// SPDX-License-Identifier: MIT /* * Copyright © 2023 Intel Corporation */ #include "i915_drv.h" #include "i915_reg.h" #include "i9xx_wm.h" #include "intel_atomic.h" #include "intel_display.h" #include "intel_display_trace.h" #include "intel_mchbar_regs.h" #include "intel_wm.h" #include "skl_watermark.h" #include "vlv_sideband.h" /* used in computing the new watermarks state */ struct intel_wm_config { unsigned int num_pipes_active; bool sprites_enabled; bool sprites_scaled; }; struct cxsr_latency { bool is_desktop : 1; bool is_ddr3 : 1; u16 fsb_freq; u16 mem_freq; u16 display_sr; u16 display_hpll_disable; u16 cursor_sr; u16 cursor_hpll_disable; }; static const struct cxsr_latency cxsr_latency_table[] = { {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */ {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */ {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */ {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */ {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */ {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */ {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */ {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */ {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */ {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */ {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */ {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */ {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */ {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */ {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */ {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */ {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */ {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */ {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */ {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */ {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */ {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */ {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */ {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */ {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */ {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */ {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */ {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */ {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */ {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */ }; static const struct cxsr_latency *intel_get_cxsr_latency(struct drm_i915_private *i915) { int i; if (i915->fsb_freq == 0 || i915->mem_freq == 0) return NULL; for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) { const struct cxsr_latency *latency = &cxsr_latency_table[i]; bool is_desktop = !IS_MOBILE(i915); if (is_desktop == latency->is_desktop && i915->is_ddr3 == latency->is_ddr3 && i915->fsb_freq == latency->fsb_freq && i915->mem_freq == latency->mem_freq) return latency; } drm_dbg_kms(&i915->drm, "Unknown FSB/MEM found, disable CxSR\n"); return NULL; } static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable) { u32 val; vlv_punit_get(dev_priv); val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2); if (enable) val &= ~FORCE_DDR_HIGH_FREQ; else val |= FORCE_DDR_HIGH_FREQ; val &= ~FORCE_DDR_LOW_FREQ; val |= FORCE_DDR_FREQ_REQ_ACK; vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val); if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) & FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) drm_err(&dev_priv->drm, "timed out waiting for Punit DDR DVFS request\n"); vlv_punit_put(dev_priv); } static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable) { u32 val; vlv_punit_get(dev_priv); val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM); if (enable) val |= DSP_MAXFIFO_PM5_ENABLE; else val &= ~DSP_MAXFIFO_PM5_ENABLE; vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val); vlv_punit_put(dev_priv); } #define FW_WM(value, plane) \ (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK) static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable) { bool was_enabled; u32 val; if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { was_enabled = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF_VLV) & FW_CSPWRDWNEN; intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0); intel_uncore_posting_read(&dev_priv->uncore, FW_BLC_SELF_VLV); } else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) { was_enabled = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF) & FW_BLC_SELF_EN; intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0); intel_uncore_posting_read(&dev_priv->uncore, FW_BLC_SELF); } else if (IS_PINEVIEW(dev_priv)) { val = intel_uncore_read(&dev_priv->uncore, DSPFW3); was_enabled = val & PINEVIEW_SELF_REFRESH_EN; if (enable) val |= PINEVIEW_SELF_REFRESH_EN; else val &= ~PINEVIEW_SELF_REFRESH_EN; intel_uncore_write(&dev_priv->uncore, DSPFW3, val); intel_uncore_posting_read(&dev_priv->uncore, DSPFW3); } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) { was_enabled = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF) & FW_BLC_SELF_EN; val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) : _MASKED_BIT_DISABLE(FW_BLC_SELF_EN); intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF, val); intel_uncore_posting_read(&dev_priv->uncore, FW_BLC_SELF); } else if (IS_I915GM(dev_priv)) { /* * FIXME can't find a bit like this for 915G, and * yet it does have the related watermark in * FW_BLC_SELF. What's going on? */ was_enabled = intel_uncore_read(&dev_priv->uncore, INSTPM) & INSTPM_SELF_EN; val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) : _MASKED_BIT_DISABLE(INSTPM_SELF_EN); intel_uncore_write(&dev_priv->uncore, INSTPM, val); intel_uncore_posting_read(&dev_priv->uncore, INSTPM); } else { return false; } trace_intel_memory_cxsr(dev_priv, was_enabled, enable); drm_dbg_kms(&dev_priv->drm, "memory self-refresh is %s (was %s)\n", str_enabled_disabled(enable), str_enabled_disabled(was_enabled)); return was_enabled; } /** * intel_set_memory_cxsr - Configure CxSR state * @dev_priv: i915 device * @enable: Allow vs. disallow CxSR * * Allow or disallow the system to enter a special CxSR * (C-state self refresh) state. What typically happens in CxSR mode * is that several display FIFOs may get combined into a single larger * FIFO for a particular plane (so called max FIFO mode) to allow the * system to defer memory fetches longer, and the memory will enter * self refresh. * * Note that enabling CxSR does not guarantee that the system enter * this special mode, nor does it guarantee that the system stays * in that mode once entered. So this just allows/disallows the system * to autonomously utilize the CxSR mode. Other factors such as core * C-states will affect when/if the system actually enters/exits the * CxSR mode. * * Note that on VLV/CHV this actually only controls the max FIFO mode, * and the system is free to enter/exit memory self refresh at any time * even when the use of CxSR has been disallowed. * * While the system is actually in the CxSR/max FIFO mode, some plane * control registers will not get latched on vblank. Thus in order to * guarantee the system will respond to changes in the plane registers * we must always disallow CxSR prior to making changes to those registers. * Unfortunately the system will re-evaluate the CxSR conditions at * frame start which happens after vblank start (which is when the plane * registers would get latched), so we can't proceed with the plane update * during the same frame where we disallowed CxSR. * * Certain platforms also have a deeper HPLL SR mode. Fortunately the * HPLL SR mode depends on CxSR itself, so we don't have to hand hold * the hardware w.r.t. HPLL SR when writing to plane registers. * Disallowing just CxSR is sufficient. */ bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable) { bool ret; mutex_lock(&dev_priv->display.wm.wm_mutex); ret = _intel_set_memory_cxsr(dev_priv, enable); if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) dev_priv->display.wm.vlv.cxsr = enable; else if (IS_G4X(dev_priv)) dev_priv->display.wm.g4x.cxsr = enable; mutex_unlock(&dev_priv->display.wm.wm_mutex); return ret; } /* * Latency for FIFO fetches is dependent on several factors: * - memory configuration (speed, channels) * - chipset * - current MCH state * It can be fairly high in some situations, so here we assume a fairly * pessimal value. It's a tradeoff between extra memory fetches (if we * set this value too high, the FIFO will fetch frequently to stay full) * and power consumption (set it too low to save power and we might see * FIFO underruns and display "flicker"). * * A value of 5us seems to be a good balance; safe for very low end * platforms but not overly aggressive on lower latency configs. */ static const int pessimal_latency_ns = 5000; #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \ ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8)) static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state; enum pipe pipe = crtc->pipe; int sprite0_start, sprite1_start; u32 dsparb, dsparb2, dsparb3; switch (pipe) { case PIPE_A: dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB); dsparb2 = intel_uncore_read(&dev_priv->uncore, DSPARB2); sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0); sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4); break; case PIPE_B: dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB); dsparb2 = intel_uncore_read(&dev_priv->uncore, DSPARB2); sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8); sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12); break; case PIPE_C: dsparb2 = intel_uncore_read(&dev_priv->uncore, DSPARB2); dsparb3 = intel_uncore_read(&dev_priv->uncore, DSPARB3); sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16); sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20); break; default: MISSING_CASE(pipe); return; } fifo_state->plane[PLANE_PRIMARY] = sprite0_start; fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start; fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start; fifo_state->plane[PLANE_CURSOR] = 63; } static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv, enum i9xx_plane_id i9xx_plane) { u32 dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB); int size; size = dsparb & 0x7f; if (i9xx_plane == PLANE_B) size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size; drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n", dsparb, plane_name(i9xx_plane), size); return size; } static int i830_get_fifo_size(struct drm_i915_private *dev_priv, enum i9xx_plane_id i9xx_plane) { u32 dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB); int size; size = dsparb & 0x1ff; if (i9xx_plane == PLANE_B) size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size; size >>= 1; /* Convert to cachelines */ drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n", dsparb, plane_name(i9xx_plane), size); return size; } static int i845_get_fifo_size(struct drm_i915_private *dev_priv, enum i9xx_plane_id i9xx_plane) { u32 dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB); int size; size = dsparb & 0x7f; size >>= 2; /* Convert to cachelines */ drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n", dsparb, plane_name(i9xx_plane), size); return size; } /* Pineview has different values for various configs */ static const struct intel_watermark_params pnv_display_wm = { .fifo_size = PINEVIEW_DISPLAY_FIFO, .max_wm = PINEVIEW_MAX_WM, .default_wm = PINEVIEW_DFT_WM, .guard_size = PINEVIEW_GUARD_WM, .cacheline_size = PINEVIEW_FIFO_LINE_SIZE, }; static const struct intel_watermark_params pnv_display_hplloff_wm = { .fifo_size = PINEVIEW_DISPLAY_FIFO, .max_wm = PINEVIEW_MAX_WM, .default_wm = PINEVIEW_DFT_HPLLOFF_WM, .guard_size = PINEVIEW_GUARD_WM, .cacheline_size = PINEVIEW_FIFO_LINE_SIZE, }; static const struct intel_watermark_params pnv_cursor_wm = { .fifo_size = PINEVIEW_CURSOR_FIFO, .max_wm = PINEVIEW_CURSOR_MAX_WM, .default_wm = PINEVIEW_CURSOR_DFT_WM, .guard_size = PINEVIEW_CURSOR_GUARD_WM, .cacheline_size = PINEVIEW_FIFO_LINE_SIZE, }; static const struct intel_watermark_params pnv_cursor_hplloff_wm = { .fifo_size = PINEVIEW_CURSOR_FIFO, .max_wm = PINEVIEW_CURSOR_MAX_WM, .default_wm = PINEVIEW_CURSOR_DFT_WM, .guard_size = PINEVIEW_CURSOR_GUARD_WM, .cacheline_size = PINEVIEW_FIFO_LINE_SIZE, }; static const struct intel_watermark_params i965_cursor_wm_info = { .fifo_size = I965_CURSOR_FIFO, .max_wm = I965_CURSOR_MAX_WM, .default_wm = I965_CURSOR_DFT_WM, .guard_size = 2, .cacheline_size = I915_FIFO_LINE_SIZE, }; static const struct intel_watermark_params i945_wm_info = { .fifo_size = I945_FIFO_SIZE, .max_wm = I915_MAX_WM, .default_wm = 1, .guard_size = 2, .cacheline_size = I915_FIFO_LINE_SIZE, }; static const struct intel_watermark_params i915_wm_info = { .fifo_size = I915_FIFO_SIZE, .max_wm = I915_MAX_WM, .default_wm = 1, .guard_size = 2, .cacheline_size = I915_FIFO_LINE_SIZE, }; static const struct intel_watermark_params i830_a_wm_info = { .fifo_size = I855GM_FIFO_SIZE, .max_wm = I915_MAX_WM, .default_wm = 1, .guard_size = 2, .cacheline_size = I830_FIFO_LINE_SIZE, }; static const struct intel_watermark_params i830_bc_wm_info = { .fifo_size = I855GM_FIFO_SIZE, .max_wm = I915_MAX_WM / 2, .default_wm = 1, .guard_size = 2, .cacheline_size = I830_FIFO_LINE_SIZE, }; static const struct intel_watermark_params i845_wm_info = { .fifo_size = I830_FIFO_SIZE, .max_wm = I915_MAX_WM, .default_wm = 1, .guard_size = 2, .cacheline_size = I830_FIFO_LINE_SIZE, }; /** * intel_wm_method1 - Method 1 / "small buffer" watermark formula * @pixel_rate: Pipe pixel rate in kHz * @cpp: Plane bytes per pixel * @latency: Memory wakeup latency in 0.1us units * * Compute the watermark using the method 1 or "small buffer" * formula. The caller may additonally add extra cachelines * to account for TLB misses and clock crossings. * * This method is concerned with the short term drain rate * of the FIFO, ie. it does not account for blanking periods * which would effectively reduce the average drain rate across * a longer period. The name "small" refers to the fact the * FIFO is relatively small compared to the amount of data * fetched. * * The FIFO level vs. time graph might look something like: * * |\ |\ * | \ | \ * __---__---__ (- plane active, _ blanking) * -> time * * or perhaps like