// SPDX-License-Identifier: GPL-2.0-only /* Copyright (c) 2016-2018, The Linux Foundation. All rights reserved. */ #include #include #include #include #include "dpu_core_irq.h" #include "dpu_kms.h" #include "dpu_hw_interrupts.h" #include "dpu_hw_util.h" #include "dpu_hw_mdss.h" #include "dpu_trace.h" /* * Register offsets in MDSS register file for the interrupt registers * w.r.t. the MDP base */ #define MDP_INTF_OFF(intf) (0x6A000 + 0x800 * (intf)) #define MDP_INTF_INTR_EN(intf) (MDP_INTF_OFF(intf) + 0x1c0) #define MDP_INTF_INTR_STATUS(intf) (MDP_INTF_OFF(intf) + 0x1c4) #define MDP_INTF_INTR_CLEAR(intf) (MDP_INTF_OFF(intf) + 0x1c8) #define MDP_INTF_TEAR_OFF(intf) (0x6D700 + 0x100 * (intf)) #define MDP_INTF_INTR_TEAR_EN(intf) (MDP_INTF_TEAR_OFF(intf) + 0x000) #define MDP_INTF_INTR_TEAR_STATUS(intf) (MDP_INTF_TEAR_OFF(intf) + 0x004) #define MDP_INTF_INTR_TEAR_CLEAR(intf) (MDP_INTF_TEAR_OFF(intf) + 0x008) #define MDP_AD4_OFF(ad4) (0x7C000 + 0x1000 * (ad4)) #define MDP_AD4_INTR_EN_OFF(ad4) (MDP_AD4_OFF(ad4) + 0x41c) #define MDP_AD4_INTR_CLEAR_OFF(ad4) (MDP_AD4_OFF(ad4) + 0x424) #define MDP_AD4_INTR_STATUS_OFF(ad4) (MDP_AD4_OFF(ad4) + 0x420) #define MDP_INTF_REV_7xxx_OFF(intf) (0x34000 + 0x1000 * (intf)) #define MDP_INTF_REV_7xxx_INTR_EN(intf) (MDP_INTF_REV_7xxx_OFF(intf) + 0x1c0) #define MDP_INTF_REV_7xxx_INTR_STATUS(intf) (MDP_INTF_REV_7xxx_OFF(intf) + 0x1c4) #define MDP_INTF_REV_7xxx_INTR_CLEAR(intf) (MDP_INTF_REV_7xxx_OFF(intf) + 0x1c8) #define MDP_INTF_REV_7xxx_TEAR_OFF(intf) (0x34800 + 0x1000 * (intf)) #define MDP_INTF_REV_7xxx_INTR_TEAR_EN(intf) (MDP_INTF_REV_7xxx_TEAR_OFF(intf) + 0x000) #define MDP_INTF_REV_7xxx_INTR_TEAR_STATUS(intf) (MDP_INTF_REV_7xxx_TEAR_OFF(intf) + 0x004) #define MDP_INTF_REV_7xxx_INTR_TEAR_CLEAR(intf) (MDP_INTF_REV_7xxx_TEAR_OFF(intf) + 0x008) /** * struct dpu_intr_reg - array of DPU register sets * @clr_off: offset to CLEAR reg * @en_off: offset to ENABLE reg * @status_off: offset to STATUS reg */ struct dpu_intr_reg { u32 clr_off; u32 en_off; u32 status_off; }; /* * dpu_intr_set_legacy - List of DPU interrupt registers for DPU <= 6.x */ static const struct dpu_intr_reg dpu_intr_set_legacy[] = { [MDP_SSPP_TOP0_INTR] = { INTR_CLEAR, INTR_EN, INTR_STATUS }, [MDP_SSPP_TOP0_INTR2] = { INTR2_CLEAR, INTR2_EN, INTR2_STATUS }, [MDP_SSPP_TOP0_HIST_INTR] = { HIST_INTR_CLEAR, HIST_INTR_EN, HIST_INTR_STATUS }, [MDP_INTF0_INTR] = { MDP_INTF_INTR_CLEAR(0), MDP_INTF_INTR_EN(0), MDP_INTF_INTR_STATUS(0) }, [MDP_INTF1_INTR] = { MDP_INTF_INTR_CLEAR(1), MDP_INTF_INTR_EN(1), MDP_INTF_INTR_STATUS(1) }, [MDP_INTF2_INTR] = { MDP_INTF_INTR_CLEAR(2), MDP_INTF_INTR_EN(2), MDP_INTF_INTR_STATUS(2) }, [MDP_INTF3_INTR] = { MDP_INTF_INTR_CLEAR(3), MDP_INTF_INTR_EN(3), MDP_INTF_INTR_STATUS(3) }, [MDP_INTF4_INTR] = { MDP_INTF_INTR_CLEAR(4), MDP_INTF_INTR_EN(4), MDP_INTF_INTR_STATUS(4) }, [MDP_INTF5_INTR] = { MDP_INTF_INTR_CLEAR(5), MDP_INTF_INTR_EN(5), MDP_INTF_INTR_STATUS(5) }, [MDP_INTF1_TEAR_INTR] = { MDP_INTF_INTR_TEAR_CLEAR(1), MDP_INTF_INTR_TEAR_EN(1), MDP_INTF_INTR_TEAR_STATUS(1) }, [MDP_INTF2_TEAR_INTR] = { MDP_INTF_INTR_TEAR_CLEAR(2), MDP_INTF_INTR_TEAR_EN(2), MDP_INTF_INTR_TEAR_STATUS(2) }, [MDP_AD4_0_INTR] = { MDP_AD4_INTR_CLEAR_OFF(0), MDP_AD4_INTR_EN_OFF(0), MDP_AD4_INTR_STATUS_OFF(0), }, [MDP_AD4_1_INTR] = { MDP_AD4_INTR_CLEAR_OFF(1), MDP_AD4_INTR_EN_OFF(1), MDP_AD4_INTR_STATUS_OFF(1), }, }; /* * dpu_intr_set_7xxx - List of DPU interrupt registers for DPU >= 7.0 */ static const struct dpu_intr_reg dpu_intr_set_7xxx[] = { [MDP_SSPP_TOP0_INTR] = { INTR_CLEAR, INTR_EN, INTR_STATUS }, [MDP_SSPP_TOP0_INTR2] = { INTR2_CLEAR, INTR2_EN, INTR2_STATUS }, [MDP_SSPP_TOP0_HIST_INTR] = { HIST_INTR_CLEAR, HIST_INTR_EN, HIST_INTR_STATUS }, [MDP_INTF0_INTR] = { MDP_INTF_REV_7xxx_INTR_CLEAR(0), MDP_INTF_REV_7xxx_INTR_EN(0), MDP_INTF_REV_7xxx_INTR_STATUS(0) }, [MDP_INTF1_INTR] = { MDP_INTF_REV_7xxx_INTR_CLEAR(1), MDP_INTF_REV_7xxx_INTR_EN(1), MDP_INTF_REV_7xxx_INTR_STATUS(1) }, [MDP_INTF1_TEAR_INTR] = { MDP_INTF_REV_7xxx_INTR_TEAR_CLEAR(1), MDP_INTF_REV_7xxx_INTR_TEAR_EN(1), MDP_INTF_REV_7xxx_INTR_TEAR_STATUS(1) }, [MDP_INTF2_INTR] = { MDP_INTF_REV_7xxx_INTR_CLEAR(2), MDP_INTF_REV_7xxx_INTR_EN(2), MDP_INTF_REV_7xxx_INTR_STATUS(2) }, [MDP_INTF2_TEAR_INTR] = { MDP_INTF_REV_7xxx_INTR_TEAR_CLEAR(2), MDP_INTF_REV_7xxx_INTR_TEAR_EN(2), MDP_INTF_REV_7xxx_INTR_TEAR_STATUS(2) }, [MDP_INTF3_INTR] = { MDP_INTF_REV_7xxx_INTR_CLEAR(3), MDP_INTF_REV_7xxx_INTR_EN(3), MDP_INTF_REV_7xxx_INTR_STATUS(3) }, [MDP_INTF4_INTR] = { MDP_INTF_REV_7xxx_INTR_CLEAR(4), MDP_INTF_REV_7xxx_INTR_EN(4), MDP_INTF_REV_7xxx_INTR_STATUS(4) }, [MDP_INTF5_INTR] = { MDP_INTF_REV_7xxx_INTR_CLEAR(5), MDP_INTF_REV_7xxx_INTR_EN(5), MDP_INTF_REV_7xxx_INTR_STATUS(5) }, [MDP_INTF6_INTR] = { MDP_INTF_REV_7xxx_INTR_CLEAR(6), MDP_INTF_REV_7xxx_INTR_EN(6), MDP_INTF_REV_7xxx_INTR_STATUS(6) }, [MDP_INTF7_INTR] = { MDP_INTF_REV_7xxx_INTR_CLEAR(7), MDP_INTF_REV_7xxx_INTR_EN(7), MDP_INTF_REV_7xxx_INTR_STATUS(7) }, [MDP_INTF8_INTR] = { MDP_INTF_REV_7xxx_INTR_CLEAR(8), MDP_INTF_REV_7xxx_INTR_EN(8), MDP_INTF_REV_7xxx_INTR_STATUS(8) }, }; #define DPU_IRQ_MASK(irq_idx) (BIT(DPU_IRQ_BIT(irq_idx))) static inline bool dpu_core_irq_is_valid(unsigned int irq_idx) { return irq_idx && irq_idx <= DPU_NUM_IRQS; } static inline struct dpu_hw_intr_entry *dpu_core_irq_get_entry(struct dpu_hw_intr *intr, unsigned int irq_idx) { return &intr->irq_tbl[irq_idx - 1]; } /** * dpu_core_irq_callback_handler - dispatch core interrupts * @dpu_kms: Pointer