/* * Copyright 2013 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Ben Skeggs */ #define nv50_ram(p) container_of((p), struct nv50_ram, base) #include "ram.h" #include "ramseq.h" #include "nv50.h" #include #include #include #include #include #include #include #include struct nv50_ramseq { struct hwsq base; struct hwsq_reg r_0x002504; struct hwsq_reg r_0x004008; struct hwsq_reg r_0x00400c; struct hwsq_reg r_0x00c040; struct hwsq_reg r_0x100200; struct hwsq_reg r_0x100210; struct hwsq_reg r_0x10021c; struct hwsq_reg r_0x1002d0; struct hwsq_reg r_0x1002d4; struct hwsq_reg r_0x1002dc; struct hwsq_reg r_0x10053c; struct hwsq_reg r_0x1005a0; struct hwsq_reg r_0x1005a4; struct hwsq_reg r_0x100710; struct hwsq_reg r_0x100714; struct hwsq_reg r_0x100718; struct hwsq_reg r_0x10071c; struct hwsq_reg r_0x100da0; struct hwsq_reg r_0x100e20; struct hwsq_reg r_0x100e24; struct hwsq_reg r_0x611200; struct hwsq_reg r_timing[9]; struct hwsq_reg r_mr[4]; struct hwsq_reg r_gpio[4]; }; struct nv50_ram { struct nvkm_ram base; struct nv50_ramseq hwsq; }; #define T(t) cfg->timing_10_##t static int nv50_ram_timing_calc(struct nv50_ram *ram, u32 *timing) { struct nvbios_ramcfg *cfg = &ram->base.target.bios; struct nvkm_subdev *subdev = &ram->base.fb->subdev; struct nvkm_device *device = subdev->device; u32 cur2, cur4, cur7, cur8; u8 unkt3b; cur2 = nvkm_rd32(device, 0x100228); cur4 = nvkm_rd32(device, 0x100230); cur7 = nvkm_rd32(device, 0x10023c); cur8 = nvkm_rd32(device, 0x100240); switch ((!T(CWL)) * ram->base.type) { case NVKM_RAM_TYPE_DDR2: T(CWL) = T(CL) - 1; break; case NVKM_RAM_TYPE_GDDR3: T(CWL) = ((cur2 & 0xff000000) >> 24) + 1; break; } /* XXX: N=1 is not proper statistics */ if (device->chipset == 0xa0) { unkt3b = 0x19 + ram->base.next->bios.rammap_00_16_40; timing[6] = (0x2d + T(CL) - T(CWL) + ram->base.next->bios.rammap_00_16_40) << 16 | T(CWL) << 8 | (0x2f + T(CL) - T(CWL)); } else { unkt3b = 0x16; timing[6] = (0x2b + T(CL) - T(CWL)) << 16 | max_t(s8, T(CWL) - 2, 1) << 8 | (0x2e + T(CL) - T(CWL)); } timing[0] = (T(RP) << 24 | T(RAS) << 16 | T(RFC) << 8 | T(RC)); timing[1] = (T(WR) + 1 + T(CWL)) << 24 | max_t(u8, T(18), 1) << 16 | (T(WTR) + 1 + T(CWL)) << 8 | (3 + T(CL) - T(CWL)); timing[2] = (T(CWL) - 1) << 24 | (T(RRD) << 16) | (T(RCDWR) << 8) | T(RCDRD); timing[3] = (unkt3b - 2 + T(CL)) << 24 | unkt3b << 16 | (T(CL) - 1) << 8 | (T(CL) - 1); timing[4] = (cur4 & 0xffff0000) | T(13) << 8 | T(13); timing[5] = T(RFC) << 24 | max_t(u8, T(RCDRD), T(RCDWR)) << 16 | T(RP); /* Timing 6 is already done above */ timing[7] = (cur7 & 0xff00ffff) | (T(CL) - 1) << 16; timing[8] = (cur8 & 0xffffff00); /* XXX: P.version == 1 only has DDR2 and GDDR3? */ if (ram->base.type == NVKM_RAM_TYPE_DDR2) { timing[5] |= (T(CL) + 3) << 