/* * Copyright 2015 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include #include #include #include "ppatomctrl.h" #include "atombios.h" #include "cgs_common.h" #include "pp_debug.h" #include "ppevvmath.h" #define MEM_ID_MASK 0xff000000 #define MEM_ID_SHIFT 24 #define CLOCK_RANGE_MASK 0x00ffffff #define CLOCK_RANGE_SHIFT 0 #define LOW_NIBBLE_MASK 0xf #define DATA_EQU_PREV 0 #define DATA_FROM_TABLE 4 union voltage_object_info { struct _ATOM_VOLTAGE_OBJECT_INFO v1; struct _ATOM_VOLTAGE_OBJECT_INFO_V2 v2; struct _ATOM_VOLTAGE_OBJECT_INFO_V3_1 v3; }; static int atomctrl_retrieve_ac_timing( uint8_t index, ATOM_INIT_REG_BLOCK *reg_block, pp_atomctrl_mc_reg_table *table) { uint32_t i, j; uint8_t tmem_id; ATOM_MEMORY_SETTING_DATA_BLOCK *reg_data = (ATOM_MEMORY_SETTING_DATA_BLOCK *) ((uint8_t *)reg_block + (2 * sizeof(uint16_t)) + le16_to_cpu(reg_block->usRegIndexTblSize)); uint8_t num_ranges = 0; while (*(uint32_t *)reg_data != END_OF_REG_DATA_BLOCK && num_ranges < VBIOS_MAX_AC_TIMING_ENTRIES) { tmem_id = (uint8_t)((*(uint32_t *)reg_data & MEM_ID_MASK) >> MEM_ID_SHIFT); if (index == tmem_id) { table->mc_reg_table_entry[num_ranges].mclk_max = (uint32_t)((*(uint32_t *)reg_data & CLOCK_RANGE_MASK) >> CLOCK_RANGE_SHIFT); for (i = 0, j = 1; i < table->last; i++) { if ((table->mc_reg_address[i].uc_pre_reg_data & LOW_NIBBLE_MASK) == DATA_FROM_TABLE) { table->mc_reg_table_entry[num_ranges].mc_data[i] = (uint32_t)*((uint32_t *)reg_data + j); j++; } else if ((table->mc_reg_address[i].uc_pre_reg_data & LOW_NIBBLE_MASK) == DATA_EQU_PREV) { table->mc_reg_table_entry[num_ranges].mc_data[i] = table->mc_reg_table_entry[num_ranges].mc_data[i-1]; } } num_ranges++; } reg_data = (ATOM_MEMORY_SETTING_DATA_BLOCK *) ((uint8_t *)reg_data + le16_to_cpu(reg_block->usRegDataBlkSize)) ; } PP_ASSERT_WITH_CODE((*(uint32_t *)reg_data == END_OF_REG_DATA_BLOCK), "Invalid VramInfo table.", return -1); table->num_entries = num_ranges; return 0; } /** * Get memory clock AC timing registers index from VBIOS table * VBIOS set end of memory clock AC timing registers by ucPreRegDataLength bit6 = 1 * @param reg_block the address ATOM_INIT_REG_BLOCK * @param table the address of MCRegTable * @return 0 */ static int atomctrl_set_mc_reg_address_table( ATOM_INIT_REG_BLOCK *reg_block, pp_atomctrl_mc_reg_table *table) { uint8_t i = 0; uint8_t num_entries = (uint8_t)((le16_to_cpu(reg_block->usRegIndexTblSize)) / sizeof(ATOM_INIT_REG_INDEX_FORMAT)); ATOM_INIT_REG_INDEX_FORMAT *format = ®_block->asRegIndexBuf[0]; num_entries--; /* subtract 1 data end mark entry */ PP_ASSERT_WITH_CODE((num_entries <= VBIOS_MC_REGISTER_ARRAY_SIZE), "Invalid VramInfo table.", return -1); /* ucPreRegDataLength bit6 = 1 is the end of memory clock AC timing registers */ while ((!(format->ucPreRegDataLength & ACCESS_PLACEHOLDER)) && (i < num_entries)) { table->mc_reg_address[i].s1 = (uint16_t)(le16_to_cpu(format->usRegIndex)); table->mc_reg_address[i].uc_pre_reg_data = format->ucPreRegDataLength; i++; format = (ATOM_INIT_REG_INDEX_FORMAT *) ((uint8_t *)format + sizeof(ATOM_INIT_REG_INDEX_FORMAT)); } table->last = i; return 0; } int atomctrl_initialize_mc_reg_table( struct pp_hwmgr *hwmgr, uint8_t module_index, pp_atomctrl_mc_reg_table *table) { ATOM_VRAM_INFO_HEADER_V2_1 *vram_info; ATOM_INIT_REG_BLOCK *reg_block; int result = 0; u8 frev, crev; u16 size; vram_info = (ATOM_VRAM_INFO_HEADER_V2_1 *) cgs_atom_get_data_table(hwmgr->device, GetIndexIntoMasterTable(DATA, VRAM_Info), &size, &frev, &crev); if (module_index >= vram_info->ucNumOfVRAMModule) { printk(KERN_ERR "[ powerplay ] Invalid VramInfo table."); result = -1; } else if (vram_info->sHeader.ucTableFormatRevision < 2) { printk(KERN_ERR "[ powerplay ] Invalid VramInfo table."); result = -1; } if (0 == result) { reg_block = (ATOM_INIT_REG_BLOCK *) ((uint8_t *)vram_info + le16_to_cpu(vram_info->usMemClkPatchTblOffset)); result = atomctrl_set_mc_reg_address_table(reg_block, table); } if (0 == result) { result = atomctrl_retrieve_ac_timing(module_index, reg_block, table); } return result; } /** * Set DRAM timings based on engine clock and memory clock. */ int atomctrl_set_engine_dram_timings_rv770( struct pp_hwmgr *hwmgr, uint32_t engine_clock, uint32_t memory_clock) { SET_ENGINE_CLOCK_PS_ALLOCATION engine_clock_parameters; /* They are both in 10KHz Units. */ engine_clock_parameters.ulTargetEngineClock = (uint32_t) engine_clock & SET_CLOCK_FREQ_MASK; engine_clock_parameters.ulTargetEngineClock |= (COMPUTE_ENGINE_PLL_PARAM << 24); /* in 10 khz units.