/* * Copyright 2012 The Nouveau community * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Martin Peres */ #include #include "priv.h" int nvkm_therm_temp_get(struct nvkm_therm *therm) { if (therm->func->temp_get) return therm->func->temp_get(therm); return -ENODEV; } static int nvkm_therm_update_trip(struct nvkm_therm *therm) { struct nvbios_therm_trip_point *trip = therm->fan->bios.trip, *cur_trip = NULL, *last_trip = therm->last_trip; u8 temp = therm->func->temp_get(therm); u16 duty, i; /* look for the trip point corresponding to the current temperature */ cur_trip = NULL; for (i = 0; i < therm->fan->bios.nr_fan_trip; i++) { if (temp >= trip[i].temp) cur_trip = &trip[i]; } /* account for the hysteresis cycle */ if (last_trip && temp <= (last_trip->temp) && temp > (last_trip->temp - last_trip->hysteresis)) cur_trip = last_trip; if (cur_trip) { duty = cur_trip->fan_duty; therm->last_trip = cur_trip; } else { duty = 0; therm->last_trip = NULL; } return duty; } static int nvkm_therm_compute_linear_duty(struct nvkm_therm *therm, u8 linear_min_temp, u8 linear_max_temp) { u8 temp = therm->func->temp_get(therm); u16 duty; /* handle the non-linear part first */ if (temp < linear_min_temp) return therm->fan->bios.min_duty; else if (temp > linear_max_temp) return therm->fan->bios.max_duty; /* we are in the linear zone */ duty = (temp - linear_min_temp); duty *= (therm->fan->bios.max_duty - therm->fan->bios.min_duty); duty /= (linear_max_temp - linear_min_temp); duty += therm->fan->bios.min_duty; return duty; } static int nvkm_therm_update_linear(struct nvkm_therm *therm) { u8 min = therm->fan->bios.linear_min_temp; u8 max = therm->fan->bios.linear_max_temp; return nvkm_therm_compute_linear_duty(therm, min, max); } static int nvkm_therm_update_linear_fallback(struct nvkm_therm *therm) { u8 max = therm->bios_sensor.thrs_fan_boost.temp; return nvkm_therm_compute_linear_duty(therm, 30, max); } static void nvkm_therm_update(struct nvkm_therm *therm, int mode) { struct nvkm_subdev *subdev = &therm->subdev; struct nvkm_timer *tmr = subdev->device->timer; unsigned long flags; bool immd = true; bool poll = true; int duty = -1; spin_lock_irqsave(&therm->lock, flags); if (mode < 0) mode = therm->mode; therm->mode = mode; switch (mode) { case NVKM_THERM_CTRL_MANUAL: nvkm_timer_alarm(tmr, 0, &therm->alarm); duty = nvkm_therm_fan_get(therm); if (duty < 0) duty = 100; poll = false; break; case NVKM_THERM_CTRL_AUTO: switch(therm->fan->bios.fan_mode) { case NVBIOS_THERM_FAN_TRIP: duty = nvkm_therm_update_trip(therm); break; case NVBIOS_THERM_FAN_LINEAR: duty = nvkm_therm_update_linear(therm); break; case NVBIOS_THERM_FAN_OTHER: if (therm->cstate) duty = therm->cstate; else duty = nvkm_therm_update_linear_fallback(therm); poll = false; break; } immd = false; break; case NVKM_THERM_CTRL_NONE: default: nvkm_timer_alarm(tmr, 0, &therm->alarm); poll = false; } if (poll) nvkm_timer_alarm(tmr, 1000000000ULL, &therm->alarm); spin_unlock_irqrestore(&therm->lock, flags); if (duty >= 0) { nvkm_debug(subdev, "FAN target request: %d%%\n", duty); nvkm_therm_fan_set(therm, immd, duty); } } int nvkm_therm_cstate(struct nvkm_therm *therm, int fan, int dir) { struct nvkm_subdev *subdev = &therm->subdev; if (!dir || (dir < 0 && fan < therm->cstate) || (dir > 0 && fan > therm->cstate)) { nvkm_debug(subdev, "default fan speed -> %d%%\n", fan); therm->cstate = fan; nvkm_therm_update(therm, -1); } return 0; } static void nvkm_therm_alarm(struct