to DPU's KMS structure * @irq_idx: interrupt index */ static void dpu_core_irq_callback_handler(struct dpu_kms *dpu_kms, unsigned int irq_idx) { struct dpu_hw_intr_entry *irq_entry = dpu_core_irq_get_entry(dpu_kms->hw_intr, irq_idx); VERB("IRQ=[%d, %d]\n", DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx)); if (!irq_entry->cb) DRM_ERROR("no registered cb, IRQ=[%d, %d]\n", DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx)); atomic_inc(&irq_entry->count); /* * Perform registered function callback */ irq_entry->cb(irq_entry->arg); } irqreturn_t dpu_core_irq(struct msm_kms *kms) { struct dpu_kms *dpu_kms = to_dpu_kms(kms); struct dpu_hw_intr *intr = dpu_kms->hw_intr; int reg_idx; unsigned int irq_idx; u32 irq_status; u32 enable_mask; int bit; unsigned long irq_flags; if (!intr) return IRQ_NONE; spin_lock_irqsave(&intr->irq_lock, irq_flags); for (reg_idx = 0; reg_idx < MDP_INTR_MAX; reg_idx++) { if (!test_bit(reg_idx, &intr->irq_mask)) continue; /* Read interrupt status */ irq_status = DPU_REG_READ(&intr->hw, intr->intr_set[reg_idx].status_off); /* Read enable mask */ enable_mask = DPU_REG_READ(&intr->hw, intr->intr_set[reg_idx].en_off); /* and clear the interrupt */ if (irq_status) DPU_REG_WRITE(&intr->hw, intr->intr_set[reg_idx].clr_off, irq_status); /* Finally update IRQ status based on enable mask */ irq_status &= enable_mask; if (!irq_status) continue; /* * Search through matching intr status. */ while ((bit = ffs(irq_status)) != 0) { irq_idx = DPU_IRQ_IDX(reg_idx, bit - 1); dpu_core_irq_callback_handler(dpu_kms, irq_idx); /* * When callback finish, clear the irq_status * with the matching mask. Once irq_status * is all cleared, the search can be stopped. */ irq_status &= ~BIT(bit - 1); } } /* ensure register writes go through */ wmb(); spin_unlock_irqrestore(&intr->irq_lock, irq_flags); return IRQ_HANDLED; } static int dpu_hw_intr_enable_irq_locked(struct dpu_hw_intr *intr, unsigned int irq_idx) { int reg_idx; const struct dpu_intr_reg *reg; const char *dbgstr = NULL; uint32_t cache_irq_mask; if (!intr) return -EINVAL; if (!dpu_core_irq_is_valid(irq_idx)) { pr_err("invalid IRQ=[%d, %d]\n", DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx)); return -EINVAL; } /* * The cache_irq_mask and hardware RMW operations needs to be done * under irq_lock and it's the caller's responsibility to ensure that's * held. */ assert_spin_locked(&intr->irq_lock); reg_idx = DPU_IRQ_REG(irq_idx); reg = &intr->intr_set[reg_idx]; /* Is this interrupt register supported on the platform */ if (WARN_ON(!reg->en_off)) return -EINVAL; cache_irq_mask = intr->cache_irq_mask[reg_idx]; if (cache_irq_mask & DPU_IRQ_MASK(irq_idx)) { dbgstr = "already "; } else { dbgstr = ""; cache_irq_mask |= DPU_IRQ_MASK(irq_idx); /* Cleaning any pending interrupt */ DPU_REG_WRITE(&intr->hw, reg->clr_off, DPU_IRQ_MASK(irq_idx)); /* Enabling interrupts with the new mask */ DPU_REG_WRITE(&intr->hw, reg->en_off, cache_irq_mask); /* ensure register write goes through */ wmb(); intr->cache_irq_mask[reg_idx] = cache_irq_mask; } pr_debug("DPU IRQ=[%d, %d] %senabled: MASK:0x%.8lx, CACHE-MASK:0x%.8x\n", DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx), dbgstr, DPU_IRQ_MASK(irq_idx), cache_irq_mask); return 0; } static int dpu_hw_intr_disable_irq_locked(struct dpu_hw_intr *intr, unsigned int irq_idx) { int reg_idx; const struct dpu_intr_reg *reg; const char *dbgstr = NULL; uint32_t cache_irq_mask; if (!intr) return -EINVAL; if (!dpu_core_irq_is_valid(irq_idx)) { pr_err("invalid IRQ=[%d, %d]\n", DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx)); return -EINVAL; } /* * The cache_irq_mask and hardware RMW operations needs to be done * under irq_lock and it's the caller's responsibility to ensure that's * held. */ assert_spin_locked(&intr->irq_lock); reg_idx = DPU_IRQ_REG(irq_idx); reg = &intr->intr_set[reg_idx]; cache_irq_mask = intr->cache_irq_mask[reg_idx]; if ((cache_irq_mask & DPU_IRQ_MASK(irq_idx)) == 0) { dbgstr = "already "; } else { dbgstr = ""; cache_irq_mask &= ~DPU_IRQ_MASK(irq_idx); /* Disable interrupts based on the new mask */ DPU_REG_WRITE(&intr->hw, reg->en_off, cache_irq_mask); /* Cleaning any pending interrupt */ DPU_REG_WRITE(&intr->hw, reg->clr_off, DPU_IRQ_MASK(irq_idx)); /* ensure register write goes through */ wmb(); intr->cache_irq_mask[reg_idx] = cache_irq_mask; } pr_debug("DPU IRQ=[%d, %d] %sdisabled: MASK:0x%.8lx, CACHE-MASK:0x%.8x\n", DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx), dbgstr, DPU_IRQ_MASK(irq_idx), cache_irq_mask); return 0; } static void dpu_clear_irqs(struct dpu_kms *dpu_kms) { struct dpu_hw_intr *intr = dpu_kms->hw_intr; int i; if (!intr) return; for (i = 0; i < MDP_INTR_MAX; i++) { if (test_bit(i, &intr->irq_mask)) DPU_REG_WRITE(&intr->hw, intr->intr_set[i].clr_off, 0xffffffff); } /* ensure register writes go through */ wmb(); } static void dpu_disable_all_irqs(struct dpu_kms *dpu_kms) { struct dpu_hw_intr *intr = dpu_kms->hw_intr; int i; if (!intr) return; for (i = 0; i < MDP_INTR_MAX; i++) { if (test_bit(i, &intr->irq_mask)) DPU_REG_WRITE(&intr->hw, intr->intr_set[i].en_off, 0x00000000); } /* ensure register writes go through */ wmb(); } u32 dpu_core_irq_read(struct dpu_kms *dpu_kms, unsigned int irq_idx) { struct dpu_hw_intr *intr = dpu_kms->hw_intr; int reg_idx; unsigned long irq_flags; u32 intr_status; if (!intr) return 0; if (!dpu_core_irq_is_valid(irq_idx)) { pr_err("invalid IRQ=[%d, %d]\n", DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx)); return 