*/ engine_clock_parameters.sReserved.ulClock = (uint32_t) memory_clock & SET_CLOCK_FREQ_MASK; return cgs_atom_exec_cmd_table(hwmgr->device, GetIndexIntoMasterTable(COMMAND, DynamicMemorySettings), &engine_clock_parameters); } /** * Private Function to get the PowerPlay Table Address. * WARNING: The tabled returned by this function is in * dynamically allocated memory. * The caller has to release if by calling kfree. */ static ATOM_VOLTAGE_OBJECT_INFO *get_voltage_info_table(void *device) { int index = GetIndexIntoMasterTable(DATA, VoltageObjectInfo); u8 frev, crev; u16 size; union voltage_object_info *voltage_info; voltage_info = (union voltage_object_info *) cgs_atom_get_data_table(device, index, &size, &frev, &crev); if (voltage_info != NULL) return (ATOM_VOLTAGE_OBJECT_INFO *) &(voltage_info->v3); else return NULL; } static const ATOM_VOLTAGE_OBJECT_V3 *atomctrl_lookup_voltage_type_v3( const ATOM_VOLTAGE_OBJECT_INFO_V3_1 * voltage_object_info_table, uint8_t voltage_type, uint8_t voltage_mode) { unsigned int size = le16_to_cpu(voltage_object_info_table->sHeader.usStructureSize); unsigned int offset = offsetof(ATOM_VOLTAGE_OBJECT_INFO_V3_1, asVoltageObj[0]); uint8_t *start = (uint8_t *)voltage_object_info_table; while (offset < size) { const ATOM_VOLTAGE_OBJECT_V3 *voltage_object = (const ATOM_VOLTAGE_OBJECT_V3 *)(start + offset); if (voltage_type == voltage_object->asGpioVoltageObj.sHeader.ucVoltageType && voltage_mode == voltage_object->asGpioVoltageObj.sHeader.ucVoltageMode) return voltage_object; offset += le16_to_cpu(voltage_object->asGpioVoltageObj.sHeader.usSize); } return NULL; } /** atomctrl_get_memory_pll_dividers_si(). * * @param hwmgr input parameter: pointer to HwMgr * @param clock_value input parameter: memory clock * @param dividers output parameter: memory PLL dividers * @param strobe_mode input parameter: 1 for strobe mode, 0 for performance mode */ int atomctrl_get_memory_pll_dividers_si( struct pp_hwmgr *hwmgr, uint32_t clock_value, pp_atomctrl_memory_clock_param *mpll_param, bool strobe_mode) { COMPUTE_MEMORY_CLOCK_PARAM_PARAMETERS_V2_1 mpll_parameters; int result; mpll_parameters.ulClock = (uint32_t) clock_value; mpll_parameters.ucInputFlag = (uint8_t)((strobe_mode) ? 1 : 0); result = cgs_atom_exec_cmd_table (hwmgr->device, GetIndexIntoMasterTable(COMMAND, ComputeMemoryClockParam), &mpll_parameters); if (0 == result) { mpll_param->mpll_fb_divider.clk_frac = mpll_parameters.ulFbDiv.usFbDivFrac; mpll_param->mpll_fb_divider.cl_kf = mpll_parameters.ulFbDiv.usFbDiv; mpll_param->mpll_post_divider = (uint32_t)mpll_parameters.ucPostDiv; mpll_param->vco_mode = (uint32_t)(mpll_parameters.ucPllCntlFlag & MPLL_CNTL_FLAG_VCO_MODE_MASK); mpll_param->yclk_sel = (uint32_t)((mpll_parameters.ucPllCntlFlag & MPLL_CNTL_FLAG_BYPASS_DQ_PLL) ? 1 : 0); mpll_param->qdr = (uint32_t)((mpll_parameters.ucPllCntlFlag & MPLL_CNTL_FLAG_QDR_ENABLE) ? 1 : 0); mpll_param->half_rate = (uint32_t)((mpll_parameters.ucPllCntlFlag & MPLL_CNTL_FLAG_AD_HALF_RATE) ? 1 : 0); mpll_param->dll_speed = (uint32_t)(mpll_parameters.ucDllSpeed); mpll_param->bw_ctrl = (uint32_t)(mpll_parameters.ucBWCntl); } return result; } /** atomctrl_get_memory_pll_dividers_vi(). * * @param hwmgr input parameter: pointer to HwMgr * @param clock_value input parameter: memory clock * @param dividers output parameter: memory PLL dividers */ int atomctrl_get_memory_pll_dividers_vi(struct pp_hwmgr *hwmgr, uint32_t clock_value, pp_atomctrl_memory_clock_param *mpll_param) { COMPUTE_MEMORY_CLOCK_PARAM_PARAMETERS_V2_2 mpll_parameters; int result; mpll_parameters.ulClock.ulClock = (uint32_t)clock_value; result = cgs_atom_exec_cmd_table(hwmgr->device, GetIndexIntoMasterTable(COMMAND, ComputeMemoryClockParam), &mpll_parameters); if (!result) mpll_param->mpll_post_divider = (uint32_t)mpll_parameters.ulClock.ucPostDiv; return result; } int atomctrl_get_engine_pll_dividers_kong(struct pp_hwmgr *hwmgr, uint32_t clock_value, pp_atomctrl_clock_dividers_kong *dividers) { COMPUTE_MEMORY_ENGINE_PLL_PARAMETERS_V4 pll_parameters; int result; pll_parameters.ulClock = clock_value; result = cgs_atom_exec_cmd_table (hwmgr->device, GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL), &pll_parameters); if (0 == result) { dividers->pll_post_divider = pll_parameters.ucPostDiv; dividers->real_clock = pll_parameters.ulClock; } return result; } int atomctrl_get_engine_pll_dividers_vi( struct pp_hwmgr *hwmgr, uint32_t clock_value, pp_atomctrl_clock_dividers_vi *dividers) { COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_6 pll_patameters; int result; pll_patameters.ulClock.ulClock = clock_value; pll_patameters.ulClock.ucPostDiv = COMPUTE_GPUCLK_INPUT_FLAG_SCLK; result = cgs_atom_exec_cmd_table (hwmgr->device, GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL), &pll_patameters); if (0 == result) { dividers->pll_post_divider = pll_patameters.ulClock.ucPostDiv; dividers->real_clock = pll_patameters.ulClock.ulClock; dividers->ul_fb_div.ul_fb_div_frac = pll_patameters.ulFbDiv.usFbDivFrac; dividers->ul_fb_div.ul_fb_div = pll_patameters.ulFbDiv.usFbDiv; dividers->uc_pll_ref_div = pll_patameters.ucPllRefDiv; dividers->uc_pll_post_div = pll_patameters.ucPllPostDiv; dividers->uc_pll_cntl_flag = pll_patameters.ucPllCntlFlag; } return result; } int atomctrl_get_engine_pll_dividers_ai(struct pp_hwmgr *hwmgr, uint32_t clock_value, pp_atomctrl_clock_dividers_ai *dividers) { COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_7 pll_patameters; int result; pll_patameters.ulClock.ulClock = clock_value; pll_patameters.ulClock.ucPostDiv = COMPUTE_GPUCLK_INPUT_FLAG_SCLK; result = cgs_atom_exec_cmd_table (hwmgr->device, GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL), &pll_patameters); if (0 == result) { dividers->usSclk_fcw_frac = le16_to_cpu(pll_patameters.usSclk_fcw_frac); dividers->usSclk_fcw_int = le16_to_cpu(pll_patameters.usSclk_fcw_int); dividers->ucSclkPostDiv = pll_patameters.ucSclkPostDiv; dividers->ucSclkVcoMode = pll_patameters.ucSclkVcoMode; dividers->ucSclkPllRange = pll_patameters.ucSclkPllRange; dividers->ucSscEnable = pll_patameters.ucSscEnable; dividers->usSsc_fcw1_frac = le16_to_cpu(pll_patameters.usSsc_fcw1_frac); dividers->usSsc_fcw1_int = le16_to_cpu(pll_patameters.usSsc_fcw1_int); dividers->usPcc_fcw_int = le16_to_cpu(pll_patameters.usPcc_fcw_int); dividers->usSsc_fcw_slew_frac = le16_to_cpu(pll_patameters.usSsc_fcw_slew_frac); dividers->usPcc_fcw_slew_frac = le16_to_cpu(pll_patameters.usPcc_fcw_slew_frac); } return result; } int atomctrl_get_dfs_pll_dividers_vi( struct pp_hwmgr *hwmgr, uint32_t clock_value, pp_atomctrl_clock_dividers_vi *dividers) { COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_6 pll_patameters; int result; pll_patameters.ulClock.ulClock = clock_value; pll_patameters.ulClock.ucPostDiv = COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK; result = cgs_atom_exec_cmd_table (hwmgr->device, GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL), &pll_patameters); if (0 == result) { dividers->pll_post_divider = pll_patameters.ulClock.ucPostDiv; dividers->real_clock = pll_patameters.ulClock.ulClock; dividers->ul_fb_div.ul_fb_div_frac = pll_patameters.ulFbDiv.usFbDivFrac; dividers->ul_fb_div.ul_fb_div = pll_patameters.ulFbDiv.usFbDiv; dividers->uc_pll_ref_div = pll_patameters.ucPllRefDiv; dividers->uc_pll_post_div = pll_patameters.ucPllPostDiv; dividers->uc_pll_cntl_flag = pll_patameters.ucPllCntlFlag; } return result; } /** * Get the reference clock in 10KHz */ uint32_t atomctrl_get_reference_clock(struct pp_hwmgr *hwmgr) { ATOM_FIRMWARE_INFO *fw_info; u8 frev, crev; u16 size; uint32_t clock; fw_info = (ATOM_FIRMWARE_INFO *) cgs_atom_get_data_table(hwmgr->device, GetIndexIntoMasterTable(DATA, FirmwareInfo), &size, &frev, &crev); if (fw_info == NULL) clock = 2700; else clock = (uint32_t)(le16_to_cpu(fw_info->usReferenceClock)); return clock; } /** * Returns true if the given voltage type is controlled by GPIO pins. * voltage_type is one of SET_VOLTAGE_TYPE_ASIC_VDDC, * SET_VOLTAGE_TYPE_ASIC_MVDDC, SET_VOLTAGE_TYPE_ASIC_MVDDQ. * voltage_mode is one of ATOM_SET_VOLTAGE, ATOM_SET_VOLTAGE_PHASE */ bool atomctrl_is_voltage_controled_by_gpio_v3( struct pp_hwmgr *hwmgr, uint8_t voltage_type, uint8_t voltage_mode) { ATOM_VOLTAGE_OBJECT_INFO_V3_1 *voltage_info = (ATOM_VOLTAGE_OBJECT_INFO_V3_1 *)get_voltage_info_table(hwmgr->device); bool ret; PP_ASSERT_WITH_CODE((NULL != voltage_info), "Could not find Voltage Table in BIOS.", return false;); ret = (NULL != atomctrl_lookup_voltage_type_v3 (voltage_info, voltage_type, voltage_mode)) ? true : false; return ret; } int atomctrl_get_voltage_table_v3( struct pp_hwmgr *hwmgr, uint8_t voltage_type, uint8_t voltage_mode, pp_atomctrl_voltage_table *voltage_table) { ATOM_VOLTAGE_OBJECT_INFO_V3_1 *voltage_info = (ATOM_VOLTAGE_OBJECT_INFO_V3_1 *)get_voltage_info_table(hwmgr->device); const ATOM_VOLTAGE_OBJECT_V3 *voltage_object; unsigned int i; PP_ASSERT_WITH_CODE((NULL != voltage_info), "Could not find Voltage Table in BIOS.", return -1;); voltage_object = atomctrl_lookup_voltage_type_v3 (voltage_info, voltage_type, voltage_mode); if (voltage_object == NULL) return -1; PP_ASSERT_WITH_CODE( (voltage_object->asGpioVoltageObj.ucGpioEntryNum <= PP_ATOMCTRL_MAX_VOLTAGE_ENTRIES), "Too many voltage entries!", return -1; ); for (i = 0; i < voltage_object->asGpioVoltageObj.ucGpioEntryNum; i++) { voltage_table->entries[i].value = voltage_object->asGpioVoltageObj.asVolGpioLut[i].usVoltageValue; voltage_table->entries[i].smio_low = voltage_object->asGpioVoltageObj.asVolGpioLut[i].ulVoltageId; } voltage_table->mask_low = voltage_object->asGpioVoltageObj.ulGpioMaskVal; voltage_table->count = voltage_object->asGpioVoltageObj.ucGpioEntryNum; voltage_table->phase_delay = voltage_object->asGpioVoltageObj.ucPhaseDelay; return 0; } static bool atomctrl_lookup_gpio_pin( ATOM_GPIO_PIN_LUT * gpio_lookup_table, const uint32_t pinId, pp_atomctrl_gpio_pin_assignment *gpio_pin_assignment) { unsigned int size = le16_to_cpu(gpio_lookup_table->sHeader.usStructureSize); unsigned int offset = offsetof(ATOM_GPIO_PIN_LUT, asGPIO_Pin[0]); uint8_t *start = (uint8_t *)gpio_lookup_table; while (offset < size) { const ATOM_GPIO_PIN_ASSIGNMENT *pin_assignment = (const ATOM_GPIO_PIN_ASSIGNMENT *)(start + offset); if (pinId == pin_assignment->ucGPIO_ID) { gpio_pin_assignment->uc_gpio_pin_bit_shift = pin_assignment->ucGpioPinBitShift; gpio_pin_assignment->us_gpio_pin_aindex = le16_to_cpu(pin_assignment->usGpioPin_AIndex); return false; } offset += offsetof(ATOM_GPIO_PIN_ASSIGNMENT, ucGPIO_ID) + 1; } return true; } /** * Private Function to get the PowerPlay Table Address. * WARNING: The tabled returned by this function is in * dynamically allocated memory. * The caller has to release if by calling kfree. */ static ATOM_GPIO_PIN_LUT *get_gpio_lookup_table(void *device) { u8 frev, crev; u16 size; void *table_address; table_address = (ATOM_GPIO_PIN_LUT *) cgs_atom_get_data_table(device, GetIndexIntoMasterTable(DATA, GPIO_Pin_LUT), &size, &frev, &crev); PP_ASSERT_WITH_CODE((NULL != table_address), "Error retrieving BIOS Table Address!", return NULL;); return (ATOM_GPIO_PIN_LUT *)table_address; } /** * Returns 1 if the given pin id find in lookup table. */ bool atomctrl_get_pp_assign_pin( struct pp_hwmgr *hwmgr, const uint32_t pinId, pp_atomctrl_gpio_pin_assignment *gpio_pin_assignment) { bool bRet = 0; ATOM_GPIO_PIN_LUT *gpio_lookup_table = get_gpio_lookup_table(hwmgr->device); PP_ASSERT_WITH_CODE((NULL != gpio_lookup_table), "Could not find GPIO lookup Table in BIOS.", return -1); bRet = atomctrl_lookup_gpio_pin(gpio_lookup_table, pinId, gpio_pin_assignment); return bRet; } int atomctrl_calculate_voltage_evv_on_sclk( struct pp_hwmgr *hwmgr, uint8_t voltage_type, uint32_t sclk, uint16_t virtual_voltage_Id, uint16_t *voltage, uint16_t dpm_level, bool debug) { ATOM_ASIC_PROFILING_INFO_V3_4 *getASICProfilingInfo; EFUSE_LINEAR_FUNC_PARAM sRO_fuse; EFUSE_LINEAR_FUNC_PARAM sCACm_fuse; EFUSE_LINEAR_FUNC_PARAM sCACb_fuse; EFUSE_LOGISTIC_FUNC_PARAM sKt_Beta_fuse; EFUSE_LOGISTIC_FUNC_PARAM sKv_m_fuse; EFUSE_LOGISTIC_FUNC_PARAM sKv_b_fuse; EFUSE_INPUT_PARAMETER sInput_FuseValues; READ_EFUSE_VALUE_PARAMETER sOutput_FuseValues; uint32_t ul_RO_fused, ul_CACb_fused, ul_CACm_fused, ul_Kt_Beta_fused, ul_Kv_m_fused, ul_Kv_b_fused; fInt fSM_A0, fSM_A1, fSM_A2, fSM_A3, fSM_A4, fSM_A5, fSM_A6, fSM_A7; fInt fMargin_RO_a, fMargin_RO_b, fMargin_RO_c, fMargin_fixed, fMargin_FMAX_mean, fMargin_Plat_mean, fMargin_FMAX_sigma, fMargin_Plat_sigma, fMargin_DC_sigma; fInt fLkg_FT, repeat; fInt fMicro_FMAX, fMicro_CR, fSigma_FMAX, fSigma_CR, fSigma_DC, fDC_SCLK, fSquared_Sigma_DC, fSquared_Sigma_CR, fSquared_Sigma_FMAX; fInt fRLL_LoadLine, fPowerDPMx, fDerateTDP, fVDDC_base, fA_Term, fC_Term, fB_Term, fRO_DC_margin; fInt fRO_fused, fCACm_fused, fCACb_fused, fKv_m_fused, fKv_b_fused, fKt_Beta_fused, fFT_Lkg_V0NORM; fInt fSclk_margin, fSclk, fEVV_V; fInt fV_min, fV_max, fT_prod, fLKG_Factor, fT_FT, fV_FT, fV_x, fTDP_Power, fTDP_Power_right, fTDP_Power_left, fTDP_Current, fV_NL; uint32_t ul_FT_Lkg_V0NORM; fInt fLn_MaxDivMin, fMin, fAverage, fRange; fInt fRoots[2]; fInt fStepSize = GetScaledFraction(625, 100000); int result; getASICProfilingInfo = (ATOM_ASIC_PROFILING_INFO_V3_4 *) cgs_atom_get_data_table(hwmgr->device, GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo), NULL, NULL, NULL); if (!getASICProfilingInfo) return -1; if (getASICProfilingInfo->asHeader.ucTableFormatRevision < 3 || (getASICProfilingInfo->asHeader.ucTableFormatRevision == 3 && getASICProfilingInfo->asHeader.ucTableContentRevision < 4)) return -1; /*----------------------------------------------------------- *GETTING MULTI-STEP PARAMETERS RELATED TO CURRENT DPM LEVEL *----------------------------------------------------------- */ fRLL_LoadLine = Divide(getASICProfilingInfo->ulLoadLineSlop, 1000); switch (dpm_level) { case 1: fPowerDPMx = Convert_ULONG_ToFraction(getASICProfilingInfo->usPowerDpm1); fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM1, 1000); break; case 2: fPowerDPMx = Convert_ULONG_ToFraction(getASICProfilingInfo->usPowerDpm2); fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM2, 1000); break; case 3: fPowerDPMx = Convert_ULONG_ToFraction(getASICProfilingInfo->usPowerDpm3); fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM3, 1000); break; case 4: fPowerDPMx = Convert_ULONG_ToFraction(getASICProfilingInfo->usPowerDpm4); fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM4, 1000); break; case 5: fPowerDPMx = Convert_ULONG_ToFraction(getASICProfilingInfo->usPowerDpm5); fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM5, 1000); break; case 6: fPowerDPMx = Convert_ULONG_ToFraction(getASICProfilingInfo->usPowerDpm6); fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM6, 