/* * Copyright (c) 2016, Fuzhou Rockchip Electronics Co., Ltd * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. */ #include <linux/clk.h> #include <linux/component.h> #include <linux/iopoll.h> #include <linux/math64.h> #include <linux/module.h> #include <linux/of_device.h> #include <linux/pm_runtime.h> #include <linux/regmap.h> #include <linux/reset.h> #include <linux/mfd/syscon.h> #include <drm/drm_atomic_helper.h> #include <drm/drm_crtc.h> #include <drm/drm_crtc_helper.h> #include <drm/drm_mipi_dsi.h> #include <drm/drm_of.h> #include <drm/drm_panel.h> #include <drm/drmP.h> #include <video/mipi_display.h> #include "rockchip_drm_drv.h" #include "rockchip_drm_vop.h" #define DRIVER_NAME "dw-mipi-dsi" #define RK3288_GRF_SOC_CON6 0x025c #define RK3288_DSI0_SEL_VOP_LIT BIT(6) #define RK3288_DSI1_SEL_VOP_LIT BIT(9) #define RK3399_GRF_SOC_CON20 0x6250 #define RK3399_DSI0_SEL_VOP_LIT BIT(0) #define RK3399_DSI1_SEL_VOP_LIT BIT(4) /* disable turnrequest, turndisable, forcetxstopmode, forcerxmode */ #define RK3399_GRF_SOC_CON22 0x6258 #define RK3399_GRF_DSI_MODE 0xffff0000 #define DSI_VERSION 0x00 #define DSI_PWR_UP 0x04 #define RESET 0 #define POWERUP BIT(0) #define DSI_CLKMGR_CFG 0x08 #define TO_CLK_DIVIDSION(div) (((div) & 0xff) << 8) #define TX_ESC_CLK_DIVIDSION(div) (((div) & 0xff) << 0) #define DSI_DPI_VCID 0x0c #define DPI_VID(vid) (((vid) & 0x3) << 0) #define DSI_DPI_COLOR_CODING 0x10 #define EN18_LOOSELY BIT(8) #define DPI_COLOR_CODING_16BIT_1 0x0 #define DPI_COLOR_CODING_16BIT_2 0x1 #define DPI_COLOR_CODING_16BIT_3 0x2 #define DPI_COLOR_CODING_18BIT_1 0x3 #define DPI_COLOR_CODING_18BIT_2 0x4 #define DPI_COLOR_CODING_24BIT 0x5 #define DSI_DPI_CFG_POL 0x14 #define COLORM_ACTIVE_LOW BIT(4) #define SHUTD_ACTIVE_LOW BIT(3) #define HSYNC_ACTIVE_LOW BIT(2) #define VSYNC_ACTIVE_LOW BIT(1) #define DATAEN_ACTIVE_LOW BIT(0) #define DSI_DPI_LP_CMD_TIM 0x18 #define OUTVACT_LPCMD_TIME(p) (((p) & 0xff) << 16) #define INVACT_LPCMD_TIME(p) ((p) & 0xff) #define DSI_DBI_CFG 0x20 #define DSI_DBI_CMDSIZE 0x28 #define DSI_PCKHDL_CFG 0x2c #define EN_CRC_RX BIT(4) #define EN_ECC_RX BIT(3) #define EN_BTA BIT(2) #define EN_EOTP_RX BIT(1) #define EN_EOTP_TX BIT(0) #define DSI_MODE_CFG 0x34 #define ENABLE_VIDEO_MODE 0 #define ENABLE_CMD_MODE BIT(0) #define DSI_VID_MODE_CFG 0x38 #define FRAME_BTA_ACK BIT(14) #define ENABLE_LOW_POWER (0x3f << 8) #define ENABLE_LOW_POWER_MASK (0x3f << 8) #define VID_MODE_TYPE_NON_BURST_SYNC_PULSES 0x0 #define VID_MODE_TYPE_NON_BURST_SYNC_EVENTS 0x1 #define VID_MODE_TYPE_BURST 0x2 #define VID_MODE_TYPE_MASK 0x3 #define DSI_VID_PKT_SIZE 0x3c #define VID_PKT_SIZE(p) (((p) & 0x3fff) << 0) #define VID_PKT_MAX_SIZE 0x3fff #define DSI_VID_HSA_TIME 0x48 #define DSI_VID_HBP_TIME 0x4c #define DSI_VID_HLINE_TIME 0x50 #define DSI_VID_VSA_LINES 0x54 #define DSI_VID_VBP_LINES 0x58 #define DSI_VID_VFP_LINES 0x5c #define DSI_VID_VACTIVE_LINES 0x60 #define DSI_CMD_MODE_CFG 