0; } spin_lock_irqsave(&intr->irq_lock, irq_flags); reg_idx = DPU_IRQ_REG(irq_idx); intr_status = DPU_REG_READ(&intr->hw, intr->intr_set[reg_idx].status_off) & DPU_IRQ_MASK(irq_idx); if (intr_status) DPU_REG_WRITE(&intr->hw, intr->intr_set[reg_idx].clr_off, intr_status); /* ensure register writes go through */ wmb(); spin_unlock_irqrestore(&intr->irq_lock, irq_flags); return intr_status; } struct dpu_hw_intr *dpu_hw_intr_init(struct drm_device *dev, void __iomem *addr, const struct dpu_mdss_cfg *m) { struct dpu_hw_intr *intr; unsigned int i; if (!addr || !m) return ERR_PTR(-EINVAL); intr = drmm_kzalloc(dev, sizeof(*intr), GFP_KERNEL); if (!intr) return ERR_PTR(-ENOMEM); if (m->mdss_ver->core_major_ver >= 7) intr->intr_set = dpu_intr_set_7xxx; else intr->intr_set = dpu_intr_set_legacy; intr->hw.blk_addr = addr + m->mdp[0].base; intr->irq_mask = BIT(MDP_SSPP_TOP0_INTR) | BIT(MDP_SSPP_TOP0_INTR2) | BIT(MDP_SSPP_TOP0_HIST_INTR); for (i = 0; i < m->intf_count; i++) { const struct dpu_intf_cfg *intf = &m->intf[i]; if (intf->type == INTF_NONE) continue; intr->irq_mask |= BIT(MDP_INTFn_INTR(intf->id)); if (intf->intr_tear_rd_ptr) intr->irq_mask |= BIT(DPU_IRQ_REG(intf->intr_tear_rd_ptr)); } spin_lock_init(&intr->irq_lock); return intr; } int dpu_core_irq_register_callback(struct dpu_kms *dpu_kms, unsigned int irq_idx, void (*irq_cb)(void *arg), void *irq_arg) { struct dpu_hw_intr_entry *irq_entry; unsigned long irq_flags; int ret; if (!irq_cb) { DPU_ERROR("invalid IRQ=[%d, %d] irq_cb:%ps\n", DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx), irq_cb); return -EINVAL; } if (!dpu_core_irq_is_valid(irq_idx)) { DPU_ERROR("invalid IRQ=[%d, %d]\n", DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx)); return -EINVAL; } VERB("[%pS] IRQ=[%d, %d]\n", __builtin_return_address(0), DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx)); spin_lock_irqsave(&dpu_kms->hw_intr->irq_lock, irq_flags); irq_entry = dpu_core_irq_get_entry(dpu_kms->hw_intr, irq_idx); if (unlikely(WARN_ON(irq_entry->cb))) { spin_unlock_irqrestore(&dpu_kms->hw_intr->irq_lock, irq_flags); return -EBUSY; } trace_dpu_core_irq_register_callback(DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx), irq_cb); irq_entry->arg = irq_arg; irq_entry->cb = irq_cb; ret = dpu_hw_intr_enable_irq_locked( dpu_kms->hw_intr, irq_idx); if (ret) DPU_ERROR("Failed/ to enable IRQ=[%d, %d]\n", DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx)); spin_unlock_irqrestore(&dpu_kms->hw_intr->irq_lock, irq_flags); trace_dpu_irq_register_success(DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx)); return 0; } int dpu_core_irq_unregister_callback(struct dpu_kms *dpu_kms, unsigned int irq_idx) { struct