8; timing[8] |= (T(CL) - 4); } else if (ram->base.type == NVKM_RAM_TYPE_GDDR3) { timing[5] |= (T(CL) + 2) << 8; timing[8] |= (T(CL) - 2); } nvkm_debug(subdev, " 220: %08x %08x %08x %08x\n", timing[0], timing[1], timing[2], timing[3]); nvkm_debug(subdev, " 230: %08x %08x %08x %08x\n", timing[4], timing[5], timing[6], timing[7]); nvkm_debug(subdev, " 240: %08x\n", timing[8]); return 0; } static int nv50_ram_timing_read(struct nv50_ram *ram, u32 *timing) { unsigned int i; struct nvbios_ramcfg *cfg = &ram->base.target.bios; struct nvkm_subdev *subdev = &ram->base.fb->subdev; struct nvkm_device *device = subdev->device; for (i = 0; i <= 8; i++) timing[i] = nvkm_rd32(device, 0x100220 + (i * 4)); /* Derive the bare minimum for the MR calculation to succeed */ cfg->timing_ver = 0x10; T(CL) = (timing[3] & 0xff) + 1; switch (ram->base.type) { case NVKM_RAM_TYPE_DDR2: T(CWL) = T(CL) - 1; break; case NVKM_RAM_TYPE_GDDR3: T(CWL) = ((timing[2] & 0xff000000) >> 24) + 1; break; default: return -ENOSYS; break; } T(WR) = ((timing[1] >> 24) & 0xff) - 1 - T(CWL); return 0; } #undef T static void nvkm_sddr2_dll_reset(struct nv50_ramseq *hwsq) { ram_mask(hwsq, mr[0], 0x100, 0x100); ram_mask(hwsq, mr[0], 0x100, 0x000); ram_nsec(hwsq, 24000); } static void nv50_ram_gpio(struct nv50_ramseq *hwsq, u8 tag, u32 val) { struct nvkm_gpio *gpio = hwsq->base.subdev->device->gpio; struct dcb_gpio_func func; u32 reg, sh, gpio_val; int ret; if (nvkm_gpio_get(gpio, 0, tag, DCB_GPIO_UNUSED) != val) { ret = nvkm_gpio_find(gpio, 0, tag, DCB_GPIO_UNUSED, &func); if (ret) return; reg = func.line >> 3; sh = (func.line & 0x7) << 2; gpio_val = ram_rd32(hwsq, gpio[reg]); if (gpio_val & (8 << sh)) val = !val; if (!(func.log[1] & 1)) val = !val; ram_mask(hwsq, gpio[reg], (0x3 << sh), ((val | 0x2) << sh)); ram_nsec(hwsq, 20000); } } static int nv50_ram_calc(struct nvkm_ram *base, u32 freq) { struct nv50_ram *ram = nv50_ram(base); struct nv50_ramseq *hwsq = &ram->hwsq; struct nvkm_subdev *subdev = &ram->base.fb->subdev; struct nvkm_bios *bios = subdev->device->bios; struct nvbios_perfE perfE; struct nvbios_pll mpll; struct nvkm_ram_data *next; u8 ver, hdr, cnt, len, strap, size; u32 data; u32 r100da0, r004008, unk710, unk714, unk718, unk71c; int N1, M1, N2, M2, P; int ret, i; u32 timing[9]; next = &ram->base.target; next->freq = freq; ram->base.next = next; /* lookup closest matching performance table entry for frequency */ i = 0; do { data = nvbios_perfEp(bios, i++, &ver, &hdr, &cnt, &size, &perfE); if (!data || (ver < 0x25 || ver >= 0x40) || (size < 2)) { nvkm_error(subdev, "invalid/missing perftab entry\n"); return -EINVAL; } } while (perfE.memory < freq); nvbios_rammapEp_from_perf(bios, data, hdr, &next->bios); /* locate specific data set for the