0x68 #define MAX_RD_PKT_SIZE_LP BIT(24) #define DCS_LW_TX_LP BIT(19) #define DCS_SR_0P_TX_LP BIT(18) #define DCS_SW_1P_TX_LP BIT(17) #define DCS_SW_0P_TX_LP BIT(16) #define GEN_LW_TX_LP BIT(14) #define GEN_SR_2P_TX_LP BIT(13) #define GEN_SR_1P_TX_LP BIT(12) #define GEN_SR_0P_TX_LP BIT(11) #define GEN_SW_2P_TX_LP BIT(10) #define GEN_SW_1P_TX_LP BIT(9) #define GEN_SW_0P_TX_LP BIT(8) #define EN_ACK_RQST BIT(1) #define EN_TEAR_FX BIT(0) #define CMD_MODE_ALL_LP (MAX_RD_PKT_SIZE_LP | \ DCS_LW_TX_LP | \ DCS_SR_0P_TX_LP | \ DCS_SW_1P_TX_LP | \ DCS_SW_0P_TX_LP | \ GEN_LW_TX_LP | \ GEN_SR_2P_TX_LP | \ GEN_SR_1P_TX_LP | \ GEN_SR_0P_TX_LP | \ GEN_SW_2P_TX_LP | \ GEN_SW_1P_TX_LP | \ GEN_SW_0P_TX_LP) #define DSI_GEN_HDR 0x6c #define GEN_HDATA(data) (((data) & 0xffff) << 8) #define GEN_HDATA_MASK (0xffff << 8) #define GEN_HTYPE(type) (((type) & 0xff) << 0) #define GEN_HTYPE_MASK 0xff #define DSI_GEN_PLD_DATA 0x70 #define DSI_CMD_PKT_STATUS 0x74 #define GEN_CMD_EMPTY BIT(0) #define GEN_CMD_FULL BIT(1) #define GEN_PLD_W_EMPTY BIT(2) #define GEN_PLD_W_FULL BIT(3) #define GEN_PLD_R_EMPTY BIT(4) #define GEN_PLD_R_FULL BIT(5) #define GEN_RD_CMD_BUSY BIT(6) #define DSI_TO_CNT_CFG 0x78 #define HSTX_TO_CNT(p) (((p) & 0xffff) << 16) #define LPRX_TO_CNT(p) ((p) & 0xffff) #define DSI_BTA_TO_CNT 0x8c #define DSI_LPCLK_CTRL 0x94 #define AUTO_CLKLANE_CTRL BIT(1) #define PHY_TXREQUESTCLKHS BIT(0) #define DSI_PHY_TMR_LPCLK_CFG 0x98 #define PHY_CLKHS2LP_TIME(lbcc) (((lbcc) & 0x3ff) << 16) #define PHY_CLKLP2HS_TIME(lbcc) ((lbcc) & 0x3ff) #define DSI_PHY_TMR_CFG 0x9c #define PHY_HS2LP_TIME(lbcc) (((lbcc) & 0xff) << 24) #define PHY_LP2HS_TIME(lbcc) (((lbcc) & 0xff) << 16) #define MAX_RD_TIME(lbcc) ((lbcc) & 0x7fff) #define DSI_PHY_RSTZ 0xa0 #define PHY_DISFORCEPLL 0 #define PHY_ENFORCEPLL BIT(3) #define PHY_DISABLECLK 0 #define PHY_ENABLECLK BIT(2) #define PHY_RSTZ 0 #define PHY_UNRSTZ BIT(1) #define PHY_SHUTDOWNZ 0 #define PHY_UNSHUTDOWNZ BIT(0) #define DSI_PHY_IF_CFG 0xa4 #define N_LANES(n) ((((n) - 1) & 0x3) << 0) #define PHY_STOP_WAIT_TIME(cycle) (((cycle) & 0xff) << 8) #define DSI_PHY_STATUS 0xb0 #define LOCK BIT(0) #define STOP_STATE_CLK_LANE BIT(2) #define DSI_PHY_TST_CTRL0 0xb4 #define PHY_TESTCLK BIT(1) #define PHY_UNTESTCLK 0 #define PHY_TESTCLR BIT(0) #define PHY_UNTESTCLR 0 #define DSI_PHY_TST_CTRL1 0xb8 #define PHY_TESTEN BIT(16) #define PHY_UNTESTEN 0 #define PHY_TESTDOUT(n) (((n) & 0xff) << 8) #define PHY_TESTDIN(n) (((n) & 0xff) << 0) #define DSI_INT_ST0 0xbc #define DSI_INT_ST1 0xc0 #define DSI_INT_MSK0 0xc4 #define DSI_INT_MSK1 0xc8 #define PHY_STATUS_TIMEOUT_US 10000 #define CMD_PKT_STATUS_TIMEOUT_US 20000 #define BYPASS_VCO_RANGE BIT(7) #define VCO_RANGE_CON_SEL(val) (((val) & 0x7) << 3) #define VCO_IN_CAP_CON_DEFAULT (0x0 << 1) #define VCO_IN_CAP_CON_LOW (0x1 << 1) #define VCO_IN_CAP_CON_HIGH (0x2 << 1) #define REF_BIAS_CUR_SEL BIT(0) #define CP_CURRENT_3MA BIT(3) #define