this: * * |\|\ |\|\ * __----__----__ (- plane active, _ blanking) * -> time * * Returns: * The watermark in bytes */ static unsigned int intel_wm_method1(unsigned int pixel_rate, unsigned int cpp, unsigned int latency) { u64 ret; ret = mul_u32_u32(pixel_rate, cpp * latency); ret = DIV_ROUND_UP_ULL(ret, 10000); return ret; } /** * intel_wm_method2 - Method 2 / "large buffer" watermark formula * @pixel_rate: Pipe pixel rate in kHz * @htotal: Pipe horizontal total * @width: Plane width in pixels * @cpp: Plane bytes per pixel * @latency: Memory wakeup latency in 0.1us units * * Compute the watermark using the method 2 or "large buffer" * formula. The caller may additonally add extra cachelines * to account for TLB misses and clock crossings. * * This method is concerned with the long term drain rate * of the FIFO, ie. it does account for blanking periods * which effectively reduce the average drain rate across * a longer period. The name "large" refers to the fact the * FIFO is relatively large compared to the amount of data * fetched. * * The FIFO level vs. time graph might look something like: * * |\___ |\___ * | \___ | \___ * | \ | \ * __ --__--__--__--__--__--__ (- plane active, _ blanking) * -> time * * Returns: * The watermark in bytes */ static unsigned int intel_wm_method2(unsigned int pixel_rate, unsigned int htotal, unsigned int width, unsigned int cpp, unsigned int latency) { unsigned int ret; /* * FIXME remove once all users are computing * watermarks in the correct place. */ if (WARN_ON_ONCE(htotal == 0)) htotal = 1; ret = (latency * pixel_rate) / (htotal * 10000); ret = (ret + 1) * width * cpp; return ret; } /** * intel_calculate_wm - calculate watermark level * @i915: the device * @pixel_rate: pixel clock * @wm: chip FIFO params * @fifo_size: size of the FIFO buffer * @cpp: bytes per pixel * @latency_ns: memory latency for the platform * * Calculate the watermark level (the level at which the display plane will * start fetching from memory again). Each chip has a different display * FIFO size and allocation, so the caller needs to figure that out and pass * in the correct intel_watermark_params structure. * * As the pixel clock runs, the FIFO will be drained at a rate that depends * on the pixel size. When it reaches the watermark level, it'll start * fetching FIFO line sized based chunks from memory until the FIFO fills * past the watermark point. If the FIFO drains completely, a FIFO underrun * will occur, and a display engine hang could result. */ static unsigned int intel_calculate_wm(struct drm_i915_private *i915, int pixel_rate, const struct intel_watermark_params *wm, int fifo_size, int cpp, unsigned int latency_ns) { int entries, wm_size; /* * Note: we need to make sure we don't overflow for various clock & * latency values. * clocks go from a few thousand to several hundred thousand. * latency is usually a few thousand */ entries = intel_wm_method1(pixel_rate, cpp, latency_ns / 100); entries = DIV_ROUND_UP(entries, wm->cacheline_size) + wm->guard_size; drm_dbg_kms(&i915->drm, "FIFO entries required for mode: %d\n", entries); wm_size = fifo_size - entries; drm_dbg_kms(&i915->drm, "FIFO watermark level: %d\n", wm_size); /* Don't promote wm_size to unsigned... */ if (wm_size > wm->max_wm) wm_size = wm->max_wm; if (wm_size <= 0) wm_size = wm->default_wm; /* * Bspec seems to indicate that the value shouldn't be lower than * 'burst size + 1'. Certainly 830 is quite unhappy with low values. * Lets go for 8 which is the burst size since certain platforms * already use a hardcoded 8 (which is what the spec says should be * done). */ if (wm_size <= 8) wm_size = 8; return wm_size; } static bool is_disabling(int old, int new, int threshold) { return old >= threshold && new < threshold; } static bool is_enabling(int old, int new, int threshold) { return old < threshold && new >= threshold; } static bool intel_crtc_active(struct intel_crtc *crtc) { /* Be paranoid as we can arrive here with only partial * state retrieved from the hardware during setup. * * We can ditch the adjusted_mode.crtc_clock check as soon * as Haswell has gained clock readout/fastboot support. * * We can ditch the crtc->primary->state->fb check as soon as we can * properly reconstruct framebuffers. * * FIXME: The intel_crtc->active here should be switched to * crtc->state->active once we have proper CRTC states wired up * for atomic. */ return crtc->active && crtc->base.primary->state->fb && crtc->config->hw.adjusted_mode.crtc_clock; } static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv) { struct intel_crtc *crtc, *enabled = NULL; for_each_intel_crtc(&dev_priv->drm, crtc) { if (intel_crtc_active(crtc)) { if (enabled) return NULL; enabled = crtc; } } return enabled; } static void pnv_update_wm(struct drm_i915_private *dev_priv) { struct intel_crtc *crtc; const struct cxsr_latency *latency; u32 reg; unsigned int wm; latency = intel_get_cxsr_latency(dev_priv); if (!latency) { drm_dbg_kms(&dev_priv->drm, "Unknown FSB/MEM found, disable CxSR\n"); intel_set_memory_cxsr(dev_priv, false); return; } crtc = single_enabled_crtc(dev_priv); if (crtc) { const struct drm_framebuffer *fb = crtc->base.primary->state->fb; int pixel_rate = crtc->config->pixel_rate; int cpp = fb->format->cpp[0]; /* Display SR */ wm = intel_calculate_wm(dev_priv, pixel_rate, &pnv_display_wm, pnv_display_wm.fifo_size, cpp, latency->display_sr); reg = intel_uncore_read(&dev_priv->uncore, DSPFW1); reg &= ~DSPFW_SR_MASK; reg |= FW_WM(wm, SR); intel_uncore_write(&dev_priv->uncore, DSPFW1, reg); drm_dbg_kms(&dev_priv->drm, "DSPFW1 register is %x\n", reg); /* cursor SR */ wm = intel_calculate_wm(dev_priv, pixel_rate, &pnv_cursor_wm, pnv_display_wm.fifo_size, 4, latency->cursor_sr); intel_uncore_rmw(&dev_priv->uncore, DSPFW3, DSPFW_CURSOR_SR_MASK, FW_WM(wm, CURSOR_SR)); /* Display HPLL off SR */ wm = intel_calculate_wm(dev_priv, pixel_rate, &pnv_display_hplloff_wm, pnv_display_hplloff_wm.fifo_size, cpp, latency->display_hpll_disable); intel_uncore_rmw(&dev_priv->uncore, DSPFW3, DSPFW_HPLL_SR_MASK, FW_WM(wm, HPLL_SR)); /* cursor HPLL off SR */ wm = intel_calculate_wm(dev_priv, pixel_rate, &pnv_cursor_hplloff_wm, pnv_display_hplloff_wm.fifo_size, 4, latency->cursor_hpll_disable); reg = intel_uncore_read(&dev_priv->uncore, DSPFW3); reg &= ~DSPFW_HPLL_CURSOR_MASK; reg |= FW_WM(wm, HPLL_CURSOR); intel_uncore_write(&dev_priv->uncore, DSPFW3, reg); drm_dbg_kms(&dev_priv->drm, "DSPFW3 register is %x\n", reg); intel_set_memory_cxsr(dev_priv, true); } else { intel_set_memory_cxsr(dev_priv, false); } } /* * Documentation says: * "If the line size is small, the TLB fetches can get in the way of the * data fetches, causing some lag in the pixel data return which is not * accounted for in the above formulas. The following adjustment only * needs to be applied if eight whole lines fit in the buffer at once. * The WM is adjusted upwards by the difference between the FIFO size * and the size of 8 whole lines. This adjustment is always performed * in the actual pixel depth regardless of whether FBC is enabled or not." */ static unsigned int g4x_tlb_miss_wa(int fifo_size, int width, int cpp) { int tlb_miss = fifo_size * 64 - width * cpp * 8; return max(0, tlb_miss); } static void g4x_write_wm_values(struct drm_i915_private *dev_priv, const struct g4x_wm_values *wm) { enum pipe pipe; for_each_pipe(dev_priv, pipe) trace_g4x_wm(intel_crtc_for_pipe(dev_priv, pipe), wm); intel_uncore_write(&dev_priv->uncore, DSPFW1, FW_WM(wm->sr.plane, SR) | FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) | FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) | FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA)); intel_uncore_write(&dev_priv->uncore, DSPFW2, (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) | FW_WM(wm->sr.fbc, FBC_SR) | FW_WM(wm->hpll.fbc, FBC_HPLL_SR) | FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) | FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) | FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA)); intel_uncore_write(&dev_priv->uncore, DSPFW3, (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) | FW_WM(wm->sr.cursor, CURSOR_SR) | FW_WM(wm->hpll.cursor, HPLL_CURSOR) | FW_WM(wm->hpll.plane, HPLL_SR)); intel_uncore_posting_read(&dev_priv->uncore, DSPFW1); } #define FW_WM_VLV(value, plane) \ (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV) static void vlv_write_wm_values(struct drm_i915_private *dev_priv, const struct vlv_wm_values *wm) { enum pipe pipe; for_each_pipe(dev_priv, pipe) { trace_vlv_wm(intel_crtc_for_pipe(dev_priv, pipe), wm); intel_uncore_write(&dev_priv->uncore, VLV_DDL(pipe), (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) | (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) | (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) | (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT)); } /* * Zero the (unused) WM1 watermarks, and also clear all the * high order bits so that there are no out of bounds values * present in the registers during the reprogramming. */ intel_uncore_write(&dev_priv->uncore, DSPHOWM, 0); intel_uncore_write(&dev_priv->uncore, DSPHOWM1, 0); intel_uncore_write(&dev_priv->uncore, DSPFW4, 0); intel_uncore_write(&dev_priv->uncore, DSPFW5, 0); intel_uncore_write(&dev_priv->uncore, DSPFW6, 0); intel_uncore_write(&dev_priv->uncore, DSPFW1, FW_WM(wm->sr.plane, SR) | FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) | FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) | FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA)); intel_uncore_write(&dev_priv->uncore, DSPFW2, FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) | FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) | FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA)); intel_uncore_write(&dev_priv->uncore, DSPFW3, FW_WM(wm->sr.cursor, CURSOR_SR)); if (IS_CHERRYVIEW(dev_priv)) { intel_uncore_write(&dev_priv->uncore, DSPFW7_CHV, FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) | FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC)); intel_uncore_write(&dev_priv->uncore, DSPFW8_CHV, FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) | FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE)); intel_uncore_write(&dev_priv->uncore, DSPFW9_CHV, FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) | FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC)); intel_uncore_write(&dev_priv->uncore, DSPHOWM, FW_WM(wm->sr.plane >> 9, SR_HI) | FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) | FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) | FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) | FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) | FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) | FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) | FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) | FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) | FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI)); } else { intel_uncore_write(&dev_priv->uncore, DSPFW7, FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) | FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC)); intel_uncore_write(&dev_priv->uncore, DSPHOWM, FW_WM(wm->sr.plane >> 9, SR_HI) | FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) | FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) | FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) | FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) | FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) | FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI)); } intel_uncore_posting_read(&dev_priv->uncore, DSPFW1); } #undef FW_WM_VLV static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv) { /* all latencies in usec */ dev_priv->display.wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5; dev_priv->display.wm.pri_latency[G4X_WM_LEVEL_SR] = 12; dev_priv->display.wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35; dev_priv->display.wm.num_levels = G4X_WM_LEVEL_HPLL + 1; } static int g4x_plane_fifo_size(enum plane_id plane_id, int level) { /* * DSPCNTR[13] supposedly controls whether the * primary plane can use the FIFO space otherwise * reserved for the sprite plane. It's not 100% clear * what the actual FIFO size is, but it looks like we * can happily set both primary and sprite watermarks * up to 127 cachelines. So that would seem to mean * that either DSPCNTR[13] doesn't do anything, or that * the total FIFO is >= 256 cachelines in size. Either * way, we don't seem to have to worry about this * repartitioning as the maximum watermark value the * register can hold for each plane is lower than the * minimum FIFO size. */ switch (plane_id) { case PLANE_CURSOR: return 63; case PLANE_PRIMARY: return level == G4X_WM_LEVEL_NORMAL ? 127 : 511; case PLANE_SPRITE0: return level == G4X_WM_LEVEL_NORMAL ? 