attached memory */ strap = nvbios_ramcfg_index(subdev); if (strap >= cnt) { nvkm_error(subdev, "invalid ramcfg strap\n"); return -EINVAL; } data = nvbios_rammapSp_from_perf(bios, data + hdr, size, strap, &next->bios); if (!data) { nvkm_error(subdev, "invalid/missing rammap entry "); return -EINVAL; } /* lookup memory timings, if bios says they're present */ if (next->bios.ramcfg_timing != 0xff) { data = nvbios_timingEp(bios, next->bios.ramcfg_timing, &ver, &hdr, &cnt, &len, &next->bios); if (!data || ver != 0x10 || hdr < 0x12) { nvkm_error(subdev, "invalid/missing timing entry " "%02x %04x %02x %02x\n", strap, data, ver, hdr); return -EINVAL; } nv50_ram_timing_calc(ram, timing); } else { nv50_ram_timing_read(ram, timing); } ret = ram_init(hwsq, subdev); if (ret) return ret; /* Determine ram-specific MR values */ ram->base.mr[0] = ram_rd32(hwsq, mr[0]); ram->base.mr[1] = ram_rd32(hwsq, mr[1]); ram->base.mr[2] = ram_rd32(hwsq, mr[2]); switch (ram->base.type) { case NVKM_RAM_TYPE_GDDR3: ret = nvkm_gddr3_calc(&ram->base); break; default: ret = -ENOSYS; break; } if (ret) { nvkm_error(subdev, "Could not calculate MR\n"); return ret; } if (subdev->device->chipset <= 0x96 && !next->bios.ramcfg_00_03_02) ram_mask(hwsq, 0x100710, 0x00000200, 0x00000000); /* Always disable this bit during reclock */ ram_mask(hwsq, 0x100200, 0x00000800, 0x00000000); ram_wait_vblank(hwsq); ram_wr32(hwsq, 0x611200, 0x00003300); ram_wr32(hwsq, 0x002504, 0x00000001); /* block fifo */ ram_nsec(hwsq, 8000); ram_setf(hwsq, 0x10, 0x00); /* disable fb */ ram_wait(hwsq, 0x00, 0x01); /* wait for fb disabled */ ram_nsec(hwsq, 2000); if (next->bios.timing_10_ODT) nv50_ram_gpio(hwsq, 0x2e, 1); ram_wr32(hwsq, 0x1002d4, 0x00000001); /* precharge */ ram_wr32(hwsq, 0x1002d0, 0x00000001); /* refresh */ ram_wr32(hwsq, 0x1002d0, 0x00000001); /* refresh */ ram_wr32(hwsq, 0x100210, 0x00000000); /* disable auto-refresh */ ram_wr32(hwsq, 0x1002dc, 0x00000001); /* enable self-refresh */ ret = nvbios_pll_parse(bios, 0x004008, &mpll); mpll.vco2.max_freq = 0; if (ret >= 0) { ret = nv04_pll_calc(subdev, &mpll, freq, &N1, &M1, &N2, &M2, &P); if (ret <= 0) ret = -EINVAL; } if (ret < 0) return ret; /* XXX: 750MHz seems rather arbitrary */ if (freq <= 750000) { r100da0 = 0x00000010; r004008 = 0x90000000; } else { r100da0 = 0x00000000; r004008 = 0x80000000; } r004008 |= (mpll.bias_p << 19) | (P << 22) | (P << 16); ram_mask(hwsq, 0x00c040, 0xc000c000, 0x0000c000); /* XXX: Is rammap_00_16_40 the DLL bit we've seen in GT215? Why does * it have a different rammap bit from DLLoff? */ ram_mask(hwsq, 0x004008, 0x00004200, 0x00000200 | next->bios.rammap_00_16_40 << 14); ram_mask(hwsq, 0x00400c, 0x0000ffff, (N1 << 8) | M1); ram_mask(hwsq, 0x004008, 0x91ff0000, r004008); /* XXX: GDDR3 only? */ if (subdev->device->chipset >= 0x92) ram_wr32(hwsq, 0x100da0, r100da0); nv50_ram_gpio(hwsq, 0x18, !next->bios.ramcfg_FBVDDQ); ram_nsec(hwsq, 64000); /*XXX*/ ram_nsec(hwsq, 32000); /*XXX*/ ram_mask(hwsq, 0x004008, 0x00002200, 0x00002000); ram_wr32(hwsq, 0x1002dc, 0x00000000); /* disable self-refresh */ ram_wr32(hwsq, 0x1002d4, 0x00000001); /* disable self-refresh */ ram_wr32(hwsq, 0x100210, 0x80000000); /* enable auto-refresh */ ram_nsec(hwsq, 12000); switch (ram->base.type) { case NVKM_RAM_TYPE_DDR2: ram_nuke(hwsq, mr[0]); /* force update */ ram_mask(hwsq, mr[0], 0x000, 0x000); break; case NVKM_RAM_TYPE_GDDR3: ram_nuke(hwsq, mr[1]); /* force update */ ram_wr32(hwsq, mr[1], ram->base.mr[1]); ram_nuke(hwsq, mr[0]); /* force update */ ram_wr32(hwsq, mr[0], ram->base.mr[0]); break; default: break; } ram_mask(hwsq, timing[3], 0xffffffff, timing[3]); ram_mask(hwsq, timing[1], 0xffffffff, timing[1]); ram_mask(hwsq, timing[6], 0xffffffff, timing[6]); ram_mask(hwsq, timing[7], 0xffffffff, timing[7]); ram_mask(hwsq, timing[8], 0xffffffff, timing[8]); ram_mask(hwsq, timing[0], 0xffffffff, timing[0]); ram_mask(hwsq, timing[2], 0xffffffff, timing[2]); ram_mask(hwsq, timing[4], 0xffffffff, timing[4]); ram_mask(hwsq, timing[5], 0xffffffff, timing[5]); if (!next->bios.ramcfg_00_03_02) ram_mask(hwsq, 0x10021c, 0x00010000, 0x00000000); ram_mask(hwsq, 0x100200, 0x00001000, !next->bios.ramcfg_00_04_02 << 12); /* XXX: A lot of this could be "chipset"/"ram type" specific stuff */ unk710 = ram_rd32(hwsq, 0x100710) & ~0x00000100; unk714 = ram_rd32(hwsq, 0x100714) & ~0xf0000020; unk718 = ram_rd32(hwsq, 0x100718) & ~0x00000100; unk71c = ram_rd32(hwsq, 0x10071c) & ~0x00000100; if (subdev->device->chipset <= 0x96) { unk710 &= ~0x0000006e; unk714 &= ~0x00000100; if (!next->bios.ramcfg_00_03_08) unk710 |= 0x00000060; if (!next->bios.ramcfg_FBVDDQ) unk714 |= 0x00000100; if ( next->bios.ramcfg_00_04_04) unk710 |= 0x0000000e; } else { unk710 &= ~0x00000001; if (!next->bios.ramcfg_00_03_08) unk710 |= 0x00000001; } if ( next->bios.ramcfg_00_03_01) unk71c |= 0x00000100; if ( next->bios.ramcfg_00_03_02) unk710 |= 0x00000100; if (!next->bios.ramcfg_00_03_08) unk714 |= 0x00000020; if ( next->bios.ramcfg_00_04_04) unk714 |= 0x70000000; if ( next->bios.ramcfg_00_04_20) unk718 |= 0x00000100; ram_mask(hwsq, 0x100714, 0xffffffff, unk714); ram_mask(hwsq, 0x10071c, 0xffffffff, unk71c); ram_mask(hwsq, 0x100718, 0xffffffff, unk718); ram_mask(hwsq, 0x100710, 0xffffffff, unk710); /* XXX: G94 does not even test these regs in trace. Harmless we do it, * but why is it omitted? */ if (next->bios.rammap_00_16_20) { ram_wr32(hwsq, 0x1005a0, next->bios.ramcfg_00_07 << 16 | next->bios.ramcfg_00_06 << 8 | next->bios.ramcfg_00_05); ram_wr32(hwsq, 