max_freq = smu->gfx_default_soft_max_freq; } break; case PP_OD_COMMIT_DPM_TABLE: if (size != 0) { dev_err(smu->adev->dev, "Input parameter number not correct\n"); return -EINVAL; } else { if (smu->gfx_actual_hard_min_freq > smu->gfx_actual_soft_max_freq) { dev_err(smu->adev->dev, "The setting minimum sclk (%d) MHz is greater than the setting maximum sclk (%d) MHz\n", smu->gfx_actual_hard_min_freq, smu->gfx_actual_soft_max_freq); return -EINVAL; } ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetHardMinGfxClk, smu->gfx_actual_hard_min_freq, NULL); if (ret) { dev_err(smu->adev->dev, "Set hard min sclk failed!"); return ret; } ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMaxGfxClk, smu->gfx_actual_soft_max_freq, NULL); if (ret) { dev_err(smu->adev->dev, "Set soft max sclk failed!"); return ret; } } break; default: return -ENOSYS; } return ret; } static int yellow_carp_get_current_clk_freq(struct smu_context *smu, enum smu_clk_type clk_type, uint32_t *value) { MetricsMember_t member_type; switch (clk_type) { case SMU_SOCCLK: member_type = METRICS_AVERAGE_SOCCLK; break; case SMU_VCLK: member_type = METRICS_AVERAGE_VCLK; break; case SMU_DCLK: member_type = METRICS_AVERAGE_DCLK; break; case SMU_MCLK: member_type = METRICS_AVERAGE_UCLK; break; case SMU_FCLK: return smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_GetFclkFrequency, 0, value); case SMU_GFXCLK: case SMU_SCLK: return smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_GetGfxclkFrequency, 0, value); break; default: return -EINVAL; } return yellow_carp_get_smu_metrics_data(smu, member_type, value); } static int yellow_carp_get_dpm_level_count(struct smu_context *smu, enum smu_clk_type clk_type, uint32_t *count) { DpmClocks_t *clk_table = smu->smu_table.clocks_table; switch (clk_type) { case SMU_SOCCLK: *count = clk_table->NumSocClkLevelsEnabled; break; case SMU_VCLK: *count = clk_table->VcnClkLevelsEnabled; break; case SMU_DCLK: *count = clk_table->VcnClkLevelsEnabled; break; case SMU_MCLK: *count = clk_table->NumDfPstatesEnabled; break; case SMU_FCLK: *count = clk_table->NumDfPstatesEnabled; break; default: break; } return 0; } static int yellow_carp_get_dpm_freq_by_index(struct smu_context *smu, enum smu_clk_type clk_type, uint32_t dpm_level, uint32_t *freq) { DpmClocks_t *clk_table = smu->smu_table.clocks_table; if (!clk_table || clk_type >= SMU_CLK_COUNT) return -EINVAL; switch (clk_type) { case SMU_SOCCLK: if (dpm_level >= clk_table->NumSocClkLevelsEnabled) return -EINVAL; *freq = clk_table->SocClocks[dpm_level]; break; case SMU_VCLK: if (dpm_level >= clk_table->VcnClkLevelsEnabled) return -EINVAL; *freq = clk_table->VClocks[dpm_level]; break; case SMU_DCLK: if (dpm_level >= clk_table->VcnClkLevelsEnabled) return -EINVAL; *freq = clk_table->DClocks[dpm_level]; break; case SMU_UCLK: case SMU_MCLK: if (dpm_level >= clk_table->NumDfPstatesEnabled) return -EINVAL; *freq = clk_table->DfPstateTable[dpm_level].MemClk; break; case SMU_FCLK: if (dpm_level >= clk_table->NumDfPstatesEnabled) return -EINVAL; *freq = clk_table->DfPstateTable[dpm_level].FClk; break; default: return -EINVAL; } return 0; } static bool yellow_carp_clk_dpm_is_enabled(struct smu_context *smu, enum smu_clk_type clk_type) { enum smu_feature_mask feature_id = 0; switch (clk_type) { case SMU_MCLK: case SMU_UCLK: case SMU_FCLK: feature_id = SMU_FEATURE_DPM_FCLK_BIT; break; case SMU_GFXCLK: case SMU_SCLK: feature_id = SMU_FEATURE_DPM_GFXCLK_BIT; break; case SMU_SOCCLK: feature_id = SMU_FEATURE_DPM_SOCCLK_BIT; break; case SMU_VCLK: case SMU_DCLK: feature_id = SMU_FEATURE_VCN_DPM_BIT; break; default: return true; } return smu_cmn_feature_is_enabled(smu, feature_id); } static int yellow_carp_get_dpm_ultimate_freq(struct smu_context *smu, enum smu_clk_type clk_type, uint32_t *min, uint32_t *max) { DpmClocks_t *clk_table = smu->smu_table.clocks_table; uint32_t clock_limit; uint32_t max_dpm_level, min_dpm_level; int ret = 0; if (!yellow_carp_clk_dpm_is_enabled(smu, clk_type)) { switch (clk_type) { case SMU_MCLK: case SMU_UCLK: clock_limit = smu->smu_table.boot_values.uclk; break; case SMU_FCLK: clock_limit = smu->smu_table.boot_values.fclk; break; case SMU_GFXCLK: case SMU_SCLK: clock_limit = smu->smu_table.boot_values.gfxclk; break; case SMU_SOCCLK: clock_limit = smu->smu_table.boot_values.socclk; break; case SMU_VCLK: clock_limit = smu->smu_table.boot_values.vclk; break; case SMU_DCLK: clock_limit = smu->smu_table.boot_values.dclk; break; default: clock_limit = 0; break; } /* clock in Mhz unit */ if (min) *min = clock_limit / 100; if (max) *max = clock_limit / 100; return 0; } if (max) { switch (clk_type) { case SMU_GFXCLK: case SMU_SCLK: *max = clk_table->MaxGfxClk; break; case SMU_MCLK: case SMU_UCLK: case SMU_FCLK: max_dpm_level = 0; break; case SMU_SOCCLK: max_dpm_level = clk_table->NumSocClkLevelsEnabled - 1; break; case SMU_VCLK: case SMU_DCLK: max_dpm_level = clk_table->VcnClkLevelsEnabled - 1; break; default: ret = -EINVAL; goto failed; } if (clk_type != SMU_GFXCLK && clk_type != SMU_SCLK) { ret = yellow_carp_get_dpm_freq_by_index(smu, clk_type, max_dpm_level, max); if (ret) goto failed; } } if (min) { switch (clk_type) { case SMU_GFXCLK: case SMU_SCLK: *min = clk_table->MinGfxClk; break; case SMU_MCLK: case SMU_UCLK: case SMU_FCLK: min_dpm_level = clk_table->NumDfPstatesEnabled - 1; break; case SMU_SOCCLK: min_dpm_level = 0; break; case SMU_VCLK: case SMU_DCLK: min_dpm_level = 0; break; default: ret = -EINVAL; goto failed; } if (clk_type != SMU_GFXCLK && clk_type != SMU_SCLK) { ret = yellow_carp_get_dpm_freq_by_index(smu, clk_type, min_dpm_level, min); if (ret) goto failed; } } failed: return ret; } static int yellow_carp_set_soft_freq_limited_range(struct smu_context *smu, enum smu_clk_type clk_type, uint32_t min, uint32_t max) { enum smu_message_type msg_set_min, msg_set_max; int ret = 0; if (!yellow_carp_clk_dpm_is_enabled(smu, clk_type)) return -EINVAL; switch (clk_type) { case SMU_GFXCLK: case SMU_SCLK: msg_set_min = SMU_MSG_SetHardMinGfxClk; msg_set_max = SMU_MSG_SetSoftMaxGfxClk; break; case SMU_FCLK: msg_set_min = SMU_MSG_SetHardMinFclkByFreq; msg_set_max = SMU_MSG_SetSoftMaxFclkByFreq; break; case SMU_SOCCLK: msg_set_min = SMU_MSG_SetHardMinSocclkByFreq; msg_set_max = SMU_MSG_SetSoftMaxSocclkByFreq; break; case SMU_VCLK: case SMU_DCLK: msg_set_min = SMU_MSG_SetHardMinVcn; msg_set_max = SMU_MSG_SetSoftMaxVcn; break; default: return -EINVAL; } ret = smu_cmn_send_smc_msg_with_param(smu, msg_set_min, min, NULL); if (ret) goto out; ret = smu_cmn_send_smc_msg_with_param(smu, msg_set_max, max, NULL); if (ret) goto out; out: return ret; } static int yellow_carp_print_clk_levels(struct smu_context *smu, enum smu_clk_type clk_type, char *buf) { int i, size = 0, ret = 0; uint32_t cur_value = 0, value = 0, count = 0; uint32_t min, max; smu_cmn_get_sysfs_buf(&buf, &size); switch (clk_type) { case SMU_OD_SCLK: size += sysfs_emit_at(buf, size, "%s:\n", "OD_SCLK"); size += sysfs_emit_at(buf, size, "0: %10uMhz\n", (smu->gfx_actual_hard_min_freq > 0) ? smu->gfx_actual_hard_min_freq : smu->gfx_default_hard_min_freq); size += sysfs_emit_at(buf, size, "1: %10uMhz\n", (smu->gfx_actual_soft_max_freq > 0) ? smu->gfx_actual_soft_max_freq : smu->gfx_default_soft_max_freq); break; case SMU_OD_RANGE: size += sysfs_emit_at(buf, size, "%s:\n", "OD_RANGE"); size += sysfs_emit_at(buf, size, "SCLK: %7uMhz %10uMhz\n", smu->gfx_default_hard_min_freq, smu->gfx_default_soft_max_freq); break; case SMU_SOCCLK: case SMU_VCLK: case SMU_DCLK: case SMU_MCLK: case SMU_FCLK: ret = yellow_carp_get_current_clk_freq(smu, clk_type, &cur_value); if (ret) goto print_clk_out; ret = yellow_carp_get_dpm_level_count(smu, clk_type, &count); if (ret) goto print_clk_out; for (i = 0; i < count; i++) { ret = yellow_carp_get_dpm_freq_by_index(smu, clk_type, i, &value); if (ret) goto print_clk_out; size += sysfs_emit_at(buf, size, "%d: %uMhz %s\n", i, value, cur_value == value ? "*" : ""); } break; case SMU_GFXCLK: case SMU_SCLK: ret = yellow_carp_get_current_clk_freq(smu, clk_type, &cur_value); if (ret) goto print_clk_out; min = (smu->gfx_actual_hard_min_freq > 0) ? smu->gfx_actual_hard_min_freq : smu->gfx_default_hard_min_freq; max = (smu->gfx_actual_soft_max_freq > 0) ? smu->gfx_actual_soft_max_freq : smu->gfx_default_soft_max_freq; if (cur_value == max) i = 2; else if (cur_value == min) i = 0; else i = 1; size += sysfs_emit_at(buf, size, "0: %uMhz %s\n", min, i == 0 ? "*" : ""); size += sysfs_emit_at(buf, size, "1: %uMhz %s\n", i == 1 ? cur_value : YELLOW_CARP_UMD_PSTATE_GFXCLK, i == 1 ? "*" : ""); size += sysfs_emit_at(buf, size, "2: %uMhz %s\n", max, i == 2 ? "*" : ""); break; default: break; } print_clk_out: return size; } static int yellow_carp_force_clk_levels(struct smu_context *smu, enum smu_clk_type clk_type, uint32_t mask) { uint32_t soft_min_level = 0, soft_max_level = 0; uint32_t min_freq = 0, max_freq = 0; int ret = 0; soft_min_level = mask ? (ffs(mask) - 1) : 0; soft_max_level = mask ? (fls(mask) - 1) : 0; switch (clk_type) { case SMU_SOCCLK: case SMU_FCLK: case SMU_VCLK: case SMU_DCLK: ret = yellow_carp_get_dpm_freq_by_index(smu, clk_type, soft_min_level, &min_freq); if (ret) goto force_level_out; ret = yellow_carp_get_dpm_freq_by_index(smu, clk_type, soft_max_level, &max_freq); if (ret) goto force_level_out; ret = yellow_carp_set_soft_freq_limited_range(smu, clk_type, min_freq, max_freq); if (ret) goto force_level_out; break; default: ret = -EINVAL; break; } force_level_out: return ret; } static int yellow_carp_set_performance_level(struct smu_context *smu, enum amd_dpm_forced_level level) { struct amdgpu_device *adev = smu->adev; uint32_t sclk_min = 0, sclk_max = 0; uint32_t fclk_min = 0, fclk_max = 0; uint32_t socclk_min = 0, socclk_max = 0; int ret = 0; switch (level) { case AMD_DPM_FORCED_LEVEL_HIGH: yellow_carp_get_dpm_ultimate_freq(smu, SMU_SCLK, NULL, &sclk_max); yellow_carp_get_dpm_ultimate_freq(smu, SMU_FCLK, NULL, &fclk_max); yellow_carp_get_dpm_ultimate_freq(smu, SMU_SOCCLK, NULL, &socclk_max); sclk_min = sclk_max; fclk_min = fclk_max; socclk_min = socclk_max; break; case AMD_DPM_FORCED_LEVEL_LOW: yellow_carp_get_dpm_ultimate_freq(smu, SMU_SCLK, &sclk_min, NULL); yellow_carp_get_dpm_ultimate_freq(smu, SMU_FCLK, &fclk_min, NULL); yellow_carp_get_dpm_ultimate_freq(smu, SMU_SOCCLK, &socclk_min, NULL); sclk_max = sclk_min; fclk_max = fclk_min; socclk_max = socclk_min; break; case AMD_DPM_FORCED_LEVEL_AUTO: yellow_carp_get_dpm_ultimate_freq(smu, SMU_SCLK, &sclk_min, &sclk_max); yellow_carp_get_dpm_ultimate_freq(smu, SMU_FCLK, &fclk_min, &fclk_max); yellow_carp_get_dpm_ultimate_freq(smu, SMU_SOCCLK, &socclk_min, &socclk_max); break; case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD: case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK: case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK: case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK: /* Temporarily do nothing since the optimal clocks haven't been provided yet */ break; case AMD_DPM_FORCED_LEVEL_MANUAL: case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT: return 0; default: dev_err(adev->dev, "Invalid performance level %d\n", level); return -EINVAL; } if (sclk_min && sclk_max) { ret = yellow_carp_set_soft_freq_limited_range(smu, SMU_SCLK, sclk_min, sclk_max); if (ret) return ret; smu->gfx_actual_hard_min_freq = sclk_min; smu->gfx_actual_soft_max_freq = sclk_max; } if (fclk_min && fclk_max) { ret = yellow_carp_set_soft_freq_limited_range(smu, SMU_FCLK, fclk_min, fclk_max); if (ret) return ret; } if (socclk_min && socclk_max) { ret = yellow_carp_set_soft_freq_limited_range(smu, SMU_SOCCLK, socclk_min, socclk_max); if (ret) return ret; } return ret; } static int yellow_carp_set_fine_grain_gfx_freq_parameters(struct smu_context *smu) { DpmClocks_t *clk_table = smu->smu_table.clocks_table; smu->gfx_default_hard_min_freq = clk_table->MinGfxClk; smu->gfx_default_soft_max_freq = clk_table->MaxGfxClk; smu->gfx_actual_hard_min_freq = 0; smu->gfx_actual_soft_max_freq = 0; return 0; } static const struct pptable_funcs yellow_carp_ppt_funcs = { .check_fw_status = smu_v13_0_check_fw_status, .check_fw_version = smu_v13_0_check_fw_version, .init_smc_tables = yellow_carp_init_smc_tables, .fini_smc_tables = yellow_carp_fini_smc_tables, .get_vbios_bootup_values = smu_v13_0_get_vbios_bootup_values, .system_features_control = yellow_carp_system_features_control, .send_smc_msg_with_param = smu_cmn_send_smc_msg_with_param, .send_smc_msg = smu_cmn_send_smc_msg, .dpm_set_vcn_enable = yellow_carp_dpm_set_vcn_enable, .dpm_set_jpeg_enable = yellow_carp_dpm_set_jpeg_enable, .set_default_dpm_table = yellow_carp_set_default_dpm_tables, .read_sensor = yellow_carp_read_sensor, .is_dpm_running = yellow_carp_is_dpm_running, .set_watermarks_table = yellow_carp_set_watermarks_table, .get_gpu_metrics = yellow_carp_get_gpu_metrics, .get_enabled_mask = smu_cmn_get_enabled_32_bits_mask, .get_pp_feature_mask = smu_cmn_get_pp_feature_mask, .set_driver_table_location = smu_v13_0_set_driver_table_location, .gfx_off_control = smu_v13_0_gfx_off_control, .post_init = yellow_carp_post_smu_init, .mode2_reset = yellow_carp_mode2_reset, .get_dpm_ultimate_freq = yellow_carp_get_dpm_ultimate_freq, .od_edit_dpm_table = yellow_carp_od_edit_dpm_table, .print_clk_levels = yellow_carp_print_clk_levels, .force_clk_levels = yellow_carp_force_clk_levels, .set_performance_level = yellow_carp_set_performance_level, .set_fine_grain_gfx_freq_parameters = yellow_carp_set_fine_grain_gfx_freq_parameters, }; void yellow_carp_set_ppt_funcs(struct smu_context *smu) { smu->ppt_funcs = &yellow_carp_ppt_funcs; smu->message_map = yellow_carp_message_map; smu->feature_map = yellow_carp_feature_mask_map; smu->table_map = yellow_carp_table_map; smu->is_apu = true; }