127 : 0; default: MISSING_CASE(plane_id); return 0; } } static int g4x_fbc_fifo_size(int level) { switch (level) { case G4X_WM_LEVEL_SR: return 7; case G4X_WM_LEVEL_HPLL: return 15; default: MISSING_CASE(level); return 0; } } static u16 g4x_compute_wm(const struct intel_crtc_state *crtc_state, const struct intel_plane_state *plane_state, int level) { struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); struct drm_i915_private *dev_priv = to_i915(plane->base.dev); const struct drm_display_mode *pipe_mode = &crtc_state->hw.pipe_mode; unsigned int latency = dev_priv->display.wm.pri_latency[level] * 10; unsigned int pixel_rate, htotal, cpp, width, wm; if (latency == 0) return USHRT_MAX; if (!intel_wm_plane_visible(crtc_state, plane_state)) return 0; cpp = plane_state->hw.fb->format->cpp[0]; /* * WaUse32BppForSRWM:ctg,elk * * The spec fails to list this restriction for the * HPLL watermark, which seems a little strange. * Let's use 32bpp for the HPLL watermark as well. */ if (plane->id == PLANE_PRIMARY && level != G4X_WM_LEVEL_NORMAL) cpp = max(cpp, 4u); pixel_rate = crtc_state->pixel_rate; htotal = pipe_mode->crtc_htotal; width = drm_rect_width(&plane_state->uapi.src) >> 16; if (plane->id == PLANE_CURSOR) { wm = intel_wm_method2(pixel_rate, htotal, width, cpp, latency); } else if (plane->id == PLANE_PRIMARY && level == G4X_WM_LEVEL_NORMAL) { wm = intel_wm_method1(pixel_rate, cpp, latency); } else { unsigned int small, large; small = intel_wm_method1(pixel_rate, cpp, latency); large = intel_wm_method2(pixel_rate, htotal, width, cpp, latency); wm = min(small, large); } wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level), width, cpp); wm = DIV_ROUND_UP(wm, 64) + 2; return min_t(unsigned int, wm, USHRT_MAX); } static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state, int level, enum plane_id plane_id, u16 value) { struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); bool dirty = false; for (; level < dev_priv->display.wm.num_levels; level++) { struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level]; dirty |= raw->plane[plane_id] != value; raw->plane[plane_id] = value; } return dirty; } static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state, int level, u16 value) { struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); bool dirty = false; /* NORMAL level doesn't have an FBC watermark */ level = max(level, G4X_WM_LEVEL_SR); for (; level < dev_priv->display.wm.num_levels; level++) { struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level]; dirty |= raw->fbc != value; raw->fbc = value; } return dirty; } static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state, const struct intel_plane_state *plane_state, u32 pri_val); static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state, const struct intel_plane_state *plane_state) { struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); enum plane_id plane_id = plane->id; bool dirty = false; int level; if (!intel_wm_plane_visible(crtc_state, plane_state)) { dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0); if (plane_id == PLANE_PRIMARY) dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0); goto out; } for (level = 0; level < dev_priv->display.wm.num_levels; level++) { struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level]; int wm, max_wm; wm = g4x_compute_wm(crtc_state, plane_state, level); max_wm = g4x_plane_fifo_size(plane_id, level); if (wm > max_wm) break; dirty |= raw->plane[plane_id] != wm; raw->plane[plane_id] = wm; if (plane_id != PLANE_PRIMARY || level == G4X_WM_LEVEL_NORMAL) continue; wm = ilk_compute_fbc_wm(crtc_state, plane_state, raw->plane[plane_id]); max_wm = g4x_fbc_fifo_size(level); /* * FBC wm is not mandatory as we * can always just disable its use. */ if (wm > max_wm) wm = USHRT_MAX; dirty |= raw->fbc != wm; raw->fbc = wm; } /* mark watermarks as invalid */ dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX); if (plane_id == PLANE_PRIMARY) dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX); out: if (dirty) { drm_dbg_kms(&dev_priv->drm, "%s watermarks: normal=%d, SR=%d, HPLL=%d\n", plane->base.name, crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id], crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id], crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]); if (plane_id == PLANE_PRIMARY) drm_dbg_kms(&dev_priv->drm, "FBC watermarks: SR=%d, HPLL=%d\n", crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc, crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc); } return dirty; } static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state, enum plane_id plane_id, int level) { const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level]; return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level); } static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level) { struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); if (level >= dev_priv->display.wm.num_levels) return false; return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) && g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) && g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level); } /* mark all levels starting from 'level' as invalid */ static void g4x_invalidate_wms(struct intel_crtc *crtc, struct g4x_wm_state *wm_state, int level) { if (level <= G4X_WM_LEVEL_NORMAL) { enum plane_id plane_id; for_each_plane_id_on_crtc(crtc, plane_id) wm_state->wm.plane[plane_id] = USHRT_MAX; } if (level <= G4X_WM_LEVEL_SR) { wm_state->cxsr = false; wm_state->sr.cursor = USHRT_MAX; wm_state->sr.plane = USHRT_MAX; wm_state->sr.fbc = USHRT_MAX; } if (level <= G4X_WM_LEVEL_HPLL) { wm_state->hpll_en = false; wm_state->hpll.cursor = USHRT_MAX; wm_state->hpll.plane = USHRT_MAX; wm_state->hpll.fbc = USHRT_MAX; } } static bool g4x_compute_fbc_en(const struct g4x_wm_state *wm_state, int level) { if (level < G4X_WM_LEVEL_SR) return false; if (level >= G4X_WM_LEVEL_SR && wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR)) return false; if (level >= G4X_WM_LEVEL_HPLL && wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL)) return false; return true; } static int _g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal; u8 active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR); const struct g4x_pipe_wm *raw; enum plane_id plane_id; int level; level = G4X_WM_LEVEL_NORMAL; if (!g4x_raw_crtc_wm_is_valid(crtc_state, level)) goto out; raw = &crtc_state->wm.g4x.raw[level]; for_each_plane_id_on_crtc(crtc, plane_id) wm_state->wm.plane[plane_id] = raw->plane[plane_id]; level = G4X_WM_LEVEL_SR; if (!g4x_raw_crtc_wm_is_valid(crtc_state, level)) goto out; raw = &crtc_state->wm.g4x.raw[level]; wm_state->sr.plane = raw->plane[PLANE_PRIMARY]; wm_state->sr.cursor = raw->plane[PLANE_CURSOR]; wm_state->sr.fbc = raw->fbc; wm_state->cxsr = active_planes == BIT(PLANE_PRIMARY); level = G4X_WM_LEVEL_HPLL; if (!g4x_raw_crtc_wm_is_valid(crtc_state, level)) goto out; raw = &crtc_state->wm.g4x.raw[level]; wm_state->hpll.plane = raw->plane[PLANE_PRIMARY]; wm_state->hpll.cursor = raw->plane[PLANE_CURSOR]; wm_state->hpll.fbc = raw->fbc; wm_state->hpll_en = wm_state->cxsr; level++; out: if (level == G4X_WM_LEVEL_NORMAL) return -EINVAL; /* invalidate the higher levels */ g4x_invalidate_wms(crtc, wm_state, level); /* * Determine if the FBC watermark(s) can be used. IF * this isn't the case we prefer to disable the FBC * watermark(s) rather than disable the SR/HPLL * level(s) entirely. 'level-1' is the highest valid * level here. */ wm_state->fbc_en = g4x_compute_fbc_en(wm_state, level - 1); return 0; } static int g4x_compute_pipe_wm(struct intel_atomic_state *state, struct intel_crtc *crtc) { struct intel_crtc_state *crtc_state = intel_atomic_get_new_crtc_state(state, crtc); const struct intel_plane_state *old_plane_state; const struct intel_plane_state *new_plane_state; struct intel_plane *plane; unsigned int dirty = 0; int i; for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state, new_plane_state, i) { if (new_plane_state->hw.crtc != &crtc->base && old_plane_state->hw.crtc != &crtc->base) continue; if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state)) dirty |= BIT(plane->id); } if (!dirty) return 0; return _g4x_compute_pipe_wm(crtc_state); } static int g4x_compute_intermediate_wm(struct intel_atomic_state *state, struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); struct intel_crtc_state *new_crtc_state = intel_atomic_get_new_crtc_state(state, crtc); const struct intel_crtc_state *old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc); struct g4x_wm_state *intermediate = &new_crtc_state->wm.g4x.intermediate; const struct g4x_wm_state *optimal = &new_crtc_state->wm.g4x.optimal; const struct g4x_wm_state *active = &old_crtc_state->wm.g4x.optimal; enum plane_id plane_id; if (!new_crtc_state->hw.active || intel_crtc_needs_modeset(new_crtc_state)) { *intermediate = *optimal; intermediate->cxsr = false; intermediate->hpll_en = false; goto out; } intermediate->cxsr = optimal->cxsr && active->cxsr && !new_crtc_state->disable_cxsr; intermediate->hpll_en = optimal->hpll_en && active->hpll_en && !new_crtc_state->disable_cxsr; intermediate->fbc_en = optimal->fbc_en && active->fbc_en; for_each_plane_id_on_crtc(crtc, plane_id) { intermediate->wm.plane[plane_id] = max(optimal->wm.plane[plane_id], active->wm.plane[plane_id]); drm_WARN_ON(&dev_priv->drm, intermediate->wm.plane[plane_id] > g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL)); } intermediate->sr.plane = max(optimal->sr.plane, active->sr.plane); intermediate->sr.cursor = max(optimal->sr.cursor, active->sr.cursor); intermediate->sr.fbc = max(optimal->sr.fbc, active->sr.fbc); intermediate->hpll.plane = max(optimal->hpll.plane, active->hpll.plane); intermediate->hpll.cursor = max(optimal->hpll.cursor, active->hpll.cursor); intermediate->hpll.fbc = max(optimal->hpll.fbc, active->hpll.fbc); drm_WARN_ON(&dev_priv->drm, (intermediate->sr.plane > g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) || intermediate->sr.cursor > g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) && intermediate->cxsr); drm_WARN_ON(&dev_priv->drm, (intermediate->sr.plane > g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) || intermediate->sr.cursor > g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) && intermediate->hpll_en); drm_WARN_ON(&dev_priv->drm, intermediate->sr.fbc > g4x_fbc_fifo_size(1) && intermediate->fbc_en && intermediate->cxsr); drm_WARN_ON(&dev_priv->drm, intermediate->hpll.fbc > g4x_fbc_fifo_size(2) && intermediate->fbc_en && intermediate->hpll_en); out: /* * If our intermediate WM are identical to the final WM, then we can * omit the post-vblank programming; only update if it's different. */ if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0) new_crtc_state->wm.need_postvbl_update = true; return 0; } static void g4x_merge_wm(struct drm_i915_private *dev_priv, struct g4x_wm_values *wm) { struct intel_crtc *crtc; int num_active_pipes = 0; wm->cxsr = true; wm->hpll_en = true; wm->fbc_en = true; for_each_intel_crtc(&dev_priv->drm, crtc) { const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x; if (!crtc->active) continue; if (!wm_state->cxsr) wm->cxsr = false; if (!wm_state->hpll_en) wm->hpll_en = false; if (!wm_state->fbc_en) wm->fbc_en = false; num_active_pipes++; } if (num_active_pipes != 1) { wm->cxsr = false; wm->hpll_en = false; wm->fbc_en = false; } for_each_intel_crtc(&dev_priv->drm, crtc) { const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x; enum pipe pipe = crtc->pipe; wm->pipe[pipe] = wm_state->wm; if (crtc->active && wm->cxsr) wm->sr = wm_state->sr; if (crtc->active && wm->hpll_en) wm->hpll = wm_state->hpll; } } static void g4x_program_watermarks(struct drm_i915_private *dev_priv) { struct g4x_wm_values *old_wm = &dev_priv->display.wm.g4x; struct g4x_wm_values new_wm = {}; g4x_merge_wm(dev_priv, &new_wm); if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0) return; if (is_disabling(old_wm->cxsr, new_wm.cxsr, true)) _intel_set_memory_cxsr(dev_priv, false); g4x_write_wm_values(dev_priv, &new_wm); if (is_enabling(old_wm->cxsr, new_wm.cxsr, true)) _intel_set_memory_cxsr(dev_priv, true); *old_wm = new_wm; } static void g4x_initial_watermarks(struct intel_atomic_state *state, struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); const struct intel_crtc_state *crtc_state = intel_atomic_get_new_crtc_state(state, crtc); mutex_lock(&dev_priv->display.wm.wm_mutex); crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate; g4x_program_watermarks(dev_priv); mutex_unlock(&dev_priv->display.wm.wm_mutex); } static void g4x_optimize_watermarks(struct intel_atomic_state *state, struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); const struct intel_crtc_state *crtc_state = intel_atomic_get_new_crtc_state(state, crtc); if (!crtc_state->wm.need_postvbl_update) return; mutex_lock(&dev_priv->display.wm.wm_mutex); crtc->wm.active.g4x = crtc_state->wm.g4x.optimal; g4x_program_watermarks(dev_priv); mutex_unlock(&dev_priv->display.wm.wm_mutex); } /* latency must be in 0.1us units. */ static unsigned int vlv_wm_method2(unsigned int pixel_rate, unsigned int htotal, unsigned int width, unsigned int cpp, unsigned int latency) { unsigned int ret; ret = intel_wm_method2(pixel_rate, htotal, width, cpp, latency); ret = DIV_ROUND_UP(ret, 64); return ret; } static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv) { /* all latencies in usec */ dev_priv->display.wm.pri_latency[VLV_WM_LEVEL_PM2] = 3; dev_priv->display.wm.num_levels = VLV_WM_LEVEL_PM2 + 1; if (IS_CHERRYVIEW(dev_priv)) { dev_priv->display.wm.pri_latency[VLV_WM_LEVEL_PM5] = 12; dev_priv->display.wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33; dev_priv->display.wm.num_levels = VLV_WM_LEVEL_DDR_DVFS + 1; } } static u16 vlv_compute_wm_level(const struct intel_crtc_state *crtc_state, const struct intel_plane_state *plane_state, int level) { struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); struct drm_i915_private *dev_priv = to_i915(plane->base.dev); const struct drm_display_mode *pipe_mode = &crtc_state->hw.pipe_mode; unsigned int pixel_rate, htotal, cpp, width, wm; if (dev_priv->display.wm.pri_latency[level] == 0) return USHRT_MAX; if (!intel_wm_plane_visible(crtc_state, plane_state)) return 0; cpp = plane_state->hw.fb->format->cpp[0]; pixel_rate = crtc_state->pixel_rate; htotal = pipe_mode->crtc_htotal; width = drm_rect_width(&plane_state->uapi.src) >> 16; if (plane->id == PLANE_CURSOR) { /* * FIXME the formula gives values that are * too big for the cursor FIFO, and hence we * would never be able to use cursors. For * now just hardcode the watermark. */ wm = 63; } else { wm = vlv_wm_method2(pixel_rate, htotal, width, cpp, dev_priv->display.wm.pri_latency[level] * 10); } return min_t(unsigned int, wm, USHRT_MAX); } static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes) { return (active_planes & (BIT(PLANE_SPRITE0) | BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1); } static int vlv_compute_fifo(struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2]; struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state; u8 active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR); int num_active_planes = hweight8(active_planes); const int fifo_size = 511; int fifo_extra, fifo_left = fifo_size; int sprite0_fifo_extra = 0; unsigned int total_rate; enum plane_id plane_id; /* * When enabling sprite0 after sprite1 has already been enabled * we tend to get an underrun unless sprite0 already has some * FIFO space allcoated. Hence we always allocate at least one * cacheline for sprite0 whenever sprite1 is enabled. * * All other plane enable sequences appear immune to this problem. */ if (vlv_need_sprite0_fifo_workaround(active_planes)) sprite0_fifo_extra = 1; total_rate = raw->plane[PLANE_PRIMARY] + raw->plane[PLANE_SPRITE0] + raw->plane[PLANE_SPRITE1] + sprite0_fifo_extra; if (total_rate > fifo_size) return -EINVAL; if (total_rate == 0) total_rate = 1; for_each_plane_id_on_crtc(crtc, plane_id) { unsigned int rate; if ((active_planes & BIT(plane_id)) == 0) { fifo_state->plane[plane_id] = 0; continue; } rate = raw->plane[plane_id]; fifo_state->plane[plane_id] = fifo_size * rate / total_rate; fifo_left -= fifo_state->plane[plane_id]; } fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra; fifo_left -= sprite0_fifo_extra; fifo_state->plane[PLANE_CURSOR] = 63; fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1); /* spread the remainder evenly */ for_each_plane_id_on_crtc(crtc, plane_id) { int plane_extra; if (fifo_left == 0) break; if ((active_planes & BIT(plane_id)) == 0) continue; plane_extra = min(fifo_extra, fifo_left); fifo_state->plane[plane_id] += plane_extra; fifo_left -= plane_extra; } drm_WARN_ON(&dev_priv->drm, active_planes != 0 && fifo_left != 0); /* give it all to the first plane if none are active */ if (active_planes == 0) { drm_WARN_ON(&dev_priv->drm, fifo_left != fifo_size); fifo_state->plane[PLANE_PRIMARY] = fifo_left; } return 0; } /* mark all levels starting from 'level' as invalid */ static void vlv_invalidate_wms(struct intel_crtc *crtc, struct vlv_wm_state *wm_state, int level) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); for (; level < dev_priv->display.wm.num_levels; level++) { enum plane_id plane_id; for_each_plane_id_on_crtc(crtc, plane_id) wm_state->wm[level].plane[plane_id] = USHRT_MAX; wm_state->sr[level].cursor = USHRT_MAX; wm_state->sr[level].plane = USHRT_MAX; } } static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size) { if (wm > fifo_size) return USHRT_MAX; else return fifo_size - wm; } /* * Starting from 'level' set all higher * levels to 'value' in the "raw" watermarks. */ static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state, int level, enum plane_id plane_id, u16 value) { struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); bool dirty = false; for (; level < dev_priv->display.wm.num_levels; level++) { struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level]; dirty |= raw->plane[plane_id] != value; raw->plane[plane_id] = value; } return dirty; } static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state, const struct intel_plane_state *plane_state) { struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); enum plane_id plane_id = plane->id; int level; bool dirty = false; if (!intel_wm_plane_visible(crtc_state, plane_state)) { dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0); goto out; } for (level = 0; level < dev_priv->display.wm.num_levels; level++) { struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level]; int wm = vlv_compute_wm_level(crtc_state, plane_state, level); int max_wm = plane_id == PLANE_CURSOR ? 63 : 511; if (wm > max_wm) break; dirty |= raw->plane[plane_id] != wm; raw->plane[plane_id] = wm; } /* mark all higher levels as invalid */ dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX); out: if (dirty) drm_dbg_kms(&dev_priv->drm, "%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n", plane->base.name, crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id], crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id], crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]); return dirty; } static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state, enum plane_id plane_id, int level) { const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level]; const struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state; return raw->plane[plane_id] <= fifo_state->plane[plane_id]; } static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level) { return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) && vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) && vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) && vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level); } static int _vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal; const struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state; u8 active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR); int num_active_planes = hweight8(active_planes); enum plane_id plane_id; int level; /* initially allow all levels */ wm_state->num_levels = dev_priv->display.wm.num_levels; /* * Note that enabling cxsr with no primary/sprite planes * enabled can wedge the pipe. Hence we only allow cxsr * with exactly one enabled primary/sprite plane. */ wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1; for (level = 0; level < wm_state->num_levels; level++) { const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level]; const int sr_fifo_size = INTEL_NUM_PIPES(dev_priv) * 512 - 1; if (!vlv_raw_crtc_wm_is_valid(crtc_state, level)) break; for_each_plane_id_on_crtc(crtc, plane_id) { wm_state->wm[level].plane[plane_id] = vlv_invert_wm_value(raw->plane[plane_id], fifo_state->plane[plane_id]); } wm_state->sr[level].plane = vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY], raw->plane[PLANE_SPRITE0], raw->plane[PLANE_SPRITE1]), sr_fifo_size); wm_state->sr[level].cursor = vlv_invert_wm_value(raw->plane[PLANE_CURSOR], 63); } if (level == 0) return -EINVAL; /* limit to only levels we can actually handle */ wm_state->num_levels = level; /* invalidate the higher levels */ vlv_invalidate_wms(crtc, wm_state, level); return 0; } static int vlv_compute_pipe_wm(struct intel_atomic_state *state, struct intel_crtc *crtc) { struct intel_crtc_state *crtc_state = intel_atomic_get_new_crtc_state(state, crtc); const struct intel_plane_state *old_plane_state; const struct intel_plane_state *new_plane_state; struct intel_plane *plane; unsigned int dirty = 0; int i; for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state, new_plane_state, i) { if (new_plane_state->hw.crtc != &crtc->base && old_plane_state->hw.crtc != &crtc->base) continue; if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state)) dirty |= BIT(plane->id); } /* * DSPARB registers may have been reset due to the * power well being turned off. Make sure we restore * them to a consistent state even if no primary/sprite * planes are initially active. We also force a FIFO * recomputation so that we are sure to sanitize the * FIFO setting we took over from the BIOS even if there * are no active planes on the crtc. */ if (intel_crtc_needs_modeset(crtc_state)) dirty = ~0; if (!dirty) return 0; /* cursor changes don't warrant a FIFO recompute */ if (dirty & ~BIT(PLANE_CURSOR)) { const struct intel_crtc_state *old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc); const struct vlv_fifo_state *old_fifo_state = &old_crtc_state->wm.vlv.fifo_state; const struct vlv_fifo_state *new_fifo_state = &crtc_state->wm.vlv.fifo_state; int ret; ret = vlv_compute_fifo(crtc_state); if (ret) return ret; if (intel_crtc_needs_modeset(crtc_state) || memcmp(old_fifo_state, new_fifo_state, sizeof(*new_fifo_state)) != 0) crtc_state->fifo_changed = true; } return _vlv_compute_pipe_wm(crtc_state); } #define VLV_FIFO(plane, value) \ (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV) static void vlv_atomic_update_fifo(struct intel_atomic_state *state, struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); struct intel_uncore *uncore = &dev_priv->uncore; const struct intel_crtc_state *crtc_state = intel_atomic_get_new_crtc_state(state, crtc); const struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state; int sprite0_start, sprite1_start, fifo_size; u32 dsparb, dsparb2, dsparb3; if (!crtc_state->fifo_changed) return; sprite0_start = fifo_state->plane[PLANE_PRIMARY]; sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start; fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start; drm_WARN_ON(&dev_priv->drm, fifo_state->plane[PLANE_CURSOR] != 63); drm_WARN_ON(&dev_priv->drm, fifo_size != 511); trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size); /* * uncore.lock serves a double purpose here. It allows us to * use the less expensive I915_{READ,WRITE}_FW() functions, and * it protects the DSPARB registers from getting clobbered by * parallel updates from multiple pipes. * * intel_pipe_update_start() has already disabled interrupts * for us, so a plain spin_lock() is sufficient here. */ spin_lock(&uncore->lock); switch (crtc->pipe) { case PIPE_A: dsparb = intel_uncore_read_fw(uncore, DSPARB); dsparb2 = intel_uncore_read_fw(uncore, DSPARB2); dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) | VLV_FIFO(SPRITEB, 0xff)); dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) | VLV_FIFO(SPRITEB, sprite1_start)); dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) | VLV_FIFO(SPRITEB_HI, 0x1)); dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) | VLV_FIFO(SPRITEB_HI, sprite1_start >> 8)); intel_uncore_write_fw(uncore, DSPARB, dsparb); intel_uncore_write_fw(uncore, DSPARB2, dsparb2); break; case PIPE_B: dsparb = intel_uncore_read_fw(uncore, DSPARB); dsparb2 = intel_uncore_read_fw(uncore, DSPARB2); dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) | VLV_FIFO(SPRITED, 0xff)); dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) | VLV_FIFO(SPRITED, sprite1_start)); dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) | VLV_FIFO(SPRITED_HI, 0xff)); dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) | VLV_FIFO(SPRITED_HI, sprite1_start >> 8)); intel_uncore_write_fw(uncore, DSPARB, dsparb); intel_uncore_write_fw(uncore, DSPARB2, dsparb2); break; case PIPE_C: dsparb3 = intel_uncore_read_fw(uncore, DSPARB3); dsparb2 = intel_uncore_read_fw(uncore, DSPARB2); dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) | VLV_FIFO(SPRITEF, 0xff)); dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) | VLV_FIFO(SPRITEF, sprite1_start)); dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) | VLV_FIFO(SPRITEF_HI, 0xff)); dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) | VLV_FIFO(SPRITEF_HI, sprite1_start >> 8)); intel_uncore_write_fw(uncore, DSPARB3, dsparb3); intel_uncore_write_fw(uncore, DSPARB2, dsparb2); break; default: break; } intel_uncore_posting_read_fw(uncore, DSPARB); spin_unlock(&uncore->lock); } #undef VLV_FIFO static int vlv_compute_intermediate_wm(struct intel_atomic_state *state, struct intel_crtc *crtc) { struct intel_crtc_state *new_crtc_state = intel_atomic_get_new_crtc_state(state, crtc); const struct intel_crtc_state *old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc); struct vlv_wm_state *intermediate = &new_crtc_state->wm.vlv.intermediate; const struct vlv_wm_state *optimal = &new_crtc_state->wm.vlv.optimal; const struct vlv_wm_state *active = &old_crtc_state->wm.vlv.optimal; int level; if (!new_crtc_state->hw.active || intel_crtc_needs_modeset(new_crtc_state)) { *intermediate = *optimal; intermediate->cxsr = false; goto out; } intermediate->num_levels = min(optimal->num_levels, active->num_levels); intermediate->cxsr = optimal->cxsr && active->cxsr && !new_crtc_state->disable_cxsr; for (level = 0; level < intermediate->num_levels; level++) { enum plane_id plane_id; for_each_plane_id_on_crtc(crtc, plane_id) { intermediate->wm[level].plane[plane_id] = min(optimal->wm[level].plane[plane_id], active->wm[level].plane[plane_id]); } intermediate->sr[level].plane = min(optimal->sr[level].plane, active->sr[level].plane); intermediate->sr[level].cursor = min(optimal->sr[level].cursor, active->sr[level].cursor); } vlv_invalidate_wms(crtc, intermediate, level); out: /* * If our intermediate WM are identical to the final WM, then we can * omit the post-vblank programming; only update if it's different. */ if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0) new_crtc_state->wm.need_postvbl_update = true; return 0; } static void vlv_merge_wm(struct drm_i915_private *dev_priv, struct vlv_wm_values *wm) { struct intel_crtc *crtc; int num_active_pipes = 0; wm->level = dev_priv->display.wm.num_levels - 1; wm->cxsr = true; for_each_intel_crtc(&dev_priv->drm, crtc) { const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv; if (!crtc->active) continue; if (!wm_state->cxsr) wm->cxsr = false; num_active_pipes++; wm->level = min_t(int, wm->level, wm_state->num_levels - 1); } if (num_active_pipes != 1) wm->cxsr = false; if (num_active_pipes > 1) wm->level = VLV_WM_LEVEL_PM2; for_each_intel_crtc(&dev_priv->drm, crtc) { const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv; enum pipe pipe = crtc->pipe; wm->pipe[pipe] = wm_state->wm[wm->level]; if (crtc->active && wm->cxsr) wm->sr = wm_state->sr[wm->level]; wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2; wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2; wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2; wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2; } } static void vlv_program_watermarks(struct drm_i915_private *dev_priv) { struct vlv_wm_values *old_wm = &dev_priv->display.wm.vlv; struct vlv_wm_values new_wm = {}; vlv_merge_wm(dev_priv, &new_wm); if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0) return; if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS)) chv_set_memory_dvfs(dev_priv, false); if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5)) chv_set_memory_pm5(dev_priv, false); if (is_disabling(old_wm->cxsr, new_wm.cxsr, true)) _intel_set_memory_cxsr(dev_priv, false); vlv_write_wm_values(dev_priv, &new_wm); if (is_enabling(old_wm->cxsr, new_wm.cxsr, true)) _intel_set_memory_cxsr(dev_priv, true); if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5)) chv_set_memory_pm5(dev_priv, true); if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS)) chv_set_memory_dvfs(dev_priv, true); *old_wm = new_wm; } static void vlv_initial_watermarks(struct intel_atomic_state *state, struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); const struct intel_crtc_state *crtc_state = intel_atomic_get_new_crtc_state(state, crtc); mutex_lock(&dev_priv->display.wm.wm_mutex); crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate; vlv_program_watermarks(dev_priv); mutex_unlock(&dev_priv->display.wm.wm_mutex); } static void vlv_optimize_watermarks(struct intel_atomic_state *state, struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); const struct intel_crtc_state *crtc_state = intel_atomic_get_new_crtc_state(state, crtc); if (!crtc_state->wm.need_postvbl_update) return; mutex_lock(&dev_priv->display.wm.wm_mutex); crtc->wm.active.vlv = crtc_state->wm.vlv.optimal; vlv_program_watermarks(dev_priv); mutex_unlock(&dev_priv->display.wm.wm_mutex); } static void i965_update_wm(struct drm_i915_private *dev_priv) { struct intel_crtc *crtc; int srwm = 1; int cursor_sr = 16; bool cxsr_enabled; /* Calc sr entries for one plane configs */ crtc = single_enabled_crtc(dev_priv); if (crtc) { /* self-refresh has much higher latency */ static const int sr_latency_ns = 12000; const struct drm_display_mode *pipe_mode = &crtc->config->hw.pipe_mode; const struct drm_framebuffer *fb = crtc->base.primary->state->fb; int pixel_rate = crtc->config->pixel_rate; int htotal = pipe_mode->crtc_htotal; int width = drm_rect_width(&crtc->base.primary->state->src) >> 16; int cpp = fb->format->cpp[0]; int entries; entries = intel_wm_method2(pixel_rate, htotal, width, cpp, sr_latency_ns / 100); entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE); srwm = I965_FIFO_SIZE - entries; if (srwm < 0) srwm = 1; srwm &= 0x1ff; drm_dbg_kms(&dev_priv->drm, "self-refresh entries: %d, wm: %d\n", entries, srwm); entries = intel_wm_method2(pixel_rate, htotal, crtc->base.cursor->state->crtc_w, 4, sr_latency_ns / 100); entries = DIV_ROUND_UP(entries, i965_cursor_wm_info.cacheline_size) + i965_cursor_wm_info.guard_size; cursor_sr = i965_cursor_wm_info.fifo_size - entries; if (cursor_sr > i965_cursor_wm_info.max_wm) cursor_sr = i965_cursor_wm_info.max_wm; drm_dbg_kms(&dev_priv->drm, "self-refresh watermark: display plane %d " "cursor %d\n", srwm, cursor_sr); cxsr_enabled = true; } else { cxsr_enabled = false; /* Turn off self refresh if both pipes are enabled */ intel_set_memory_cxsr(dev_priv, false); } drm_dbg_kms(&dev_priv->drm, "Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n", srwm); /* 965 has limitations... */ intel_uncore_write(&dev_priv->uncore, DSPFW1, FW_WM(srwm, SR) | FW_WM(8, CURSORB) | FW_WM(8, PLANEB) | FW_WM(8, PLANEA)); intel_uncore_write(&dev_priv->uncore, DSPFW2, FW_WM(8, CURSORA) | FW_WM(8, PLANEC_OLD)); /* update cursor SR watermark */ intel_uncore_write(&dev_priv->uncore, DSPFW3, FW_WM(cursor_sr, CURSOR_SR)); if (cxsr_enabled) intel_set_memory_cxsr(dev_priv, true); } #undef FW_WM static struct intel_crtc *intel_crtc_for_plane(struct drm_i915_private *i915, enum i9xx_plane_id i9xx_plane) { struct intel_plane *plane; for_each_intel_plane(&i915->drm, plane) { if (plane->id == PLANE_PRIMARY && plane->i9xx_plane == i9xx_plane) return intel_crtc_for_pipe(i915, plane->pipe); } return NULL; } static void i9xx_update_wm(struct drm_i915_private *dev_priv) { const struct intel_watermark_params *wm_info; u32 fwater_lo; u32 fwater_hi; int cwm, srwm = 1; int fifo_size; int planea_wm, planeb_wm; struct intel_crtc *crtc; if (IS_I945GM(dev_priv)) wm_info = &i945_wm_info; else if (DISPLAY_VER(dev_priv) != 2) wm_info = &i915_wm_info; else wm_info = &i830_a_wm_info; if (DISPLAY_VER(dev_priv) == 2) fifo_size = i830_get_fifo_size(dev_priv, PLANE_A); else fifo_size = i9xx_get_fifo_size(dev_priv, PLANE_A); crtc = intel_crtc_for_plane(dev_priv, PLANE_A); if (intel_crtc_active(crtc)) { const struct drm_framebuffer *fb = crtc->base.primary->state->fb; int cpp; if (DISPLAY_VER(dev_priv) == 2) cpp = 4; else cpp = fb->format->cpp[0]; planea_wm = intel_calculate_wm(dev_priv, crtc->config->pixel_rate, wm_info, fifo_size, cpp, pessimal_latency_ns); } else { planea_wm = fifo_size - wm_info->guard_size; if (planea_wm > (long)wm_info->max_wm) planea_wm = wm_info->max_wm; } if (DISPLAY_VER(dev_priv) == 2) wm_info = &i830_bc_wm_info; if (DISPLAY_VER(dev_priv) == 2) fifo_size = i830_get_fifo_size(dev_priv, PLANE_B); else fifo_size = i9xx_get_fifo_size(dev_priv, PLANE_B); crtc = intel_crtc_for_plane(dev_priv, PLANE_B); if (intel_crtc_active(crtc)) { const struct drm_framebuffer *fb = crtc->base.primary->state->fb; int cpp; if (DISPLAY_VER(dev_priv) == 2) cpp = 4; else cpp = fb->format->cpp[0]; planeb_wm = intel_calculate_wm(dev_priv, crtc->config->pixel_rate, wm_info, fifo_size, cpp, pessimal_latency_ns); } else { planeb_wm = fifo_size - wm_info->guard_size; if (planeb_wm > (long)wm_info->max_wm) planeb_wm = wm_info->max_wm; } drm_dbg_kms(&dev_priv->drm, "FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm); crtc = single_enabled_crtc(dev_priv); if (IS_I915GM(dev_priv) && crtc) { struct drm_i915_gem_object *obj; obj = intel_fb_obj(crtc->base.primary->state->fb); /* self-refresh seems busted with untiled */ if (!i915_gem_object_is_tiled(obj)) crtc = NULL; } /* * Overlay gets an aggressive default since video jitter is bad. */ cwm = 2; /* Play safe and disable self-refresh before adjusting watermarks. */ intel_set_memory_cxsr(dev_priv, false); /* Calc sr entries for one plane configs */ if (HAS_FW_BLC(dev_priv) && crtc) { /* self-refresh has much higher latency */ static const int sr_latency_ns = 6000; const struct drm_display_mode *pipe_mode = &crtc->config->hw.pipe_mode; const struct drm_framebuffer *fb = crtc->base.primary->state->fb; int pixel_rate = crtc->config->pixel_rate; int htotal = pipe_mode->crtc_htotal; int width = drm_rect_width(&crtc->base.primary->state->src) >> 16; int cpp; int entries; if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv)) cpp = 4; else cpp = fb->format->cpp[0]; entries = intel_wm_method2(pixel_rate, htotal, width, cpp, sr_latency_ns / 100); entries = DIV_ROUND_UP(entries, wm_info->cacheline_size); drm_dbg_kms(&dev_priv->drm, "self-refresh entries: %d\n", entries); srwm = wm_info->fifo_size - entries; if (srwm < 0) srwm = 1; if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF, FW_BLC_SELF_FIFO_MASK | (srwm & 0xff)); else intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF, srwm & 0x3f); } drm_dbg_kms(&dev_priv->drm, "Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n", planea_wm, planeb_wm, cwm, srwm); fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f); fwater_hi = (cwm & 0x1f); /* Set request length to 8 cachelines per fetch */ fwater_lo = fwater_lo | (1 << 24) | (1 << 8); fwater_hi = fwater_hi | (1 << 8); intel_uncore_write(&dev_priv->uncore, FW_BLC, fwater_lo); intel_uncore_write(&dev_priv->uncore, FW_BLC2, fwater_hi); if (crtc) intel_set_memory_cxsr(dev_priv, true); } static void i845_update_wm(struct drm_i915_private *dev_priv) { struct intel_crtc *crtc; u32 fwater_lo; int planea_wm; crtc = single_enabled_crtc(dev_priv); if (crtc == NULL) return; planea_wm = intel_calculate_wm(dev_priv, crtc->config->pixel_rate, &i845_wm_info, i845_get_fifo_size(dev_priv, PLANE_A), 4, pessimal_latency_ns); fwater_lo = intel_uncore_read(&dev_priv->uncore, FW_BLC) & ~0xfff; fwater_lo |= (3<<8) | planea_wm; drm_dbg_kms(&dev_priv->drm, "Setting FIFO watermarks - A: %d\n", planea_wm); intel_uncore_write(&dev_priv->uncore, FW_BLC, fwater_lo); } /* latency must be in 0.1us units. */ static unsigned int ilk_wm_method1(unsigned int pixel_rate, unsigned int cpp, unsigned int latency) { unsigned int ret; ret = intel_wm_method1(pixel_rate, cpp, latency); ret = DIV_ROUND_UP(ret, 64) + 2; return ret; } /* latency must be in 0.1us units. */ static unsigned int ilk_wm_method2(unsigned int pixel_rate, unsigned int htotal, unsigned int width, unsigned int cpp, unsigned int latency) { unsigned int ret; ret = intel_wm_method2(pixel_rate, htotal, width, cpp, latency); ret = DIV_ROUND_UP(ret, 64) + 2; return ret; } static u32 ilk_wm_fbc(u32 pri_val, u32 horiz_pixels, u8 cpp) { /* * Neither of these should be possible since this function shouldn't be * called if the CRTC is off or the plane is invisible. But let's be * extra paranoid to avoid a potential divide-by-zero if we screw up * elsewhere in the driver. */ if (WARN_ON(!cpp)) return 0; if (WARN_ON(!horiz_pixels)) return 0; return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2; } struct ilk_wm_maximums { u16 pri; u16 spr; u16 cur; u16 fbc; }; /* * For both WM_PIPE and WM_LP. * mem_value must be in 0.1us units. */ static u32 ilk_compute_pri_wm(const struct intel_crtc_state *crtc_state, const struct intel_plane_state *plane_state, u32 mem_value, bool is_lp) { u32 method1, method2; int cpp; if (mem_value == 0) return U32_MAX; if (!intel_wm_plane_visible(crtc_state, plane_state)) return 0; cpp = plane_state->hw.fb->format->cpp[0]; method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value); if (!is_lp) return method1; method2 = ilk_wm_method2(crtc_state->pixel_rate, crtc_state->hw.pipe_mode.crtc_htotal, drm_rect_width(&plane_state->uapi.src) >> 16, cpp, mem_value); return min(method1, method2); } /* * For both WM_PIPE and WM_LP. * mem_value must be in 0.1us units. */ static u32 ilk_compute_spr_wm(const struct intel_crtc_state *crtc_state, const struct intel_plane_state *plane_state, u32 mem_value) { u32 method1, method2; int cpp; if (mem_value == 0) return U32_MAX; if (!intel_wm_plane_visible(crtc_state, plane_state)) return 0; cpp = plane_state->hw.fb->format->cpp[0]; method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value); method2 = ilk_wm_method2(crtc_state->pixel_rate, crtc_state->hw.pipe_mode.crtc_htotal, drm_rect_width(&plane_state->uapi.src) >> 16, cpp, mem_value); return min(method1, method2); } /* * For both WM_PIPE and WM_LP. * mem_value must be in 0.1us units. */ static u32 ilk_compute_cur_wm(const struct intel_crtc_state *crtc_state, const struct intel_plane_state *plane_state, u32 mem_value) { int cpp; if (mem_value == 0) return U32_MAX; if (!intel_wm_plane_visible(crtc_state, plane_state)) return 0; cpp = plane_state->hw.fb->format->cpp[0]; return ilk_wm_method2(crtc_state->pixel_rate, crtc_state->hw.pipe_mode.crtc_htotal, drm_rect_width(&plane_state->uapi.src) >> 16, cpp, mem_value); } /* Only for WM_LP. */ static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state, const struct intel_plane_state *plane_state, u32 pri_val) { int cpp; if (!intel_wm_plane_visible(crtc_state, plane_state)) return 0; cpp = plane_state->hw.fb->format->cpp[0]; return ilk_wm_fbc(pri_val, drm_rect_width(&plane_state->uapi.src) >> 16, cpp); } static unsigned int ilk_display_fifo_size(const struct drm_i915_private *dev_priv) { if (DISPLAY_VER(dev_priv) >= 8) return 3072; else if (DISPLAY_VER(dev_priv) >= 7) return 768; else return 512; } static unsigned int ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv, int level, bool is_sprite) { if (DISPLAY_VER(dev_priv) >= 8) /* BDW primary/sprite plane watermarks */ return level == 0 ? 255 : 2047; else if (DISPLAY_VER(dev_priv) >= 7) /* IVB/HSW primary/sprite plane watermarks */ return level == 0 ? 127 : 1023; else if (!is_sprite) /* ILK/SNB primary plane watermarks */ return level == 0 ? 127 : 511; else /* ILK/SNB sprite plane watermarks */ return level == 0 ? 63 : 255; } static unsigned int ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level) { if (DISPLAY_VER(dev_priv) >= 7) return level == 0 ? 63 : 255; else return level == 0 ? 31 : 63; } static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv) { if (DISPLAY_VER(dev_priv) >= 8) return 31; else return 15; } /* Calculate the maximum primary/sprite plane watermark */ static unsigned int ilk_plane_wm_max(const struct drm_i915_private *dev_priv, int level, const struct intel_wm_config *config, enum intel_ddb_partitioning ddb_partitioning, bool is_sprite) { unsigned int fifo_size = ilk_display_fifo_size(dev_priv); /* if sprites aren't enabled, sprites get nothing */ if (is_sprite && !config->sprites_enabled) return 0; /* HSW allows LP1+ watermarks even with multiple pipes */ if (level == 0 || config->num_pipes_active > 1) { fifo_size /= INTEL_NUM_PIPES(dev_priv); /* * For some reason the non self refresh * FIFO size is only half of the self * refresh FIFO size on ILK/SNB. */ if (DISPLAY_VER(dev_priv) < 7) fifo_size /= 2; } if (config->sprites_enabled) { /* level 0 is always calculated with 1:1 split */ if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) { if (is_sprite) fifo_size *= 5; fifo_size /= 6; } else { fifo_size /= 2; } } /* clamp to max that the registers can hold */ return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite)); } /* Calculate the maximum cursor plane watermark */ static unsigned int ilk_cursor_wm_max(const struct drm_i915_private *dev_priv, int level, const struct intel_wm_config *config) { /* HSW LP1+ watermarks w/ multiple pipes */ if (level > 0 && config->num_pipes_active > 1) return 64; /* otherwise just report max that registers can hold */ return ilk_cursor_wm_reg_max(dev_priv, level); } static void ilk_compute_wm_maximums(const struct drm_i915_private *dev_priv, int level, const struct intel_wm_config *config, enum intel_ddb_partitioning ddb_partitioning, struct ilk_wm_maximums *max) { max->pri = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, false); max->spr = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, true); max->cur = ilk_cursor_wm_max(dev_priv, level, config); max->fbc = ilk_fbc_wm_reg_max(dev_priv); } static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv, int level, struct ilk_wm_maximums *max) { max->pri = ilk_plane_wm_reg_max(dev_priv, level, false); max->spr = ilk_plane_wm_reg_max(dev_priv, level, true); max->cur = ilk_cursor_wm_reg_max(dev_priv, level); max->fbc = ilk_fbc_wm_reg_max(dev_priv); } static bool ilk_validate_wm_level(struct drm_i915_private *i915, int level, const struct ilk_wm_maximums *max, struct intel_wm_level *result) { bool ret; /* already determined to be invalid? */ if (!result->enable) return false; result->enable = result->pri_val <= max->pri && result->spr_val <= max->spr && result->cur_val <= max->cur; ret = result->enable; /* * HACK until we can pre-compute everything, * and thus fail gracefully if LP0 watermarks * are exceeded... */ if (level == 0 && !result->enable) { if (result->pri_val > max->pri) drm_dbg_kms(&i915->drm, "Primary WM%d too large %u (max %u)\n", level, result->pri_val, max->pri); if (result->spr_val > max->spr) drm_dbg_kms(&i915->drm, "Sprite WM%d too large %u (max %u)\n", level, result->spr_val, max->spr); if (result->cur_val > max->cur) drm_dbg_kms(&i915->drm, "Cursor WM%d too large %u (max %u)\n", level, result->cur_val, max->cur); result->pri_val = min_t(u32, result->pri_val, max->pri); result->spr_val = min_t(u32, result->spr_val, max->spr); result->cur_val = min_t(u32, result->cur_val, max->cur); result->enable = true; } return