nvkm_alarm *alarm) { struct nvkm_therm *therm = container_of(alarm, struct nvkm_therm, alarm); nvkm_therm_update(therm, -1); } int nvkm_therm_fan_mode(struct nvkm_therm *therm, int mode) { struct nvkm_subdev *subdev = &therm->subdev; struct nvkm_device *device = subdev->device; static const char *name[] = { "disabled", "manual", "automatic" }; /* The default PPWR ucode on fermi interferes with fan management */ if ((mode >= ARRAY_SIZE(name)) || (mode != NVKM_THERM_CTRL_NONE && device->card_type >= NV_C0 && !device->pmu)) return -EINVAL; /* do not allow automatic fan management if the thermal sensor is * not available */ if (mode == NVKM_THERM_CTRL_AUTO && therm->func->temp_get(therm) < 0) return -EINVAL; if (therm->mode == mode) return 0; nvkm_debug(subdev, "fan management: %s\n", name[mode]); nvkm_therm_update(therm, mode); return 0; } int nvkm_therm_attr_get(struct nvkm_therm *therm, enum nvkm_therm_attr_type type) { switch (type) { case NVKM_THERM_ATTR_FAN_MIN_DUTY: return therm->fan->bios.min_duty; case NVKM_THERM_ATTR_FAN_MAX_DUTY: return therm->fan->bios.max_duty; case NVKM_THERM_ATTR_FAN_MODE: return therm->mode; case NVKM_THERM_ATTR_THRS_FAN_BOOST: return therm->bios_sensor.thrs_fan_boost.temp; case NVKM_THERM_ATTR_THRS_FAN_BOOST_HYST: return therm->bios_sensor.thrs_fan_boost.hysteresis; case NVKM_THERM_ATTR_THRS_DOWN_CLK: return therm->bios_sensor.thrs_down_clock.temp; case NVKM_THERM_ATTR_THRS_DOWN_CLK_HYST: return therm->bios_sensor.thrs_down_clock.hysteresis; case NVKM_THERM_ATTR_THRS_CRITICAL: return therm->bios_sensor.thrs_critical.temp; case NVKM_THERM_ATTR_THRS_CRITICAL_HYST: return therm->bios_sensor.thrs_critical.hysteresis; case NVKM_THERM_ATTR_THRS_SHUTDOWN: return therm->bios_sensor.thrs_shutdown.temp; case NVKM_THERM_ATTR_THRS_SHUTDOWN_HYST: return therm->bios_sensor.thrs_shutdown.hysteresis; } return -EINVAL; } int nvkm_therm_attr_set(struct nvkm_therm *therm, enum nvkm_therm_attr_type type, int value) { switch (type) { case NVKM_THERM_ATTR_FAN_MIN_DUTY: if (value < 0) value = 0; if (value > therm->fan->bios.max_duty) value = therm->fan->bios.max_duty; therm->fan->bios.min_duty = value; return 0; case NVKM_THERM_ATTR_FAN_MAX_DUTY: if (value < 0) value = 0; if (value < therm->fan->bios.min_duty) value = therm->fan->bios.min_duty; therm->fan->bios.max_duty = value; return 0; case NVKM_THERM_ATTR_FAN_MODE: return nvkm_therm_fan_mode(therm, value); case NVKM_THERM_ATTR_THRS_FAN_BOOST: therm->bios_sensor.thrs_fan_boost.temp = value; therm->func->program_alarms(therm); return 0; case NVKM_THERM_ATTR_THRS_FAN_BOOST_HYST: therm->bios_sensor.thrs_fan_boost.hysteresis = value; therm->func->program_alarms(therm); return 0; case NVKM_THERM_ATTR_THRS_DOWN_CLK: therm->bios_sensor.thrs_down_clock.temp = value; therm->func->program_alarms(therm); return 0; case NVKM_THERM_ATTR_THRS_DOWN_CLK_HYST: therm->bios_sensor.thrs_down_clock.hysteresis = value; therm->func->program_alarms(therm); return 0; case NVKM_THERM_ATTR_THRS_CRITICAL: therm->bios_sensor.thrs_critical.temp = value; therm->func->program_alarms(therm); return 0; case NVKM_THERM_ATTR_THRS_CRITICAL_HYST: therm->bios_sensor.thrs_critical.hysteresis = value; therm->func->program_alarms(therm); return 0; case NVKM_THERM_ATTR_THRS_SHUTDOWN: therm->bios_sensor.thrs_shutdown.temp = value; therm->func->program_alarms(therm); return 0; case NVKM_THERM_ATTR_THRS_SHUTDOWN_HYST: therm->bios_sensor.thrs_shutdown.hysteresis = value; therm->func->program_alarms(therm); return 0; } return -EINVAL; } void nvkm_therm_clkgate_enable(struct nvkm_therm *therm) { if (!therm->func->clkgate_enable || !therm->clkgating_enabled) return; nvkm_debug(&therm->subdev, "Enabling clockgating\n"); therm->func->clkgate_enable(therm); } void nvkm_therm_clkgate_fini(struct nvkm_therm *therm, bool suspend) { if (!therm->func->clkgate_fini || !therm->clkgating_enabled) return; nvkm_debug(&therm->subdev, "Preparing clockgating for %s\n", suspend ? "suspend" : "fini"); therm->func->clkgate_fini(therm, suspend); } static void nvkm_therm_clkgate_oneinit(struct nvkm_therm *therm) { if (!therm->func->clkgate_enable || !therm->clkgating_enabled) return; nvkm_info(&therm->subdev, "Clockgating enabled\n"); } static void nvkm_therm_intr(struct nvkm_subdev *subdev) { struct nvkm_therm *therm = nvkm_therm(subdev); if (therm->func->intr) therm->func->intr(therm); } static int nvkm_therm_fini(struct nvkm_subdev *subdev, bool suspend) { struct nvkm_therm *therm = nvkm_therm(subdev); if (therm->func->fini) therm->func->fini(therm); nvkm_therm_fan_fini(therm, suspend); nvkm_therm_sensor_fini(therm, suspend); if (suspend) { therm->suspend = therm->mode; therm->mode = NVKM_THERM_CTRL_NONE; } return 0; } static int nvkm_therm_oneinit(struct nvkm_subdev *subdev) { struct nvkm_therm *therm = nvkm_therm(subdev); nvkm_therm_sensor_ctor(therm); nvkm_therm_ic_ctor(therm); nvkm_therm_fan_ctor(therm); nvkm_therm_fan_mode(therm, NVKM_THERM_CTRL_AUTO); nvkm_therm_sensor_preinit(therm); nvkm_therm_clkgate_oneinit(therm); return 0; } static int nvkm_therm_init(struct nvkm_subdev *subdev) { struct nvkm_therm *therm = nvkm_therm(subdev); if (therm->func->init) therm->func->init(therm); if (therm->suspend >= 0) { /* restore the pwm value only when on manual or auto mode */ if (therm->suspend > 0) nvkm_therm_fan_set(therm, true, therm->fan->percent); nvkm_therm_fan_mode(therm, therm->suspend); } nvkm_therm_sensor_init(therm); nvkm_therm_fan_init(therm); return 0; } void nvkm_therm_clkgate_init(struct nvkm_therm *therm, const struct nvkm_therm_clkgate_pack *p) { if (!therm->func->clkgate_init || !therm->clkgating_enabled) return; therm->func->clkgate_init(therm, p); } static void * nvkm_therm_dtor(struct nvkm_subdev *subdev) { struct nvkm_therm *therm = nvkm_therm(subdev); kfree(therm->fan); return therm; } static const struct nvkm_subdev_func nvkm_therm = { .dtor = nvkm_therm_dtor, .oneinit = nvkm_therm_oneinit, .init = nvkm_therm_init, .fini = nvkm_therm_fini, .intr = nvkm_therm_intr, }; void nvkm_therm_ctor(struct nvkm_therm *therm, struct nvkm_device *device, int index, const struct nvkm_therm_func *func) { nvkm_subdev_ctor(&nvkm_therm, device, index, &therm->subdev); therm->func = func; nvkm_alarm_init(&therm->alarm, nvkm_therm_alarm); spin_lock_init(&therm->lock); spin_lock_init(&therm->sensor.alarm_program_lock); therm->fan_get = nvkm_therm_fan_user_get; therm->fan_set = nvkm_therm_fan_user_set; therm->attr_get = nvkm_therm_attr_get; therm->attr_set = nvkm_therm_attr_set; therm->mode = therm->suspend = -1; /* undefined */ therm->clkgating_enabled = nvkm_boolopt(device->cfgopt, "NvPmEnableGating", false); } int nvkm_therm_new_(const struct nvkm_therm_func *func, struct nvkm_device *device, int index, struct nvkm_therm **ptherm) { struct nvkm_therm *therm; if (!(therm = *ptherm = kzalloc(sizeof(*therm), GFP_KERNEL))) return -ENOMEM; nvkm_therm_ctor(therm, device, index, func); return 0; }