0x1005a4, next->bios.ramcfg_00_09 << 8 | next->bios.ramcfg_00_08); ram_mask(hwsq, 0x10053c, 0x00001000, 0x00000000); } else { ram_mask(hwsq, 0x10053c, 0x00001000, 0x00001000); } ram_mask(hwsq, mr[1], 0xffffffff, ram->base.mr[1]); if (!next->bios.timing_10_ODT) nv50_ram_gpio(hwsq, 0x2e, 0); /* Reset DLL */ if (!next->bios.ramcfg_DLLoff) nvkm_sddr2_dll_reset(hwsq); ram_setf(hwsq, 0x10, 0x01); /* enable fb */ ram_wait(hwsq, 0x00, 0x00); /* wait for fb enabled */ ram_wr32(hwsq, 0x611200, 0x00003330); ram_wr32(hwsq, 0x002504, 0x00000000); /* un-block fifo */ if (next->bios.rammap_00_17_02) ram_mask(hwsq, 0x100200, 0x00000800, 0x00000800); if (!next->bios.rammap_00_16_40) ram_mask(hwsq, 0x004008, 0x00004000, 0x00000000); if (next->bios.ramcfg_00_03_02) ram_mask(hwsq, 0x10021c, 0x00010000, 0x00010000); if (subdev->device->chipset <= 0x96 && next->bios.ramcfg_00_03_02) ram_mask(hwsq, 0x100710, 0x00000200, 0x00000200); return 0; } static int nv50_ram_prog(struct nvkm_ram *base) { struct nv50_ram *ram = nv50_ram(base); struct nvkm_device *device = ram->base.fb->subdev.device; ram_exec(&ram->hwsq, nvkm_boolopt(device->cfgopt, "NvMemExec", true)); return 0; } static void nv50_ram_tidy(struct nvkm_ram *base) { struct nv50_ram *ram = nv50_ram(base); ram_exec(&ram->hwsq, false); } static const struct nvkm_ram_func nv50_ram_func = { .calc = nv50_ram_calc, .prog = nv50_ram_prog, .tidy = nv50_ram_tidy, }; static u32 nv50_fb_vram_rblock(struct nvkm_ram *ram) { struct nvkm_subdev *subdev = &ram->fb->subdev; struct nvkm_device *device = subdev->device; int colbits, rowbitsa, rowbitsb, banks; u64 rowsize, predicted; u32 r0, r4, rt, rblock_size; r0 = nvkm_rd32(device, 0x100200); r4 = nvkm_rd32(device, 0x100204); rt = nvkm_rd32(device, 0x100250); nvkm_debug(subdev, "memcfg %08x %08x %08x %08x\n", r0, r4, rt, nvkm_rd32(device, 0x001540)); colbits = (r4 & 0x0000f000) >> 12; rowbitsa = ((r4 & 0x000f0000) >> 16) + 8; rowbitsb = ((r4 & 0x00f00000) >> 20) + 8; banks = 1 << (((r4 & 0x03000000) >> 24) + 2); rowsize = ram->parts * banks * (1 << colbits) * 8; predicted = rowsize << rowbitsa; if (r0 & 0x00000004) predicted += rowsize << rowbitsb; if (predicted != ram->size) { nvkm_warn(subdev, "memory controller reports %d MiB VRAM\n", (u32)(ram->size >> 20)); } rblock_size = rowsize; if (rt & 1) rblock_size *= 3; nvkm_debug(subdev, "rblock %d bytes\n", rblock_size); return rblock_size; } int nv50_ram_ctor(const struct nvkm_ram_func *func, struct nvkm_fb *fb, struct nvkm_ram *ram) { struct nvkm_device *device = fb->subdev.device; struct nvkm_bios *bios = device->bios; const u32 rsvd_head = ( 256 * 1024); /* vga memory */ const u32 rsvd_tail = (1024 * 1024); /* vbios etc */ u64 size = nvkm_rd32(device, 0x10020c); enum nvkm_ram_type type = NVKM_RAM_TYPE_UNKNOWN; int ret; switch (nvkm_rd32(device, 0x100714) & 0x00000007) { case 0: type = NVKM_RAM_TYPE_DDR1; break; case 1: if (nvkm_fb_bios_memtype(bios) == NVKM_RAM_TYPE_DDR3) type = NVKM_RAM_TYPE_DDR3; else type = NVKM_RAM_TYPE_DDR2; break; case 2: type = NVKM_RAM_TYPE_GDDR3; break; case 3: type = NVKM_RAM_TYPE_GDDR4; break; case 4: type = NVKM_RAM_TYPE_GDDR5; break; default: break; } size = (size & 0x000000ff) << 32 | (size & 0xffffff00); ret = nvkm_ram_ctor(func, fb, type, size, ram); if (ret) return ret; ram->part_mask = (nvkm_rd32(device, 0x001540) & 0x00ff0000) >> 16; ram->parts = hweight8(ram->part_mask); ram->ranks = (nvkm_rd32(device, 0x100200) & 0x4) ? 2 : 1; nvkm_mm_fini(&ram->vram); return nvkm_mm_init(&ram->vram, NVKM_RAM_MM_NORMAL, rsvd_head >> NVKM_RAM_MM_SHIFT, (size - rsvd_head - rsvd_tail) >> NVKM_RAM_MM_SHIFT, nv50_fb_vram_rblock(ram) >> NVKM_RAM_MM_SHIFT); } int nv50_ram_new(struct nvkm_fb *fb, struct nvkm_ram **pram) { struct nv50_ram *ram; int ret, i; if (!(ram = kzalloc(sizeof(*ram), GFP_KERNEL))) return -ENOMEM; *pram = &ram->base; ret = nv50_ram_ctor(&nv50_ram_func, fb, &ram->base); if (ret) return ret; ram->hwsq.r_0x002504 = hwsq_reg(0x002504); ram->hwsq.r_0x00c040 = hwsq_reg(0x00c040); ram->hwsq.r_0x004008 = hwsq_reg(0x004008); ram->hwsq.r_0x00400c = hwsq_reg(0x00400c); ram->hwsq.r_0x100200 = hwsq_reg(0x100200); ram->hwsq.r_0x100210 = hwsq_reg(0x100210); ram->hwsq.r_0x10021c = hwsq_reg(0x10021c); ram->hwsq.r_0x1002d0 = hwsq_reg(0x1002d0); ram->hwsq.r_0x1002d4 = hwsq_reg(0x1002d4); ram->hwsq.r_0x1002dc = hwsq_reg(0x1002dc); ram->hwsq.r_0x10053c = hwsq_reg(0x10053c); ram->hwsq.r_0x1005a0 = hwsq_reg(0x1005a0); ram->hwsq.r_0x1005a4 = hwsq_reg(0x1005a4); ram->hwsq.r_0x100710 = hwsq_reg(0x100710); ram->hwsq.r_0x100714 = hwsq_reg(0x100714); ram->hwsq.r_0x100718 = hwsq_reg(0x100718); ram->hwsq.r_0x10071c = hwsq_reg(0x10071c); ram->hwsq.r_0x100da0 = hwsq_stride(0x100da0, 4, ram->base.part_mask); ram->hwsq.r_0x100e20 = hwsq_reg(0x100e20); ram->hwsq.r_0x100e24 = hwsq_reg(0x100e24); ram->hwsq.r_0x611200 = hwsq_reg(0x611200); for (i = 0; i < 9; i++) ram->hwsq.r_timing[i] = hwsq_reg(0x100220 + (i * 0x04)); if (ram->base.ranks > 1) { ram->hwsq.r_mr[0] = hwsq_reg2(0x1002c0, 0x1002c8); ram->hwsq.r_mr[1] = hwsq_reg2(0x1002c4, 0x1002cc); ram->hwsq.r_mr[2] = hwsq_reg2(0x1002e0, 0x1002e8); ram->hwsq.r_mr[3] = hwsq_reg2(0x1002e4, 0x1002ec); } else { ram->hwsq.r_mr[0] = hwsq_reg(0x1002c0); ram->hwsq.r_mr[1] = hwsq_reg(0x1002c4); ram->hwsq.r_mr[2] = hwsq_reg(0x1002e0); ram->hwsq.r_mr[3] = hwsq_reg(0x1002e4); } ram->hwsq.r_gpio[0] = hwsq_reg(0x00e104); ram->hwsq.r_gpio[1] = hwsq_reg(0x00e108); ram->hwsq.r_gpio[2] = hwsq_reg(0x00e120); ram->hwsq.r_gpio[3] = hwsq_reg(0x00e124); return 0; }