1000); break; case 7: fPowerDPMx = Convert_ULONG_ToFraction(getASICProfilingInfo->usPowerDpm7); fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM7, 1000); break; default: printk(KERN_ERR "DPM Level not supported\n"); fPowerDPMx = Convert_ULONG_ToFraction(1); fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM0, 1000); } /*------------------------- * DECODING FUSE VALUES * ------------------------ */ /*Decode RO_Fused*/ sRO_fuse = getASICProfilingInfo->sRoFuse; sInput_FuseValues.usEfuseIndex = sRO_fuse.usEfuseIndex; sInput_FuseValues.ucBitShift = sRO_fuse.ucEfuseBitLSB; sInput_FuseValues.ucBitLength = sRO_fuse.ucEfuseLength; sOutput_FuseValues.sEfuse = sInput_FuseValues; result = cgs_atom_exec_cmd_table(hwmgr->device, GetIndexIntoMasterTable(COMMAND, ReadEfuseValue), &sOutput_FuseValues); if (result) return result; /* Finally, the actual fuse value */ ul_RO_fused = sOutput_FuseValues.ulEfuseValue; fMin = GetScaledFraction(sRO_fuse.ulEfuseMin, 1); fRange = GetScaledFraction(sRO_fuse.ulEfuseEncodeRange, 1); fRO_fused = fDecodeLinearFuse(ul_RO_fused, fMin, fRange, sRO_fuse.ucEfuseLength); sCACm_fuse = getASICProfilingInfo->sCACm; sInput_FuseValues.usEfuseIndex = sCACm_fuse.usEfuseIndex; sInput_FuseValues.ucBitShift = sCACm_fuse.ucEfuseBitLSB; sInput_FuseValues.ucBitLength = sCACm_fuse.ucEfuseLength; sOutput_FuseValues.sEfuse = sInput_FuseValues; result = cgs_atom_exec_cmd_table(hwmgr->device, GetIndexIntoMasterTable(COMMAND, ReadEfuseValue), &sOutput_FuseValues); if (result) return result; ul_CACm_fused = sOutput_FuseValues.ulEfuseValue; fMin = GetScaledFraction(sCACm_fuse.ulEfuseMin, 1000); fRange = GetScaledFraction(sCACm_fuse.ulEfuseEncodeRange, 1000); fCACm_fused = fDecodeLinearFuse(ul_CACm_fused, fMin, fRange, sCACm_fuse.ucEfuseLength); sCACb_fuse = getASICProfilingInfo->sCACb; sInput_FuseValues.usEfuseIndex = sCACb_fuse.usEfuseIndex; sInput_FuseValues.ucBitShift = sCACb_fuse.ucEfuseBitLSB; sInput_FuseValues.ucBitLength = sCACb_fuse.ucEfuseLength; sOutput_FuseValues.sEfuse = sInput_FuseValues; result = cgs_atom_exec_cmd_table(hwmgr->device, GetIndexIntoMasterTable(COMMAND, ReadEfuseValue), &sOutput_FuseValues); if (result) return result; ul_CACb_fused = sOutput_FuseValues.ulEfuseValue; fMin = GetScaledFraction(sCACb_fuse.ulEfuseMin, 1000); fRange = GetScaledFraction(sCACb_fuse.ulEfuseEncodeRange, 1000); fCACb_fused = fDecodeLinearFuse(ul_CACb_fused, fMin, fRange, sCACb_fuse.ucEfuseLength); sKt_Beta_fuse = getASICProfilingInfo->sKt_b; sInput_FuseValues.usEfuseIndex = sKt_Beta_fuse.usEfuseIndex; sInput_FuseValues.ucBitShift = sKt_Beta_fuse.ucEfuseBitLSB; sInput_FuseValues.ucBitLength = sKt_Beta_fuse.ucEfuseLength; sOutput_FuseValues.sEfuse = sInput_FuseValues; result = cgs_atom_exec_cmd_table(hwmgr->device, GetIndexIntoMasterTable(COMMAND, ReadEfuseValue), &sOutput_FuseValues); if (result) return result; ul_Kt_Beta_fused = sOutput_FuseValues.ulEfuseValue; fAverage = GetScaledFraction(sKt_Beta_fuse.ulEfuseEncodeAverage, 1000); fRange = GetScaledFraction(sKt_Beta_fuse.ulEfuseEncodeRange, 1000); fKt_Beta_fused = fDecodeLogisticFuse(ul_Kt_Beta_fused, fAverage, fRange, sKt_Beta_fuse.ucEfuseLength); sKv_m_fuse = getASICProfilingInfo->sKv_m; sInput_FuseValues.usEfuseIndex = sKv_m_fuse.usEfuseIndex; sInput_FuseValues.ucBitShift = sKv_m_fuse.ucEfuseBitLSB; sInput_FuseValues.ucBitLength = sKv_m_fuse.ucEfuseLength; sOutput_FuseValues.sEfuse = sInput_FuseValues; result = cgs_atom_exec_cmd_table(hwmgr->device, GetIndexIntoMasterTable(COMMAND, ReadEfuseValue), &sOutput_FuseValues); if (result) return result; ul_Kv_m_fused = sOutput_FuseValues.ulEfuseValue; fAverage = GetScaledFraction(sKv_m_fuse.ulEfuseEncodeAverage, 1000); fRange = GetScaledFraction((sKv_m_fuse.ulEfuseEncodeRange & 0x7fffffff), 1000); fRange = fMultiply(fRange, ConvertToFraction(-1)); fKv_m_fused = fDecodeLogisticFuse(ul_Kv_m_fused, fAverage, fRange, sKv_m_fuse.ucEfuseLength); sKv_b_fuse = getASICProfilingInfo->sKv_b; sInput_FuseValues.usEfuseIndex = sKv_b_fuse.usEfuseIndex; sInput_FuseValues.ucBitShift = sKv_b_fuse.ucEfuseBitLSB; sInput_FuseValues.ucBitLength = sKv_b_fuse.ucEfuseLength; sOutput_FuseValues.sEfuse = sInput_FuseValues; result = cgs_atom_exec_cmd_table(hwmgr->device, GetIndexIntoMasterTable(COMMAND, ReadEfuseValue), &sOutput_FuseValues); if (result) return result; ul_Kv_b_fused = sOutput_FuseValues.ulEfuseValue; fAverage = GetScaledFraction(sKv_b_fuse.ulEfuseEncodeAverage, 1000); fRange = GetScaledFraction(sKv_b_fuse.ulEfuseEncodeRange, 1000); fKv_b_fused = fDecodeLogisticFuse(ul_Kv_b_fused, fAverage, fRange, sKv_b_fuse.ucEfuseLength); /* Decoding the Leakage - No special struct container */ /* * usLkgEuseIndex=56 * ucLkgEfuseBitLSB=6 * ucLkgEfuseLength=10 * ulLkgEncodeLn_MaxDivMin=69077 * ulLkgEncodeMax=1000000 * ulLkgEncodeMin=1000 * ulEfuseLogisticAlpha=13 */ sInput_FuseValues.usEfuseIndex = getASICProfilingInfo->usLkgEuseIndex; sInput_FuseValues.ucBitShift = getASICProfilingInfo->ucLkgEfuseBitLSB; sInput_FuseValues.ucBitLength = getASICProfilingInfo->ucLkgEfuseLength; sOutput_FuseValues.sEfuse = sInput_FuseValues; result = cgs_atom_exec_cmd_table(hwmgr->device, GetIndexIntoMasterTable(COMMAND, ReadEfuseValue), &sOutput_FuseValues); if (result) return result; ul_FT_Lkg_V0NORM = sOutput_FuseValues.ulEfuseValue; fLn_MaxDivMin = GetScaledFraction(getASICProfilingInfo->ulLkgEncodeLn_MaxDivMin, 10000); fMin = GetScaledFraction(getASICProfilingInfo->ulLkgEncodeMin, 10000); fFT_Lkg_V0NORM = fDecodeLeakageID(ul_FT_Lkg_V0NORM, fLn_MaxDivMin, fMin, getASICProfilingInfo->ucLkgEfuseLength); fLkg_FT = fFT_Lkg_V0NORM; /*------------------------------------------- * PART 2 - Grabbing all required values *------------------------------------------- */ fSM_A0 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A0, 1000000), ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A0_sign))); fSM_A1 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A1, 1000000), ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A1_sign))); fSM_A2 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A2, 100000), ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A2_sign))); fSM_A3 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A3, 1000000), ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A3_sign))); fSM_A4 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A4, 1000000), ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A4_sign))); fSM_A5 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A5, 1000), ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A5_sign))); fSM_A6 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A6, 1000), ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A6_sign))); fSM_A7 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A7, 1000), ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A7_sign))); fMargin_RO_a = ConvertToFraction(getASICProfilingInfo->ulMargin_RO_a); fMargin_RO_b = ConvertToFraction(getASICProfilingInfo->ulMargin_RO_b); fMargin_RO_c = ConvertToFraction(getASICProfilingInfo->ulMargin_RO_c); fMargin_fixed = ConvertToFraction(getASICProfilingInfo->ulMargin_fixed); fMargin_FMAX_mean = GetScaledFraction( getASICProfilingInfo->ulMargin_Fmax_mean, 10000); fMargin_Plat_mean = GetScaledFraction( getASICProfilingInfo->ulMargin_plat_mean, 10000); fMargin_FMAX_sigma = GetScaledFraction( getASICProfilingInfo->ulMargin_Fmax_sigma, 10000); fMargin_Plat_sigma = GetScaledFraction( getASICProfilingInfo->ulMargin_plat_sigma, 10000); fMargin_DC_sigma = GetScaledFraction( getASICProfilingInfo->ulMargin_DC_sigma, 100); fMargin_DC_sigma = fDivide(fMargin_DC_sigma, ConvertToFraction(1000)); fCACm_fused = fDivide(fCACm_fused, ConvertToFraction(100)); fCACb_fused = fDivide(fCACb_fused, ConvertToFraction(100)); fKt_Beta_fused = fDivide(fKt_Beta_fused, ConvertToFraction(100)); fKv_m_fused = fNegate(fDivide(fKv_m_fused, ConvertToFraction(100))); fKv_b_fused = fDivide(fKv_b_fused, ConvertToFraction(10)); fSclk = GetScaledFraction(sclk, 100); fV_max = fDivide(GetScaledFraction( getASICProfilingInfo->ulMaxVddc, 1000), ConvertToFraction(4)); fT_prod = GetScaledFraction(getASICProfilingInfo->ulBoardCoreTemp, 10); fLKG_Factor = GetScaledFraction(getASICProfilingInfo->ulEvvLkgFactor, 100); fT_FT = GetScaledFraction(getASICProfilingInfo->ulLeakageTemp, 10); fV_FT = fDivide(GetScaledFraction( getASICProfilingInfo->ulLeakageVoltage, 1000), ConvertToFraction(4)); fV_min = fDivide(GetScaledFraction( getASICProfilingInfo->ulMinVddc, 1000), ConvertToFraction(4)); /*----------------------- * PART 3 *----------------------- */ fA_Term = fAdd(fMargin_RO_a, fAdd(fMultiply(fSM_A4, fSclk), fSM_A5)); fB_Term = fAdd(fAdd(fMultiply(fSM_A2, fSclk), fSM_A6), fMargin_RO_b); fC_Term = fAdd(fMargin_RO_c, fAdd(fMultiply(fSM_A0,fLkg_FT), fAdd(fMultiply(fSM_A1, fMultiply(fLkg_FT, fSclk)), fAdd(fMultiply(fSM_A3, fSclk), fSubtract(fSM_A7, fRO_fused))))); fVDDC_base = fSubtract(fRO_fused, fSubtract(fMargin_RO_c, fSubtract(fSM_A3, fMultiply(fSM_A1, fSclk)))); fVDDC_base = fDivide(fVDDC_base, fAdd(fMultiply(fSM_A0, fSclk), fSM_A2)); repeat = fSubtract(fVDDC_base, fDivide(fMargin_DC_sigma, ConvertToFraction(1000))); fRO_DC_margin = fAdd(fMultiply(fMargin_RO_a, fGetSquare(repeat)), fAdd(fMultiply(fMargin_RO_b, repeat), fMargin_RO_c)); fDC_SCLK = fSubtract(fRO_fused, fSubtract(fRO_DC_margin, fSubtract(fSM_A3, fMultiply(fSM_A2, repeat)))); fDC_SCLK = fDivide(fDC_SCLK, fAdd(fMultiply(fSM_A0, repeat), fSM_A1)); fSigma_DC = fSubtract(fSclk, fDC_SCLK); fMicro_FMAX = fMultiply(fSclk, fMargin_FMAX_mean); fMicro_CR = fMultiply(fSclk, fMargin_Plat_mean); fSigma_FMAX = fMultiply(fSclk, fMargin_FMAX_sigma); fSigma_CR = fMultiply(fSclk, fMargin_Plat_sigma); fSquared_Sigma_DC = fGetSquare(fSigma_DC); fSquared_Sigma_CR = fGetSquare(fSigma_CR); fSquared_Sigma_FMAX = fGetSquare(fSigma_FMAX); fSclk_margin = fAdd(fMicro_FMAX, fAdd(fMicro_CR, fAdd(fMargin_fixed, fSqrt(fAdd(fSquared_Sigma_FMAX, fAdd(fSquared_Sigma_DC, fSquared_Sigma_CR)))))); /* fA_Term = fSM_A4 * (fSclk + fSclk_margin) + fSM_A5; fB_Term = fSM_A2 * (fSclk + fSclk_margin) + fSM_A6; fC_Term = fRO_DC_margin + fSM_A0 * fLkg_FT + fSM_A1 * fLkg_FT * (fSclk + fSclk_margin) + fSM_A3 * (fSclk + fSclk_margin) + fSM_A7 - fRO_fused; */ fA_Term = fAdd(fMultiply(fSM_A4, fAdd(fSclk, fSclk_margin)), fSM_A5); fB_Term = fAdd(fMultiply(fSM_A2, fAdd(fSclk, fSclk_margin)), fSM_A6); fC_Term = fAdd(fRO_DC_margin, fAdd(fMultiply(fSM_A0, fLkg_FT), fAdd(fMultiply(fMultiply(fSM_A1, fLkg_FT), fAdd(fSclk, fSclk_margin)), fAdd(fMultiply(fSM_A3, fAdd(fSclk, fSclk_margin)), fSubtract(fSM_A7, fRO_fused))))); SolveQuadracticEqn(fA_Term, fB_Term, fC_Term, fRoots); if (GreaterThan(fRoots[0], fRoots[1])) fEVV_V = fRoots[1]; else fEVV_V = fRoots[0]; if (GreaterThan(fV_min, fEVV_V)) fEVV_V = fV_min; else if (GreaterThan(fEVV_V, fV_max)) fEVV_V = fSubtract(fV_max, fStepSize); fEVV_V = fRoundUpByStepSize(fEVV_V, fStepSize, 0); /*----------------- * PART 4 *----------------- */ fV_x = fV_min; while (GreaterThan(fAdd(fV_max, fStepSize), fV_x)) { fTDP_Power_left = fMultiply(fMultiply(fMultiply(fAdd( fMultiply(fCACm_fused, fV_x), fCACb_fused), fSclk), fGetSquare(fV_x)), fDerateTDP); fTDP_Power_right = fMultiply(fFT_Lkg_V0NORM, fMultiply(fLKG_Factor, fMultiply(fExponential(fMultiply(fAdd(fMultiply(fKv_m_fused, fT_prod), fKv_b_fused), fV_x)), fV_x))); fTDP_Power_right = fMultiply(fTDP_Power_right, fExponential(fMultiply( fKt_Beta_fused, fT_prod))); fTDP_Power_right = fDivide(fTDP_Power_right, fExponential(fMultiply( fAdd(fMultiply(fKv_m_fused, fT_prod), fKv_b_fused), fV_FT))); fTDP_Power_right = fDivide(fTDP_Power_right, fExponential(fMultiply( fKt_Beta_fused, fT_FT))); fTDP_Power = fAdd(fTDP_Power_left, fTDP_Power_right); fTDP_Current = fDivide(fTDP_Power, fV_x); fV_NL = fAdd(fV_x, fDivide(fMultiply(fTDP_Current, fRLL_LoadLine), ConvertToFraction(10))); fV_NL = fRoundUpByStepSize(fV_NL, fStepSize, 0); if (GreaterThan(fV_max, fV_NL) && (GreaterThan(fV_NL, fEVV_V) || Equal(fV_NL, fEVV_V))) { fV_NL = fMultiply(fV_NL, ConvertToFraction(1000)); *voltage = (uint16_t)fV_NL.partial.real; break; } else fV_x = fAdd(fV_x, fStepSize); } return result; } /** atomctrl_get_voltage_evv_on_sclk gets voltage via call to ATOM COMMAND table. * @param hwmgr input: pointer to hwManager * @param voltage_type input: type of EVV voltage VDDC or VDDGFX * @param sclk input: in 10Khz unit. DPM state SCLK frequency * which is define in PPTable SCLK/VDDC dependence * table associated with this virtual_voltage_Id * @param virtual_voltage_Id input: voltage id which match per voltage DPM state: 0xff01, 0xff02.. 0xff08 * @param voltage output: real voltage level in unit of mv */ int atomctrl_get_voltage_evv_on_sclk( struct pp_hwmgr *hwmgr, uint8_t voltage_type, uint32_t sclk, uint16_t virtual_voltage_Id, uint16_t *voltage) { int result; GET_VOLTAGE_INFO_INPUT_PARAMETER_V1_2 get_voltage_info_param_space; get_voltage_info_param_space.ucVoltageType = voltage_type; get_voltage_info_param_space.ucVoltageMode = ATOM_GET_VOLTAGE_EVV_VOLTAGE; get_voltage_info_param_space.usVoltageLevel = virtual_voltage_Id; get_voltage_info_param_space.ulSCLKFreq = sclk; result = cgs_atom_exec_cmd_table(hwmgr->device, GetIndexIntoMasterTable(COMMAND, GetVoltageInfo), &get_voltage_info_param_space); if (0 != result) return result; *voltage = ((GET_EVV_VOLTAGE_INFO_OUTPUT_PARAMETER_V1_2 *) (&get_voltage_info_param_space))->usVoltageLevel; return result; } /** * Get the mpll reference clock in 10KHz */ uint32_t atomctrl_get_mpll_reference_clock(struct pp_hwmgr *hwmgr) { ATOM_COMMON_TABLE_HEADER *fw_info; uint32_t clock; u8 frev, crev; u16 size; fw_info = (ATOM_COMMON_TABLE_HEADER *) cgs_atom_get_data_table(hwmgr->device, GetIndexIntoMasterTable(DATA, FirmwareInfo), &size, &frev, &crev); if (fw_info == NULL) clock = 2700; else { if ((fw_info->ucTableFormatRevision == 2) && (le16_to_cpu(fw_info->usStructureSize) >= sizeof(ATOM_FIRMWARE_INFO_V2_1))) { ATOM_FIRMWARE_INFO_V2_1 *fwInfo_2_1 = (ATOM_FIRMWARE_INFO_V2_1 *)fw_info; clock = (uint32_t)(le16_to_cpu(fwInfo_2_1->usMemoryReferenceClock)); } else { ATOM_FIRMWARE_INFO *fwInfo_0_0 = (ATOM_FIRMWARE_INFO *)fw_info; clock = (uint32_t)(le16_to_cpu(fwInfo_0_0->usReferenceClock)); } } return clock; } /** * Get the asic internal spread spectrum table */ static ATOM_ASIC_INTERNAL_SS_INFO *asic_internal_ss_get_ss_table(void *device) { ATOM_ASIC_INTERNAL_SS_INFO *table = NULL; u8 frev, crev; u16 size; table = (ATOM_ASIC_INTERNAL_SS_INFO *) cgs_atom_get_data_table(device, GetIndexIntoMasterTable(DATA, ASIC_InternalSS_Info), &size, &frev, &crev); return table; } /** * Get the asic internal spread spectrum assignment */ static int asic_internal_ss_get_ss_asignment(struct pp_hwmgr *hwmgr, const uint8_t clockSource, const uint32_t clockSpeed, pp_atomctrl_internal_ss_info *ssEntry) { ATOM_ASIC_INTERNAL_SS_INFO *table; ATOM_ASIC_SS_ASSIGNMENT *ssInfo; int entry_found = 0; memset(ssEntry, 0x00, sizeof(pp_atomctrl_internal_ss_info)); table = asic_internal_ss_get_ss_table(hwmgr->device); if (NULL == table) return -1; ssInfo = &table->asSpreadSpectrum[0]; while (((uint8_t *)ssInfo - (uint8_t *)table) < le16_to_cpu(table->sHeader.usStructureSize)) { if ((clockSource == ssInfo->ucClockIndication) && ((uint32_t)clockSpeed <= le32_to_cpu(ssInfo->ulTargetClockRange))) { entry_found = 1; break; } ssInfo = (ATOM_ASIC_SS_ASSIGNMENT *)((uint8_t *)ssInfo + sizeof(ATOM_ASIC_SS_ASSIGNMENT)); } if (entry_found) { ssEntry->speed_spectrum_percentage = ssInfo->usSpreadSpectrumPercentage; ssEntry->speed_spectrum_rate = ssInfo->usSpreadRateInKhz; if (((GET_DATA_TABLE_MAJOR_REVISION(table) == 2) && (GET_DATA_TABLE_MINOR_REVISION(table) >= 2)) || (GET_DATA_TABLE_MAJOR_REVISION(table) == 3)) { ssEntry->speed_spectrum_rate /= 100; } switch (ssInfo->ucSpreadSpectrumMode) { case 0: ssEntry->speed_spectrum_mode = pp_atomctrl_spread_spectrum_mode_down; break; case 1: ssEntry->speed_spectrum_mode = pp_atomctrl_spread_spectrum_mode_center; break; default: ssEntry->speed_spectrum_mode = pp_atomctrl_spread_spectrum_mode_down; break; } } return entry_found ? 0 : 1; } /** * Get the memory clock spread spectrum info */ int atomctrl_get_memory_clock_spread_spectrum( struct pp_hwmgr *hwmgr, const uint32_t memory_clock, pp_atomctrl_internal_ss_info *ssInfo) { return asic_internal_ss_get_ss_asignment(hwmgr, ASIC_INTERNAL_MEMORY_SS, memory_clock, ssInfo); } /** * Get the engine clock spread spectrum info */ int atomctrl_get_engine_clock_spread_spectrum( struct pp_hwmgr *hwmgr, const uint32_t engine_clock, pp_atomctrl_internal_ss_info *ssInfo) { return asic_internal_ss_get_ss_asignment(hwmgr, ASIC_INTERNAL_ENGINE_SS, engine_clock, ssInfo); } int atomctrl_read_efuse(void *device, uint16_t start_index, uint16_t end_index, uint32_t mask, uint32_t *efuse) { int result; READ_EFUSE_VALUE_PARAMETER efuse_param; efuse_param.sEfuse.usEfuseIndex = (start_index / 32) * 4; efuse_param.sEfuse.ucBitShift = (uint8_t) (start_index - ((start_index / 32) * 32)); efuse_param.sEfuse.ucBitLength = (uint8_t) ((end_index - start_index) + 1); result = cgs_atom_exec_cmd_table(device, GetIndexIntoMasterTable(COMMAND, ReadEfuseValue), &efuse_param); if (!result) *efuse = efuse_param.ulEfuseValue & mask; return result; } int atomctrl_set_ac_timing_ai(struct pp_hwmgr *hwmgr, uint32_t memory_clock, uint8_t level) { DYNAMICE_MEMORY_SETTINGS_PARAMETER_V2_1 memory_clock_parameters; int result; memory_clock_parameters.asDPMMCReg.ulClock.ulClockFreq = memory_clock & SET_CLOCK_FREQ_MASK; memory_clock_parameters.asDPMMCReg.ulClock.ulComputeClockFlag = ADJUST_MC_SETTING_PARAM; memory_clock_parameters.asDPMMCReg.ucMclkDPMState = level; result = cgs_atom_exec_cmd_table (hwmgr->device, GetIndexIntoMasterTable(COMMAND, DynamicMemorySettings), &memory_clock_parameters); return result; } int atomctrl_get_voltage_evv_on_sclk_ai(struct pp_hwmgr *hwmgr, uint8_t voltage_type, uint32_t sclk, uint16_t virtual_voltage_Id, uint16_t *voltage) { int result; GET_VOLTAGE_INFO_INPUT_PARAMETER_V1_3 get_voltage_info_param_space; get_voltage_info_param_space.ucVoltageType = voltage_type; get_voltage_info_param_space.ucVoltageMode = ATOM_GET_VOLTAGE_EVV_VOLTAGE; get_voltage_info_param_space.usVoltageLevel = virtual_voltage_Id; get_voltage_info_param_space.ulSCLKFreq = sclk; result = cgs_atom_exec_cmd_table(hwmgr->device, GetIndexIntoMasterTable(COMMAND, GetVoltageInfo), &get_voltage_info_param_space); if (0 != result) return result; *voltage = get_voltage_info_param_space.usVoltageLevel; return result; } int atomctrl_get_smc_sclk_range_table(struct pp_hwmgr *hwmgr, struct pp_atom_ctrl_sclk_range_table *table) { int i; u8 frev, crev; u16 size; ATOM_SMU_INFO_V2_1 *psmu_info = (ATOM_SMU_INFO_V2_1 *)cgs_atom_get_data_table(hwmgr->device, GetIndexIntoMasterTable(DATA, SMU_Info), &size, &frev, &crev); for (i = 0; i < psmu_info->ucSclkEntryNum; i++) { table->entry[i].ucVco_setting = psmu_info->asSclkFcwRangeEntry[i].ucVco_setting; table->entry[i].ucPostdiv = psmu_info->asSclkFcwRangeEntry[i].ucPostdiv; table->entry[i].usFcw_pcc = psmu_info->asSclkFcwRangeEntry[i].ucFcw_pcc; table->entry[i].usFcw_trans_upper = psmu_info->asSclkFcwRangeEntry[i].ucFcw_trans_upper; table->entry[i].usRcw_trans_lower = psmu_info->asSclkFcwRangeEntry[i].ucRcw_trans_lower; } return 0; }