ret; } static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv, const struct intel_crtc *crtc, int level, struct intel_crtc_state *crtc_state, const struct intel_plane_state *pristate, const struct intel_plane_state *sprstate, const struct intel_plane_state *curstate, struct intel_wm_level *result) { u16 pri_latency = dev_priv->display.wm.pri_latency[level]; u16 spr_latency = dev_priv->display.wm.spr_latency[level]; u16 cur_latency = dev_priv->display.wm.cur_latency[level]; /* WM1+ latency values stored in 0.5us units */ if (level > 0) { pri_latency *= 5; spr_latency *= 5; cur_latency *= 5; } if (pristate) { result->pri_val = ilk_compute_pri_wm(crtc_state, pristate, pri_latency, level); result->fbc_val = ilk_compute_fbc_wm(crtc_state, pristate, result->pri_val); } if (sprstate) result->spr_val = ilk_compute_spr_wm(crtc_state, sprstate, spr_latency); if (curstate) result->cur_val = ilk_compute_cur_wm(crtc_state, curstate, cur_latency); result->enable = true; } static void hsw_read_wm_latency(struct drm_i915_private *i915, u16 wm[]) { u64 sskpd; i915->display.wm.num_levels = 5; sskpd = intel_uncore_read64(&i915->uncore, MCH_SSKPD); wm[0] = REG_FIELD_GET64(SSKPD_NEW_WM0_MASK_HSW, sskpd); if (wm[0] == 0) wm[0] = REG_FIELD_GET64(SSKPD_OLD_WM0_MASK_HSW, sskpd); wm[1] = REG_FIELD_GET64(SSKPD_WM1_MASK_HSW, sskpd); wm[2] = REG_FIELD_GET64(SSKPD_WM2_MASK_HSW, sskpd); wm[3] = REG_FIELD_GET64(SSKPD_WM3_MASK_HSW, sskpd); wm[4] = REG_FIELD_GET64(SSKPD_WM4_MASK_HSW, sskpd); } static void snb_read_wm_latency(struct drm_i915_private *i915, u16 wm[]) { u32 sskpd; i915->display.wm.num_levels = 4; sskpd = intel_uncore_read(&i915->uncore, MCH_SSKPD); wm[0] = REG_FIELD_GET(SSKPD_WM0_MASK_SNB, sskpd); wm[1] = REG_FIELD_GET(SSKPD_WM1_MASK_SNB, sskpd); wm[2] = REG_FIELD_GET(SSKPD_WM2_MASK_SNB, sskpd); wm[3] = REG_FIELD_GET(SSKPD_WM3_MASK_SNB, sskpd); } static void ilk_read_wm_latency(struct drm_i915_private *i915, u16 wm[]) { u32 mltr; i915->display.wm.num_levels = 3; mltr = intel_uncore_read(&i915->uncore, MLTR_ILK); /* ILK primary LP0 latency is 700 ns */ wm[0] = 7; wm[1] = REG_FIELD_GET(MLTR_WM1_MASK, mltr); wm[2] = REG_FIELD_GET(MLTR_WM2_MASK, mltr); } static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv, u16 wm[5]) { /* ILK sprite LP0 latency is 1300 ns */ if (DISPLAY_VER(dev_priv) == 5) wm[0] = 13; } static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv, u16 wm[5]) { /* ILK cursor LP0 latency is 1300 ns */ if (DISPLAY_VER(dev_priv) == 5) wm[0] = 13; } static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv, u16 wm[5], u16 min) { int level; if (wm[0] >= min) return false; wm[0] = max(wm[0], min); for (level = 1; level < dev_priv->display.wm.num_levels; level++) wm[level] = max_t(u16, wm[level], DIV_ROUND_UP(min, 5)); return true; } static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv) { bool changed; /* * The BIOS provided WM memory latency values are often * inadequate for high resolution displays. Adjust them. */ changed = ilk_increase_wm_latency(dev_priv, dev_priv->display.wm.pri_latency, 12); changed |= ilk_increase_wm_latency(dev_priv, dev_priv->display.wm.spr_latency, 12); changed |= ilk_increase_wm_latency(dev_priv, dev_priv->display.wm.cur_latency, 12); if (!changed) return; drm_dbg_kms(&dev_priv->drm, "WM latency values increased to avoid potential underruns\n"); intel_print_wm_latency(dev_priv, "Primary", dev_priv->display.wm.pri_latency); intel_print_wm_latency(dev_priv, "Sprite", dev_priv->display.wm.spr_latency); intel_print_wm_latency(dev_priv, "Cursor", dev_priv->display.wm.cur_latency); } static void snb_wm_lp3_irq_quirk(struct drm_i915_private *dev_priv) { /* * On some SNB machines (Thinkpad X220 Tablet at least) * LP3 usage can cause vblank interrupts to be lost. * The DEIIR bit will go high but it looks like the CPU * never gets interrupted. * * It's not clear whether other interrupt source could * be affected or if this is somehow limited to vblank * interrupts only. To play it safe we disable LP3 * watermarks entirely. */ if (dev_priv->display.wm.pri_latency[3] == 0 && dev_priv->display.wm.spr_latency[3] == 0 && dev_priv->display.wm.cur_latency[3] == 0) return; dev_priv->display.wm.pri_latency[3] = 0; dev_priv->display.wm.spr_latency[3] = 0; dev_priv->display.wm.cur_latency[3] = 0; drm_dbg_kms(&dev_priv->drm, "LP3 watermarks disabled due to potential for lost interrupts\n"); intel_print_wm_latency(dev_priv, "Primary", dev_priv->display.wm.pri_latency); intel_print_wm_latency(dev_priv, "Sprite", dev_priv->display.wm.spr_latency); intel_print_wm_latency(dev_priv, "Cursor", dev_priv->display.wm.cur_latency); } static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv) { if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) hsw_read_wm_latency(dev_priv, dev_priv->display.wm.pri_latency); else if (DISPLAY_VER(dev_priv) >= 6) snb_read_wm_latency(dev_priv, dev_priv->display.wm.pri_latency); else ilk_read_wm_latency(dev_priv, dev_priv->display.wm.pri_latency); memcpy(dev_priv->display.wm.spr_latency, dev_priv->display.wm.pri_latency, sizeof(dev_priv->display.wm.pri_latency)); memcpy(dev_priv->display.wm.cur_latency, dev_priv->display.wm.pri_latency, sizeof(dev_priv->display.wm.pri_latency)); intel_fixup_spr_wm_latency(dev_priv, dev_priv->display.wm.spr_latency); intel_fixup_cur_wm_latency(dev_priv, dev_priv->display.wm.cur_latency); intel_print_wm_latency(dev_priv, "Primary", dev_priv->display.wm.pri_latency); intel_print_wm_latency(dev_priv, "Sprite", dev_priv->display.wm.spr_latency); intel_print_wm_latency(dev_priv, "Cursor", dev_priv->display.wm.cur_latency); if (DISPLAY_VER(dev_priv) == 6) { snb_wm_latency_quirk(dev_priv); snb_wm_lp3_irq_quirk(dev_priv); } } static bool ilk_validate_pipe_wm(struct drm_i915_private *dev_priv, struct intel_pipe_wm *pipe_wm) { /* LP0 watermark maximums depend on this pipe alone */ const struct intel_wm_config config = { .num_pipes_active = 1, .sprites_enabled = pipe_wm->sprites_enabled, .sprites_scaled = pipe_wm->sprites_scaled, }; struct ilk_wm_maximums max; /* LP0 watermarks always use 1/2 DDB partitioning */ ilk_compute_wm_maximums(dev_priv, 0, &config, INTEL_DDB_PART_1_2, &max); /* At least LP0 must be valid */ if (!ilk_validate_wm_level(dev_priv, 0, &max, &pipe_wm->wm[0])) { drm_dbg_kms(&dev_priv->drm, "LP0 watermark invalid\n"); return false; } return true; } /* Compute new watermarks for the pipe */ static int ilk_compute_pipe_wm(struct intel_atomic_state *state, struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(state->base.dev); struct intel_crtc_state *crtc_state = intel_atomic_get_new_crtc_state(state, crtc); struct intel_pipe_wm *pipe_wm; struct intel_plane *plane; const struct intel_plane_state *plane_state; const struct intel_plane_state *pristate = NULL; const struct intel_plane_state *sprstate = NULL; const struct intel_plane_state *curstate = NULL; struct ilk_wm_maximums max; int level, usable_level; pipe_wm = &crtc_state->wm.ilk.optimal; intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) { if (plane->base.type == DRM_PLANE_TYPE_PRIMARY) pristate = plane_state; else if (plane->base.type == DRM_PLANE_TYPE_OVERLAY) sprstate = plane_state; else if (plane->base.type == DRM_PLANE_TYPE_CURSOR) curstate = plane_state; } pipe_wm->pipe_enabled = crtc_state->hw.active; pipe_wm->sprites_enabled = crtc_state->active_planes & BIT(PLANE_SPRITE0); pipe_wm->sprites_scaled = crtc_state->scaled_planes & BIT(PLANE_SPRITE0); usable_level = dev_priv->display.wm.num_levels - 1; /* ILK/SNB: LP2+ watermarks only w/o sprites */ if (DISPLAY_VER(dev_priv) < 7 && pipe_wm->sprites_enabled) usable_level = 1; /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */ if (pipe_wm->sprites_scaled) usable_level = 0; memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm)); ilk_compute_wm_level(dev_priv, crtc, 0, crtc_state, pristate, sprstate, curstate, &pipe_wm->wm[0]); if (!ilk_validate_pipe_wm(dev_priv, pipe_wm)) return -EINVAL; ilk_compute_wm_reg_maximums(dev_priv, 1, &max); for (level = 1; level <= usable_level; level++) { struct intel_wm_level *wm = &pipe_wm->wm[level]; ilk_compute_wm_level(dev_priv, crtc, level, crtc_state, pristate, sprstate, curstate, wm); /* * Disable any watermark level that exceeds the * register maximums since such watermarks are * always invalid. */ if (!ilk_validate_wm_level(dev_priv, level, &max, wm)) { memset(wm, 0, sizeof(*wm)); break; } } return 0; } /* * Build a set of 'intermediate' watermark values that satisfy both the old * state and the new state. These can be programmed to the hardware * immediately. */ static int ilk_compute_intermediate_wm(struct intel_atomic_state *state, struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); struct intel_crtc_state *new_crtc_state = intel_atomic_get_new_crtc_state(state, crtc); const struct intel_crtc_state *old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc); struct intel_pipe_wm *a = &new_crtc_state->wm.ilk.intermediate; const struct intel_pipe_wm *b = &old_crtc_state->wm.ilk.optimal; int level; /* * Start with the final, target watermarks, then combine with the * currently active watermarks to get values that are safe both before * and after the vblank. */ *a = new_crtc_state->wm.ilk.optimal; if (!new_crtc_state->hw.active || intel_crtc_needs_modeset(new_crtc_state) || state->skip_intermediate_wm) return 0; a->pipe_enabled |= b->pipe_enabled; a->sprites_enabled |= b->sprites_enabled; a->sprites_scaled |= b->sprites_scaled; for (level = 0; level < dev_priv->display.wm.num_levels; level++) { struct intel_wm_level *a_wm = &a->wm[level]; const struct intel_wm_level *b_wm = &b->wm[level]; a_wm->enable &= b_wm->enable; a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val); a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val); a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val); a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val); } /* * We need to make sure that these merged watermark values are * actually a valid configuration themselves. If they're not, * there's no safe way to transition from the old state to * the new state, so we need to fail the atomic transaction. */ if (!ilk_validate_pipe_wm(dev_priv, a)) return -EINVAL; /* * If our intermediate WM are identical to the final WM, then we can * omit the post-vblank programming; only update if it's different. */ if (memcmp(a, &new_crtc_state->wm.ilk.optimal, sizeof(*a)) != 0) new_crtc_state->wm.need_postvbl_update = true; return 0; } /* * Merge the watermarks from all active pipes for a specific level. */ static void ilk_merge_wm_level(struct drm_i915_private *dev_priv, int level, struct intel_wm_level *ret_wm) { const struct intel_crtc *crtc; ret_wm->enable = true; for_each_intel_crtc(&dev_priv->drm, crtc) { const struct intel_pipe_wm *active = &crtc->wm.active.ilk; const struct intel_wm_level *wm = &active->wm[level]; if (!active->pipe_enabled) continue; /* * The watermark values may have been used in the past, * so we must maintain them in the registers for some * time even if the level is now disabled. */ if (!wm->enable) ret_wm->enable = false; ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val); ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val); ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val); ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val); } } /* * Merge all low power watermarks for all active pipes. */ static void ilk_wm_merge(struct drm_i915_private *dev_priv, const struct intel_wm_config *config, const struct ilk_wm_maximums *max, struct intel_pipe_wm *merged) { int level, num_levels = dev_priv->display.wm.num_levels; int last_enabled_level = num_levels - 1; /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */ if ((DISPLAY_VER(dev_priv) < 7 || IS_IVYBRIDGE(dev_priv)) && config->num_pipes_active > 1) last_enabled_level = 0; /* ILK: FBC WM must be disabled always */ merged->fbc_wm_enabled = DISPLAY_VER(dev_priv) >= 6; /* merge each WM1+ level */ for (level = 1; level < num_levels; level++) { struct intel_wm_level *wm = &merged->wm[level]; ilk_merge_wm_level(dev_priv, level, wm); if (level > last_enabled_level) wm->enable = false; else if (!ilk_validate_wm_level(dev_priv, level, max, wm)) /* make sure all following levels get disabled */ last_enabled_level = level - 1; /* * The spec says it is preferred to disable * FBC WMs instead of disabling a WM level. */ if (wm->fbc_val > max->fbc) { if (wm->enable) merged->fbc_wm_enabled = false; wm->fbc_val = 0; } } /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */ if (DISPLAY_VER(dev_priv) == 5 && HAS_FBC(dev_priv) && dev_priv->display.params.enable_fbc && !merged->fbc_wm_enabled) { for (level = 2; level < num_levels; level++) { struct intel_wm_level *wm = &merged->wm[level]; wm->enable = false; } } } static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm) { /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */ return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable); } /* The value we need to program into the WM_LPx latency field */ static unsigned int ilk_wm_lp_latency(struct drm_i915_private *dev_priv, int level) { if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) return 2 * level; else return dev_priv->display.wm.pri_latency[level]; } static void ilk_compute_wm_results(struct drm_i915_private *dev_priv, const struct intel_pipe_wm *merged, enum intel_ddb_partitioning partitioning, struct ilk_wm_values *results) { struct intel_crtc *crtc; int level, wm_lp; results->enable_fbc_wm = merged->fbc_wm_enabled; results->partitioning = partitioning; /* LP1+ register values */ for (wm_lp = 1; wm_lp <= 3; wm_lp++) { const struct intel_wm_level *r; level = ilk_wm_lp_to_level(wm_lp, merged); r = &merged->wm[level]; /* * Maintain the watermark values even if the level is * disabled. Doing otherwise could cause underruns. */ results->wm_lp[wm_lp - 1] = WM_LP_LATENCY(ilk_wm_lp_latency(dev_priv, level)) | WM_LP_PRIMARY(r->pri_val) | WM_LP_CURSOR(r->cur_val); if (r->enable) results->wm_lp[wm_lp - 1] |= WM_LP_ENABLE; if (DISPLAY_VER(dev_priv) >= 8) results->wm_lp[wm_lp - 1] |= WM_LP_FBC_BDW(r->fbc_val); else results->wm_lp[wm_lp - 1] |= WM_LP_FBC_ILK(r->fbc_val); results->wm_lp_spr[wm_lp - 1] = WM_LP_SPRITE(r->spr_val); /* * Always set WM_LP_SPRITE_EN when spr_val != 0, even if the * level is disabled. Doing otherwise could cause underruns. */ if (DISPLAY_VER(dev_priv) < 7 && r->spr_val) { drm_WARN_ON(&dev_priv->drm, wm_lp != 1); results->wm_lp_spr[wm_lp - 1] |= WM_LP_SPRITE_ENABLE; } } /* LP0 register values */ for_each_intel_crtc(&dev_priv->drm, crtc) { enum pipe pipe = crtc->pipe; const struct intel_pipe_wm *pipe_wm = &crtc->wm.active.ilk; const struct intel_wm_level *r = &pipe_wm->wm[0]; if (drm_WARN_ON(&dev_priv->drm, !r->enable)) continue; results->wm_pipe[pipe] = WM0_PIPE_PRIMARY(r->pri_val) | WM0_PIPE_SPRITE(r->spr_val) | WM0_PIPE_CURSOR(r->cur_val); } } /* * Find the result with the highest level enabled. Check for enable_fbc_wm in * case both are at the same level. Prefer r1 in case they're the same. */ static struct intel_pipe_wm * ilk_find_best_result(struct drm_i915_private *dev_priv, struct intel_pipe_wm *r1, struct intel_pipe_wm *r2) { int level, level1 = 0, level2 = 0; for (level = 1; level < dev_priv->display.wm.num_levels; level++) { if (r1->wm[level].enable) level1 = level; if (r2->wm[level].enable) level2 = level; } if (level1 == level2) { if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled) return r2; else return r1; } else if (level1 > level2) { return r1; } else { return r2; } } /* dirty bits used to track which watermarks need changes */ #define WM_DIRTY_PIPE(pipe) (1 << (pipe)) #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp))) #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3)) #define WM_DIRTY_FBC (1 << 24) #define WM_DIRTY_DDB (1 << 25) static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv, const struct ilk_wm_values *old, const struct ilk_wm_values *new) { unsigned int dirty = 0; enum pipe pipe; int wm_lp; for_each_pipe(dev_priv, pipe) { if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) { dirty |= WM_DIRTY_PIPE(pipe); /* Must disable LP1+ watermarks too */ dirty |= WM_DIRTY_LP_ALL; } } if (old->enable_fbc_wm != new->enable_fbc_wm) { dirty |= WM_DIRTY_FBC; /* Must disable LP1+ watermarks too */ dirty |= WM_DIRTY_LP_ALL; } if (old->partitioning != new->partitioning) { dirty |= WM_DIRTY_DDB; /* Must disable LP1+ watermarks too */ dirty |= WM_DIRTY_LP_ALL; } /* LP1+ watermarks already deemed dirty, no need to continue */ if (dirty & WM_DIRTY_LP_ALL) return dirty; /* Find the lowest numbered LP1+ watermark in need of an update... */ for (wm_lp = 1; wm_lp <= 3; wm_lp++) { if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] || old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1]) break; } /* ...and mark it and all higher numbered LP1+ watermarks as dirty */ for (; wm_lp <= 3; wm_lp++) dirty |= WM_DIRTY_LP(wm_lp); return dirty; } static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv, unsigned int dirty) { struct ilk_wm_values *previous = &dev_priv->display.wm.hw; bool changed = false; if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM_LP_ENABLE) { previous->wm_lp[2] &= ~WM_LP_ENABLE; intel_uncore_write(&dev_priv->uncore, WM3_LP_ILK, previous->wm_lp[2]); changed = true; } if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM_LP_ENABLE) { previous->wm_lp[1] &= ~WM_LP_ENABLE; intel_uncore_write(&dev_priv->uncore, WM2_LP_ILK, previous->wm_lp[1]); changed = true; } if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM_LP_ENABLE) { previous->wm_lp[0] &= ~WM_LP_ENABLE; intel_uncore_write(&dev_priv->uncore, WM1_LP_ILK, previous->wm_lp[0]); changed = true; } /* * Don't touch WM_LP_SPRITE_ENABLE here. * Doing so could cause underruns. */ return changed; } /* * The spec says we shouldn't write when we don't need, because every write * causes WMs to be re-evaluated, expending some power. */ static void ilk_write_wm_values(struct drm_i915_private *dev_priv, struct ilk_wm_values *results) { struct ilk_wm_values *previous = &dev_priv->display.wm.hw; unsigned int dirty; dirty = ilk_compute_wm_dirty(dev_priv, previous, results); if (!dirty) return; _ilk_disable_lp_wm(dev_priv, dirty); if (dirty & WM_DIRTY_PIPE(PIPE_A)) intel_uncore_write(&dev_priv->uncore, WM0_PIPE_ILK(PIPE_A), results->wm_pipe[0]); if (dirty & WM_DIRTY_PIPE(PIPE_B)) intel_uncore_write(&dev_priv->uncore, WM0_PIPE_ILK(PIPE_B), results->wm_pipe[1]); if (dirty & WM_DIRTY_PIPE(PIPE_C)) intel_uncore_write(&dev_priv->uncore, WM0_PIPE_ILK(PIPE_C), results->wm_pipe[2]); if (dirty & WM_DIRTY_DDB) { if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) intel_uncore_rmw(&dev_priv->uncore, WM_MISC, WM_MISC_DATA_PARTITION_5_6, results->partitioning == INTEL_DDB_PART_1_2 ? 0 : WM_MISC_DATA_PARTITION_5_6); else intel_uncore_rmw(&dev_priv->uncore, DISP_ARB_CTL2, DISP_DATA_PARTITION_5_6, results->partitioning == INTEL_DDB_PART_1_2 ? 0 : DISP_DATA_PARTITION_5_6); } if (dirty & WM_DIRTY_FBC) intel_uncore_rmw(&dev_priv->uncore, DISP_ARB_CTL, DISP_FBC_WM_DIS, results->enable_fbc_wm ? 0 : DISP_FBC_WM_DIS); if (dirty & WM_DIRTY_LP(1) && previous->wm_lp_spr[0] != results->wm_lp_spr[0]) intel_uncore_write(&dev_priv->uncore, WM1S_LP_ILK, results->wm_lp_spr[0]); if (DISPLAY_VER(dev_priv) >= 7) { if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1]) intel_uncore_write(&dev_priv->uncore, WM2S_LP_IVB, results->wm_lp_spr[1]); if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2]) intel_uncore_write(&dev_priv->uncore, WM3S_LP_IVB, results->wm_lp_spr[2]); } if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0]) intel_uncore_write(&dev_priv->uncore, WM1_LP_ILK, results->wm_lp[0]); if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1]) intel_uncore_write(&dev_priv->uncore, WM2_LP_ILK, results->wm_lp[1]); if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2]) intel_uncore_write(&dev_priv->uncore, WM3_LP_ILK, results->wm_lp[2]); dev_priv->display.wm.hw = *results; } bool ilk_disable_lp_wm(struct drm_i915_private *dev_priv) { return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL); } static void ilk_compute_wm_config(struct drm_i915_private *dev_priv, struct intel_wm_config *config) { struct intel_crtc *crtc; /* Compute the currently _active_ config */ for_each_intel_crtc(&dev_priv->drm, crtc) { const struct intel_pipe_wm *wm = &crtc->wm.active.ilk; if (!wm->pipe_enabled) continue; config->sprites_enabled |= wm->sprites_enabled; config->sprites_scaled |= wm->sprites_scaled; config->num_pipes_active++; } } static void ilk_program_watermarks(struct drm_i915_private *dev_priv) { struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm; struct ilk_wm_maximums max; struct intel_wm_config config = {}; struct ilk_wm_values results = {}; enum intel_ddb_partitioning partitioning; ilk_compute_wm_config(dev_priv, &config); ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_1_2, &max); ilk_wm_merge(dev_priv, &config, &max, &lp_wm_1_2); /* 5/6 split only in single pipe config on IVB+ */ if (DISPLAY_VER(dev_priv) >= 7 && config.num_pipes_active == 1 && config.sprites_enabled) { ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_5_6, &max); ilk_wm_merge(dev_priv, &config, &max, &lp_wm_5_6); best_lp_wm = ilk_find_best_result(dev_priv, &lp_wm_1_2, &lp_wm_5_6); } else { best_lp_wm = &lp_wm_1_2; } partitioning = (best_lp_wm == &lp_wm_1_2) ? INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6; ilk_compute_wm_results(dev_priv, best_lp_wm, partitioning, &results); ilk_write_wm_values(dev_priv, &results); } static void ilk_initial_watermarks(struct intel_atomic_state *state, struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); const struct intel_crtc_state *crtc_state = intel_atomic_get_new_crtc_state(state, crtc); mutex_lock(&dev_priv->display.wm.wm_mutex); crtc->wm.active.ilk = crtc_state->wm.ilk.intermediate; ilk_program_watermarks(dev_priv); mutex_unlock(&dev_priv->display.wm.wm_mutex); } static void ilk_optimize_watermarks(struct intel_atomic_state *state, struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); const struct intel_crtc_state *crtc_state = intel_atomic_get_new_crtc_state(state, crtc); if (!crtc_state->wm.need_postvbl_update) return; mutex_lock(&dev_priv->display.wm.wm_mutex); crtc->wm.active.ilk = crtc_state->wm.ilk.optimal; ilk_program_watermarks(dev_priv); mutex_unlock(&dev_priv->display.wm.wm_mutex); } static void ilk_pipe_wm_get_hw_state(struct intel_crtc *crtc) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); struct ilk_wm_values *hw = &dev_priv->display.wm.hw; struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state); struct intel_pipe_wm *active = &crtc_state->wm.ilk.optimal; enum pipe pipe = crtc->pipe; hw->wm_pipe[pipe] = intel_uncore_read(&dev_priv->uncore, WM0_PIPE_ILK(pipe)); memset(active, 0, sizeof(*active)); active->pipe_enabled = crtc->active; if (active->pipe_enabled) { u32 tmp = hw->wm_pipe[pipe]; /* * For active pipes LP0 watermark is marked as * enabled, and LP1+ watermaks as disabled since * we can't really reverse compute them in case * multiple pipes are active. */ active->wm[0].enable = true; active->wm[0].pri_val = REG_FIELD_GET(WM0_PIPE_PRIMARY_MASK, tmp); active->wm[0].spr_val = REG_FIELD_GET(WM0_PIPE_SPRITE_MASK, tmp); active->wm[0].cur_val = REG_FIELD_GET(WM0_PIPE_CURSOR_MASK, tmp); } else { int level; /* * For inactive pipes, all watermark levels * should be marked as enabled but zeroed, * which is what we'd compute them to. */ for (level = 0; level < dev_priv->display.wm.num_levels; level++) active->wm[level].enable = true; } crtc->wm.active.ilk = *active; } static int ilk_sanitize_watermarks_add_affected(struct drm_atomic_state *state) { struct drm_plane *plane; struct intel_crtc *crtc; for_each_intel_crtc(state->dev, crtc) { struct intel_crtc_state *crtc_state; crtc_state = intel_atomic_get_crtc_state(state, crtc); if (IS_ERR(crtc_state)) return PTR_ERR(crtc_state); if (crtc_state->hw.active) { /* * Preserve the inherited flag to avoid * taking the full modeset path. */ crtc_state->inherited = true; } } drm_for_each_plane(plane, state->dev) { struct drm_plane_state *plane_state; plane_state = drm_atomic_get_plane_state(state, plane); if (IS_ERR(plane_state)) return PTR_ERR(plane_state); } return 0; } /* * Calculate what we think the watermarks should be for the state we've read * out of the hardware and then immediately program those watermarks so that * we ensure the hardware settings match our internal state. * * We can calculate what we think WM's should be by creating a duplicate of the * current state (which was constructed during hardware readout) and running it * through the atomic check code to calculate new watermark values in the * state object. */ void ilk_wm_sanitize(struct drm_i915_private *dev_priv) { struct drm_atomic_state *state; struct intel_atomic_state *intel_state; struct intel_crtc *crtc; struct intel_crtc_state *crtc_state; struct drm_modeset_acquire_ctx ctx; int ret; int i; /* Only supported on platforms that use atomic watermark design */ if (!dev_priv->display.funcs.wm->optimize_watermarks) return; if (drm_WARN_ON(&dev_priv->drm, DISPLAY_VER(dev_priv) >= 9)) return; state = drm_atomic_state_alloc(&dev_priv->drm); if (drm_WARN_ON(&dev_priv->drm, !state)) return; intel_state = to_intel_atomic_state(state); drm_modeset_acquire_init(&ctx, 0); state->acquire_ctx = &ctx; to_intel_atomic_state(state)->internal = true; retry: /* * Hardware readout is the only time we don't want to calculate * intermediate watermarks (since we don't trust the current * watermarks). */ if (!HAS_GMCH(dev_priv)) intel_state->skip_intermediate_wm = true; ret = ilk_sanitize_watermarks_add_affected(state); if (ret) goto fail; ret = intel_atomic_check(&dev_priv->drm, state); if (ret) goto fail; /* Write calculated watermark values back */ for_each_new_intel_crtc_in_state(intel_state, crtc, crtc_state, i) { crtc_state->wm.need_postvbl_update = true; intel_optimize_watermarks(intel_state, crtc); to_intel_crtc_state(crtc->base.state)->wm = crtc_state->wm; } fail: if (ret == -EDEADLK) { drm_atomic_state_clear(state); drm_modeset_backoff(&ctx); goto retry; } /* * If we fail here, it means that the hardware appears to be * programmed in a way that shouldn't be possible, given our * understanding of watermark requirements. This might mean a * mistake in the hardware readout code or a mistake in the * watermark calculations for a given platform. Raise a WARN * so that this is noticeable. * * If this actually happens, we'll have to just leave the * BIOS-programmed watermarks untouched and hope for the best. */ drm_WARN(&dev_priv->drm, ret, "Could not determine valid watermarks for inherited state\n"); drm_atomic_state_put(state); drm_modeset_drop_locks(&ctx); drm_modeset_acquire_fini(&ctx); } #define _FW_WM(value, plane) \ (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT) #define _FW_WM_VLV(value, plane) \ (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT) static void g4x_read_wm_values(struct drm_i915_private *dev_priv, struct g4x_wm_values *wm) { u32 tmp; tmp = intel_uncore_read(&dev_priv->uncore, DSPFW1); wm->sr.plane = _FW_WM(tmp, SR); wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB); wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB); wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA); tmp = intel_uncore_read(&dev_priv->uncore, DSPFW2); wm->fbc_en = tmp & DSPFW_FBC_SR_EN; wm->sr.fbc = _FW_WM(tmp, FBC_SR); wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR); wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB); wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA); wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA); tmp = intel_uncore_read(&dev_priv->uncore, DSPFW3); wm->hpll_en = tmp & DSPFW_HPLL_SR_EN; wm->sr.cursor = _FW_WM(tmp, CURSOR_SR); wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR); wm->hpll.plane = _FW_WM(tmp, HPLL_SR); } static void vlv_read_wm_values(struct drm_i915_private *dev_priv, struct vlv_wm_values *wm) { enum pipe pipe; u32 tmp; for_each_pipe(dev_priv, pipe) { tmp = intel_uncore_read(&dev_priv->uncore, VLV_DDL(pipe)); wm->ddl[pipe].plane[PLANE_PRIMARY] = (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK); wm->ddl[pipe].plane[PLANE_CURSOR] = (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK); wm->ddl[pipe].plane[PLANE_SPRITE0] = (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK); wm->ddl[pipe].plane[PLANE_SPRITE1] = (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK); } tmp = intel_uncore_read(&dev_priv->uncore, DSPFW1); wm->sr.plane = _FW_WM(tmp, SR); wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB); wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB); wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA); tmp = intel_uncore_read(&dev_priv->uncore, DSPFW2); wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB); wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA); wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA); tmp = intel_uncore_read(&dev_priv->uncore, DSPFW3); wm->sr.cursor = _FW_WM(tmp, CURSOR_SR); if (IS_CHERRYVIEW(dev_priv)) { tmp = intel_uncore_read(&dev_priv->uncore, DSPFW7_CHV); wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED); wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC); tmp = intel_uncore_read(&dev_priv->uncore, DSPFW8_CHV); wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF); wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE); tmp = intel_uncore_read(&dev_priv->uncore, DSPFW9_CHV); wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC); wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC); tmp = intel_uncore_read(&dev_priv->uncore, DSPHOWM); wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9; wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8; wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8; wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8; wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8; wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8; wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8; wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8; wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8; wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8; } else { tmp = intel_uncore_read(&dev_priv->uncore, DSPFW7); wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED); wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC); tmp = intel_uncore_read(&dev_priv->uncore, DSPHOWM); wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9; wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8; wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8; wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8; wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8; wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8; wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8; } } #undef _FW_WM #undef _FW_WM_VLV static void g4x_wm_get_hw_state(struct drm_i915_private *dev_priv) { struct g4x_wm_values *wm = &dev_priv->display.wm.g4x; struct intel_crtc *crtc; g4x_read_wm_values(dev_priv, wm); wm->cxsr = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF) & FW_BLC_SELF_EN; for_each_intel_crtc(&dev_priv->drm, crtc) { struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state); struct g4x_wm_state *active = &crtc->wm.active.g4x; struct g4x_pipe_wm *raw; enum pipe pipe = crtc->pipe; enum plane_id plane_id; int level, max_level; active->cxsr = wm->cxsr; active->hpll_en = wm->hpll_en; active->fbc_en = wm->fbc_en; active->sr = wm->sr; active->hpll = wm->hpll; for_each_plane_id_on_crtc(crtc, plane_id) { active->wm.plane[plane_id] = wm->pipe[pipe].plane[plane_id]; } if (wm->cxsr && wm->hpll_en) max_level = G4X_WM_LEVEL_HPLL; else if (wm->cxsr) max_level = G4X_WM_LEVEL_SR; else max_level = G4X_WM_LEVEL_NORMAL; level = G4X_WM_LEVEL_NORMAL; raw = &crtc_state->wm.g4x.raw[level]; for_each_plane_id_on_crtc(crtc, plane_id) raw->plane[plane_id] = active->wm.plane[plane_id]; level = G4X_WM_LEVEL_SR; if (level > max_level) goto out; raw = &crtc_state->wm.g4x.raw[level]; raw->plane[PLANE_PRIMARY] = active->sr.plane; raw->plane[PLANE_CURSOR] = active->sr.cursor; raw->plane[PLANE_SPRITE0] = 0; raw->fbc = active->sr.fbc; level = G4X_WM_LEVEL_HPLL; if (level > max_level) goto out; raw = &crtc_state->wm.g4x.raw[level]; raw->plane[PLANE_PRIMARY] = active->hpll.plane; raw->plane[PLANE_CURSOR] = active->hpll.cursor; raw->plane[PLANE_SPRITE0] = 0; raw->fbc = active->hpll.fbc; level++; out: for_each_plane_id_on_crtc(crtc, plane_id) g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX); g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX); g4x_invalidate_wms(crtc, active, level); crtc_state->wm.g4x.optimal = *active; crtc_state->wm.g4x.intermediate = *active; drm_dbg_kms(&dev_priv->drm, "Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n", pipe_name(pipe), wm->pipe[pipe].plane[PLANE_PRIMARY], wm->pipe[pipe].plane[PLANE_CURSOR], wm->pipe[pipe].plane[PLANE_SPRITE0]); } drm_dbg_kms(&dev_priv->drm, "Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n", wm->sr.plane, wm->sr.cursor, wm->sr.fbc); drm_dbg_kms(&dev_priv->drm, "Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n", wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc); drm_dbg_kms(&dev_priv->drm, "Initial SR=%s HPLL=%s FBC=%s\n", str_yes_no(wm->cxsr), str_yes_no(wm->hpll_en), str_yes_no(wm->fbc_en)); } static void g4x_wm_sanitize(struct drm_i915_private *dev_priv) { struct intel_plane *plane; struct intel_crtc *crtc; mutex_lock(&dev_priv->display.wm.wm_mutex); for_each_intel_plane(&dev_priv->drm, plane) { struct intel_crtc *crtc = intel_crtc_for_pipe(dev_priv, plane->pipe); struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state); struct intel_plane_state *plane_state = to_intel_plane_state(plane->base.state); enum plane_id plane_id = plane->id; int level; if (plane_state->uapi.visible) continue; for (level = 0; level < dev_priv->display.wm.num_levels; level++) { struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level]; raw->plane[plane_id] = 0; if (plane_id == PLANE_PRIMARY) raw->fbc = 0; } } for_each_intel_crtc(&dev_priv->drm, crtc) { struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state); int ret; ret = _g4x_compute_pipe_wm(crtc_state); drm_WARN_ON(&dev_priv->drm, ret); crtc_state->wm.g4x.intermediate = crtc_state->wm.g4x.optimal; crtc->wm.active.g4x = crtc_state->wm.g4x.optimal; } g4x_program_watermarks(dev_priv); mutex_unlock(&dev_priv->display.wm.wm_mutex); } static void g4x_wm_get_hw_state_and_sanitize(struct drm_i915_private *i915) { g4x_wm_get_hw_state(i915); g4x_wm_sanitize(i915); } static void vlv_wm_get_hw_state(struct drm_i915_private *dev_priv) { struct vlv_wm_values *wm = &dev_priv->display.wm.vlv; struct intel_crtc *crtc; u32 val; vlv_read_wm_values(dev_priv, wm); wm->cxsr = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF_VLV) & FW_CSPWRDWNEN; wm->level = VLV_WM_LEVEL_PM2; if (IS_CHERRYVIEW(dev_priv)) { vlv_punit_get(dev_priv); val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM); if (val & DSP_MAXFIFO_PM5_ENABLE) wm->level = VLV_WM_LEVEL_PM5; /* * If DDR DVFS is disabled in the BIOS, Punit * will never ack the request. So if that happens * assume we don't have to enable/disable DDR DVFS * dynamically. To test that just set the REQ_ACK * bit to poke the Punit, but don't change the * HIGH/LOW bits so that we don't actually change * the current state. */ val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2); val |= FORCE_DDR_FREQ_REQ_ACK; vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val); if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) & FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) { drm_dbg_kms(&dev_priv->drm, "Punit not acking DDR DVFS request, " "assuming DDR DVFS is disabled\n"); dev_priv->display.wm.num_levels = VLV_WM_LEVEL_PM5 + 1; } else { val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2); if ((val & FORCE_DDR_HIGH_FREQ) == 0) wm->level = VLV_WM_LEVEL_DDR_DVFS; } vlv_punit_put(dev_priv); } for_each_intel_crtc(&dev_priv->drm, crtc) { struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state); struct vlv_wm_state *active = &crtc->wm.active.vlv; const struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state; enum pipe pipe = crtc->pipe; enum plane_id plane_id; int level; vlv_get_fifo_size(crtc_state); active->num_levels = wm->level + 1; active->cxsr = wm->cxsr; for (level = 0; level < active->num_levels; level++) { struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level]; active->sr[level].plane = wm->sr.plane; active->sr[level].cursor = wm->sr.cursor; for_each_plane_id_on_crtc(crtc, plane_id) { active->wm[level].plane[plane_id] = wm->pipe[pipe].plane[plane_id]; raw->plane[plane_id] = vlv_invert_wm_value(active->wm[level].plane[plane_id], fifo_state->plane[plane_id]); } } for_each_plane_id_on_crtc(crtc, plane_id) vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX); vlv_invalidate_wms(crtc, active, level); crtc_state->wm.vlv.optimal = *active; crtc_state->wm.vlv.intermediate = *active; drm_dbg_kms(&dev_priv->drm, "Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n", pipe_name(pipe), wm->pipe[pipe].plane[PLANE_PRIMARY], wm->pipe[pipe].plane[PLANE_CURSOR], wm->pipe[pipe].plane[PLANE_SPRITE0], wm->pipe[pipe].plane[PLANE_SPRITE1]); } drm_dbg_kms(&dev_priv->drm, "Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n", wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr); } static void vlv_wm_sanitize(struct drm_i915_private *dev_priv) { struct intel_plane *plane; struct intel_crtc *crtc; mutex_lock(&dev_priv->display.wm.wm_mutex); for_each_intel_plane(&dev_priv->drm, plane) { struct intel_crtc *crtc = intel_crtc_for_pipe(dev_priv, plane->pipe); struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state); struct intel_plane_state *plane_state = to_intel_plane_state(plane->base.state); enum plane_id plane_id = plane->id; int level; if (plane_state->uapi.visible) continue; for (level = 0; level < dev_priv->display.wm.num_levels; level++) { struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level]; raw->plane[plane_id] = 0; } } for_each_intel_crtc(&dev_priv->drm, crtc) { struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state); int ret; ret = _vlv_compute_pipe_wm(crtc_state); drm_WARN_ON(&dev_priv->drm, ret); crtc_state->wm.vlv.intermediate = crtc_state->wm.vlv.optimal; crtc->wm.active.vlv = crtc_state->wm.vlv.optimal; } vlv_program_watermarks(dev_priv); mutex_unlock(&dev_priv->display.wm.wm_mutex); } static void vlv_wm_get_hw_state_and_sanitize(struct drm_i915_private *i915) { vlv_wm_get_hw_state(i915); vlv_wm_sanitize(i915); } /* * FIXME should probably kill this and improve * the real watermark readout/sanitation instead */ static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv) { intel_uncore_rmw(&dev_priv->uncore, WM3_LP_ILK, WM_LP_ENABLE, 0); intel_uncore_rmw(&dev_priv->uncore, WM2_LP_ILK, WM_LP_ENABLE, 0); intel_uncore_rmw(&dev_priv->uncore, WM1_LP_ILK, WM_LP_ENABLE, 0); /* * Don't touch WM_LP_SPRITE_ENABLE here. * Doing so could cause underruns. */ } static void ilk_wm_get_hw_state(struct drm_i915_private *dev_priv) { struct ilk_wm_values *hw = &dev_priv->display.wm.hw; struct intel_crtc *crtc; ilk_init_lp_watermarks(dev_priv); for_each_intel_crtc(&dev_priv->drm, crtc) ilk_pipe_wm_get_hw_state(crtc); hw->wm_lp[0] = intel_uncore_read(&dev_priv->uncore, WM1_LP_ILK); hw->wm_lp[1] = intel_uncore_read(&dev_priv->uncore, WM2_LP_ILK); hw->wm_lp[2] = intel_uncore_read(&dev_priv->uncore, WM3_LP_ILK); hw->wm_lp_spr[0] = intel_uncore_read(&dev_priv->uncore, WM1S_LP_ILK); if (DISPLAY_VER(dev_priv) >= 7) { hw->wm_lp_spr[1] = intel_uncore_read(&dev_priv->uncore, WM2S_LP_IVB); hw->wm_lp_spr[2] = intel_uncore_read(&dev_priv->uncore, WM3S_LP_IVB); } if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) hw->partitioning = (intel_uncore_read(&dev_priv->uncore, WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ? INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2; else if (IS_IVYBRIDGE(dev_priv)) hw->partitioning = (intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ? INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2; hw->enable_fbc_wm = !(intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) & DISP_FBC_WM_DIS); } static const struct intel_wm_funcs ilk_wm_funcs = { .compute_pipe_wm = ilk_compute_pipe_wm, .compute_intermediate_wm = ilk_compute_intermediate_wm, .initial_watermarks = ilk_initial_watermarks, .optimize_watermarks = ilk_optimize_watermarks, .get_hw_state = ilk_wm_get_hw_state, }; static const struct intel_wm_funcs vlv_wm_funcs = { .compute_pipe_wm = vlv_compute_pipe_wm, .compute_intermediate_wm = vlv_compute_intermediate_wm, .initial_watermarks = vlv_initial_watermarks, .optimize_watermarks = vlv_optimize_watermarks, .atomic_update_watermarks = vlv_atomic_update_fifo, .get_hw_state = vlv_wm_get_hw_state_and_sanitize, }; static const struct intel_wm_funcs g4x_wm_funcs = { .compute_pipe_wm = g4x_compute_pipe_wm, .compute_intermediate_wm = g4x_compute_intermediate_wm, .initial_watermarks = g4x_initial_watermarks, .optimize_watermarks = g4x_optimize_watermarks, .get_hw_state = g4x_wm_get_hw_state_and_sanitize, }; static const struct intel_wm_funcs pnv_wm_funcs = { .update_wm = pnv_update_wm, }; static const struct intel_wm_funcs i965_wm_funcs = { .update_wm = i965_update_wm, }; static const struct intel_wm_funcs i9xx_wm_funcs = { .update_wm = i9xx_update_wm, }; static const struct intel_wm_funcs i845_wm_funcs = { .update_wm = i845_update_wm, }; static const struct intel_wm_funcs nop_funcs = { }; void i9xx_wm_init(struct drm_i915_private *dev_priv) { /* For FIFO watermark updates */ if (HAS_PCH_SPLIT(dev_priv)) { ilk_setup_wm_latency(dev_priv); dev_priv->display.funcs.wm = &ilk_wm_funcs; } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { vlv_setup_wm_latency(dev_priv); dev_priv->display.funcs.wm = &vlv_wm_funcs; } else if (IS_G4X(dev_priv)) { g4x_setup_wm_latency(dev_priv); dev_priv->display.funcs.wm = &g4x_wm_funcs; } else if (IS_PINEVIEW(dev_priv)) { if (!intel_get_cxsr_latency(dev_priv)) { drm_info(&dev_priv->drm, "failed to find known CxSR latency " "(found ddr%s fsb freq %d, mem freq %d), " "disabling CxSR\n", (dev_priv->is_ddr3 == 1) ? "3" : "2", dev_priv->fsb_freq, dev_priv->mem_freq); /* Disable CxSR and never update its watermark again */ intel_set_memory_cxsr(dev_priv, false); dev_priv->display.funcs.wm = &nop_funcs; } else { dev_priv->display.funcs.wm = &pnv_wm_funcs; } } else if (DISPLAY_VER(dev_priv) == 4) { dev_priv->display.funcs.wm = &i965_wm_funcs; } else if (DISPLAY_VER(dev_priv) == 3) { dev_priv->display.funcs.wm = &i9xx_wm_funcs; } else if (DISPLAY_VER(dev_priv) == 2) { if (INTEL_NUM_PIPES(dev_priv) == 1) dev_priv->display.funcs.wm = &i845_wm_funcs; else dev_priv->display.funcs.wm = &i9xx_wm_funcs; } else { drm_err(&dev_priv->drm, "unexpected fall-through in %s\n", __func__); dev_priv->display.funcs.wm = &nop_funcs; } }