dpu_hw_intr_entry *irq_entry; unsigned long irq_flags; int ret; if (!dpu_core_irq_is_valid(irq_idx)) { DPU_ERROR("invalid IRQ=[%d, %d]\n", DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx)); return -EINVAL; } VERB("[%pS] IRQ=[%d, %d]\n", __builtin_return_address(0), DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx)); spin_lock_irqsave(&dpu_kms->hw_intr->irq_lock, irq_flags); trace_dpu_core_irq_unregister_callback(DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx)); ret = dpu_hw_intr_disable_irq_locked(dpu_kms->hw_intr, irq_idx); if (ret) DPU_ERROR("Failed to disable IRQ=[%d, %d]: %d\n", DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx), ret); irq_entry = dpu_core_irq_get_entry(dpu_kms->hw_intr, irq_idx); irq_entry->cb = NULL; irq_entry->arg = NULL; spin_unlock_irqrestore(&dpu_kms->hw_intr->irq_lock, irq_flags); trace_dpu_irq_unregister_success(DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx)); return 0; } #ifdef CONFIG_DEBUG_FS static int dpu_debugfs_core_irq_show(struct seq_file *s, void *v) { struct dpu_kms *dpu_kms = s->private; struct dpu_hw_intr_entry *irq_entry; unsigned long irq_flags; int i, irq_count; void *cb; for (i = 1; i <= DPU_NUM_IRQS; i++) { spin_lock_irqsave(&dpu_kms->hw_intr->irq_lock, irq_flags); irq_entry = dpu_core_irq_get_entry(dpu_kms->hw_intr, i); irq_count = atomic_read(&irq_entry->count); cb = irq_entry->cb; spin_unlock_irqrestore(&dpu_kms->hw_intr->irq_lock, irq_flags); if (irq_count || cb) seq_printf(s, "IRQ=[%d, %d] count:%d cb:%ps\n", DPU_IRQ_REG(i), DPU_IRQ_BIT(i), irq_count, cb); } return 0; } DEFINE_SHOW_ATTRIBUTE(dpu_debugfs_core_irq); void dpu_debugfs_core_irq_init(struct dpu_kms *dpu_kms, struct dentry *parent) { debugfs_create_file("core_irq", 0600, parent, dpu_kms, &dpu_debugfs_core_irq_fops); } #endif void dpu_core_irq_preinstall(struct msm_kms *kms) { struct dpu_kms *dpu_kms = to_dpu_kms(kms); struct dpu_hw_intr_entry *irq_entry; int i; pm_runtime_get_sync(&dpu_kms->pdev->dev); dpu_clear_irqs(dpu_kms); dpu_disable_all_irqs(dpu_kms); pm_runtime_put_sync(&dpu_kms->pdev->dev); for (i = 1; i <= DPU_NUM_IRQS; i++) { irq_entry = dpu_core_irq_get_entry(dpu_kms->hw_intr, i); atomic_set(&irq_entry->count, 0); } } void dpu_core_irq_uninstall(struct msm_kms *kms) { struct dpu_kms *dpu_kms = to_dpu_kms(kms); struct dpu_hw_intr_entry *irq_entry; int i; if (!dpu_kms->hw_intr) return; pm_runtime_get_sync(&dpu_kms->pdev->dev); for (i = 1; i <= DPU_NUM_IRQS; i++) { irq_entry = dpu_core_irq_get_entry(dpu_kms->hw_intr, i); if (irq_entry->cb) DPU_ERROR("IRQ=[%d, %d] still enabled/registered\n", DPU_IRQ_REG(i), DPU_IRQ_BIT(i)); } dpu_clear_irqs(dpu_kms); dpu_disable_all_irqs(dpu_kms); pm_runtime_put_sync(&dpu_kms->pdev->dev); }