/* * Copyright 2016 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Ben Skeggs */ #include "ctxgf100.h" #include /******************************************************************************* * PGRAPH context implementation ******************************************************************************/ void gp100_grctx_generate_pagepool(struct gf100_grctx *info) { const struct gf100_grctx_func *grctx = info->gr->func->grctx; const u32 access = NV_MEM_ACCESS_RW | NV_MEM_ACCESS_SYS; const int s = 8; const int b = mmio_vram(info, grctx->pagepool_size, (1 << s), access); mmio_refn(info, 0x40800c, 0x00000000, s, b); mmio_wr32(info, 0x408010, 0x80000000); mmio_refn(info, 0x419004, 0x00000000, s, b); mmio_wr32(info, 0x419008, 0x00000000); } static void gp100_grctx_generate_attrib(struct gf100_grctx *info) { struct gf100_gr *gr = info->gr; const struct gf100_grctx_func *grctx = gr->func->grctx; const u32 alpha = grctx->alpha_nr; const u32 attrib = grctx->attrib_nr; const u32 pertpc = 0x20 * (grctx->attrib_nr_max + grctx->alpha_nr_max); const u32 size = roundup(gr->tpc_total * pertpc, 0x80); const u32 access = NV_MEM_ACCESS_RW; const int s = 12; const int b = mmio_vram(info, size, (1 << s), access); const int max_batches = 0xffff; u32 ao = 0; u32 bo = ao + grctx->alpha_nr_max * gr->tpc_total; int gpc, ppc, n = 0; mmio_refn(info, 0x418810, 0x80000000, s, b); mmio_refn(info, 0x419848, 0x10000000, s, b); mmio_refn(info, 0x419c2c, 0x10000000, s, b); mmio_refn(info, 0x419b00, 0x00000000, s, b); mmio_wr32(info, 0x419b04, 0x80000000 | size >> 7); mmio_wr32(info, 0x405830, attrib); mmio_wr32(info, 0x40585c, alpha); mmio_wr32(info, 0x4064c4, ((alpha / 4) << 16) | max_batches); for (gpc = 0; gpc < gr->gpc_nr; gpc++) { for (ppc = 0; ppc < gr->ppc_nr[gpc]; ppc++, n++) { const u32 as = alpha * gr->ppc_tpc_nr[gpc][ppc]; const u32 bs = attrib * gr->ppc_tpc_nr[gpc][ppc]; const u32 u = 0x418ea0 + (n * 0x04); const u32 o = PPC_UNIT(gpc, ppc, 0); if (!(gr->ppc_mask[gpc] & (1 << ppc))) continue; mmio_wr32(info, o + 0xc0, bs); mmio_wr32(info, o + 0xf4, bo); mmio_wr32(info, o + 0xf0, bs); bo += grctx->attrib_nr_max * gr->ppc_tpc_nr[gpc][ppc]; mmio_wr32(info, o + 0xe4, as); mmio_wr32(info, o + 0xf8, ao); ao += grctx->alpha_nr_max * gr->ppc_tpc_nr[gpc][ppc]; mmio_wr32(info, u, bs); } } mmio_wr32(info, 0x418eec, 0x00000000); mmio_wr32(info, 0x41befc, 0x00000000); } static void gp100_grctx_generate_405b60(struct gf100_gr *gr) { struct nvkm_device *device = gr->base.engine.subdev.device; const u32 dist_nr = DIV_ROUND_UP(gr->tpc_total, 4); u32 dist[TPC_MAX / 4] = {}; u32 gpcs[GPC_MAX * 2] = {}; u8 tpcnr[GPC_MAX]; int tpc, gpc, i; memcpy(tpcnr, gr->tpc_nr, sizeof(gr->tpc_nr)); /* won't result in the same distribution as the binary driver where * some of the gpcs have more tpcs than others, but this shall do * for the moment. the code for earlier gpus has this issue too. */ for (gpc = -1, i = 0; i < gr->tpc_total; i++) { do { gpc = (gpc + 1) % gr->gpc_nr; } while(!tpcnr[gpc]); tpc = gr->tpc_nr[gpc] - tpcnr[gpc]--; dist[i / 4] |= ((gpc << 4) | tpc) << ((i % 4) * 8); gpcs[gpc + (gr->gpc_nr * (tpc / 4))] |= i << (tpc * 8); } for (i = 0; i < dist_nr; i++) nvkm_wr32(device, 0x405b60 + (i * 4), dist[i]); for (i = 0; i < gr->gpc_nr * 2; i++) nvkm_wr32(device, 0x405ba0 + (i * 4), gpcs[i]); } void gp100_grctx_generate_main(struct gf100_gr *gr, struct gf100_grctx *info) { struct nvkm_device *device = gr->base.engine.subdev.device; const struct gf100_grctx_func *grctx = gr->func->grctx; u32 idle_timeout, tmp; int i; gf100_gr_mmio(gr, gr->fuc_sw_ctx); idle_timeout = nvkm_mask(device, 0x404154, 0xffffffff, 0x00000000); grctx->pagepool(info); grctx->bundle(info); grctx->attrib(info); grctx->unkn(gr); gm200_grctx_generate_tpcid(gr); gf100_grctx_generate_r406028(gr); gk104_grctx_generate_r418bb8(gr); for (i = 0; i < 8; i++) nvkm_wr32(device, 0x4064d0 + (i * 0x04), 0x00000000); nvkm_wr32(device, 0x406500, 0x00000000); nvkm_wr32(device, 0x405b00, (gr->tpc_total << 8) | gr->gpc_nr); for (tmp = 0, i = 0; i < gr->gpc_nr; i++) tmp |= ((1 << gr->tpc_nr[i]) - 1) << (i * 5); nvkm_wr32(device, 0x4041c4, tmp); gp100_grctx_generate_405b60(gr); gf100_gr_icmd(gr, gr->fuc_bundle); nvkm_wr32(device, 0x404154, idle_timeout); gf100_gr_mthd(gr, gr->fuc_method); } const struct gf100_grctx_func gp100_grctx = { .main = gp100_grctx_generate_main, .unkn = gk104_grctx_generate_unkn, .bundle = gm107_grctx_generate_bundle, .bundle_size = 0x3000, .bundle_min_gpm_fifo_depth = 0x180, .bundle_token_limit = 0x1080, .pagepool = gp100_grctx_generate_pagepool, .pagepool_size = 0x20000, .attrib = gp100_grctx_generate_attrib, .attrib_nr_max = 0x660, .attrib_nr = 0x440, .alpha_nr_max = 0xc00, .alpha_nr = 0x800, };