CP_PROGRAM_EN BIT(7) #define LPF_PROGRAM_EN BIT(6) #define LPF_RESISTORS_20_KOHM 0 #define HSFREQRANGE_SEL(val) (((val) & 0x3f) << 1) #define INPUT_DIVIDER(val) (((val) - 1) & 0x7f) #define LOW_PROGRAM_EN 0 #define HIGH_PROGRAM_EN BIT(7) #define LOOP_DIV_LOW_SEL(val) (((val) - 1) & 0x1f) #define LOOP_DIV_HIGH_SEL(val) ((((val) - 1) >> 5) & 0x1f) #define PLL_LOOP_DIV_EN BIT(5) #define PLL_INPUT_DIV_EN BIT(4) #define POWER_CONTROL BIT(6) #define INTERNAL_REG_CURRENT BIT(3) #define BIAS_BLOCK_ON BIT(2) #define BANDGAP_ON BIT(0) #define TER_RESISTOR_HIGH BIT(7) #define TER_RESISTOR_LOW 0 #define LEVEL_SHIFTERS_ON BIT(6) #define TER_CAL_DONE BIT(5) #define SETRD_MAX (0x7 << 2) #define POWER_MANAGE BIT(1) #define TER_RESISTORS_ON BIT(0) #define BIASEXTR_SEL(val) ((val) & 0x7) #define BANDGAP_SEL(val) ((val) & 0x7) #define TLP_PROGRAM_EN BIT(7) #define THS_PRE_PROGRAM_EN BIT(7) #define THS_ZERO_PROGRAM_EN BIT(6) #define DW_MIPI_NEEDS_PHY_CFG_CLK BIT(0) #define DW_MIPI_NEEDS_GRF_CLK BIT(1) enum { BANDGAP_97_07, BANDGAP_98_05, BANDGAP_99_02, BANDGAP_100_00, BANDGAP_93_17, BANDGAP_94_15, BANDGAP_95_12, BANDGAP_96_10, }; enum { BIASEXTR_87_1, BIASEXTR_91_5, BIASEXTR_95_9, BIASEXTR_100, BIASEXTR_105_94, BIASEXTR_111_88, BIASEXTR_118_8, BIASEXTR_127_7, }; struct dw_mipi_dsi_plat_data { u32 dsi0_en_bit; u32 dsi1_en_bit; u32 grf_switch_reg; u32 grf_dsi0_mode; u32 grf_dsi0_mode_reg; unsigned int flags; unsigned int max_data_lanes; }; struct dw_mipi_dsi { struct drm_encoder encoder; struct drm_connector connector; struct mipi_dsi_host dsi_host; struct drm_panel *panel; struct device *dev; struct regmap *grf_regmap; void __iomem *base; struct clk *grf_clk; struct clk *pllref_clk; struct clk *pclk; struct clk *phy_cfg_clk; int dpms_mode; unsigned int lane_mbps; /* per lane */ u32 channel; u32 lanes; u32 format; u16 input_div; u16 feedback_div; unsigned long mode_flags; const struct dw_mipi_dsi_plat_data *pdata; }; enum dw_mipi_dsi_mode { DW_MIPI_DSI_CMD_MODE, DW_MIPI_DSI_VID_MODE, }; struct dphy_pll_testdin_map { unsigned int max_mbps; u8 testdin; }; /* The table is based on 27MHz DPHY pll reference clock. */ static const struct dphy_pll_testdin_map dptdin_map[] = { { 90, 0x00}, { 100, 0x10}, { 110, 0x20}, { 130, 0x01}, { 140, 0x11}, { 150, 0x21}, { 170, 0x02}, { 180, 0x12}, { 200, 0x22}, { 220, 0x03}, { 240, 0x13}, { 250, 0x23}, { 270, 0x04}, { 300, 0x14}, { 330, 0x05}, { 360, 0x15}, { 400, 0x25}, { 450, 0x06}, { 500, 0x16}, { 550, 0x07}, { 600, 0x17}, { 650, 0x08}, { 700, 0x18}, { 750, 0x09}, { 800, 0x19}, { 850, 0x29}, { 900, 0x39}, { 950, 0x0a}, {1000, 0x1a}, {1050, 0x2a}, {1100, 0x3a}, {1150, 0x0b}, {1200, 0x1b}, {1250, 0x2b}, {1300, 0x3b}, {1350, 0x0c}, {1400, 0x1c}, {1450, 0x2c}, {1500, 0x3c} }; static int max_mbps_to_testdin(unsigned int max_mbps) { int i; for (i = 0; i < ARRAY_SIZE(dptdin_map); i++) if (dptdin_map[i].max_mbps > max_mbps) return dptdin_map[i].testdin; return -EINVAL; } /* * The controller should generate 2 frames before * preparing the peripheral. */ static void dw_mipi_dsi_wait_for_two_frames(struct drm_display_mode *mode) { int refresh, two_frames; refresh = drm_mode_vrefresh(mode); two_frames = DIV_ROUND_UP(MSEC_PER_SEC, refresh) * 2; msleep(two_frames); } static inline struct dw_mipi_dsi *host_to_dsi(struct mipi_dsi_host *host) { return container_of(host, struct dw_mipi_dsi, dsi_host); } static inline struct dw_mipi_dsi *con_to_dsi(struct drm_connector *con) { return container_of(con, struct dw_mipi_dsi, connector); } static inline struct dw_mipi_dsi *encoder_to_dsi(struct drm_encoder *encoder) { return container_of(encoder, struct dw_mipi_dsi, encoder); } static inline void dsi_write(struct dw_mipi_dsi *dsi, u32 reg, u32 val) { writel(val, dsi->base + reg); } static inline u32 dsi_read(struct dw_mipi_dsi *dsi, u32 reg) { return readl(dsi->base + reg); } static void dw_mipi_dsi_phy_write(struct dw_mipi_dsi *dsi, u8 test_code, u8 test_data) { /* * With the falling edge on TESTCLK, the TESTDIN[7:0] signal content * is latched internally as the current test code. Test data is * programmed internally by rising edge on TESTCLK. */ dsi_write(dsi, DSI_PHY_TST_CTRL0, PHY_TESTCLK | PHY_UNTESTCLR); dsi_write(dsi, DSI_PHY_TST_CTRL1, PHY_TESTEN | PHY_TESTDOUT(0) | PHY_TESTDIN(test_code)); dsi_write(dsi, DSI_PHY_TST_CTRL0, PHY_UNTESTCLK | PHY_UNTESTCLR); dsi_write(dsi, DSI_PHY_TST_CTRL1, PHY_UNTESTEN | PHY_TESTDOUT(0) | PHY_TESTDIN(test_data)); dsi_write(dsi, DSI_PHY_TST_CTRL0, PHY_TESTCLK | PHY_UNTESTCLR); } /** * ns2bc - Nanoseconds to byte clock cycles */ static inline unsigned int ns2bc(struct dw_mipi_dsi *dsi, int ns) { return DIV_ROUND_UP(ns * dsi->lane_mbps / 8, 1000); } /** * ns2ui - Nanoseconds to UI time periods */ static inline unsigned int ns2ui(struct dw_mipi_dsi *dsi, int ns) { return DIV_ROUND_UP(ns * dsi->lane_mbps, 1000); } static int dw_mipi_dsi_phy_init(struct dw_mipi_dsi *dsi) { int ret, testdin, vco, val; vco = (dsi->lane_mbps < 200) ? 0 : (dsi->lane_mbps + 100) / 200; testdin = max_mbps_to_testdin(dsi->lane_mbps); if (testdin < 0) { DRM_DEV_ERROR(dsi->dev, "failed to get testdin for %dmbps lane clock\n", dsi->lane_mbps); return testdin; } /* Start by clearing PHY state */ dsi_write(dsi, DSI_PHY_TST_CTRL0, PHY_UNTESTCLR); dsi_write(dsi, DSI_PHY_TST_CTRL0, PHY_TESTCLR); dsi_write(dsi, DSI_PHY_TST_CTRL0, PHY_UNTESTCLR); ret = clk_prepare_enable(dsi->phy_cfg_clk); if (ret) { DRM_DEV_ERROR(dsi->dev, "Failed to enable phy_cfg_clk\n"); return ret; } dw_mipi_dsi_phy_write(dsi, 0x10, BYPASS_VCO_RANGE | VCO_RANGE_CON_SEL(vco) | VCO_IN_CAP_CON_LOW | REF_BIAS_CUR_SEL); dw_mipi_dsi_phy_write(dsi, 0x11, CP_CURRENT_3MA); dw_mipi_dsi_phy_write(dsi, 0x12, CP_PROGRAM_EN | LPF_PROGRAM_EN | LPF_RESISTORS_20_KOHM); dw_mipi_dsi_phy_write(dsi, 0x44, HSFREQRANGE_SEL(testdin)); dw_mipi_dsi_phy_write(dsi, 0x17, INPUT_DIVIDER(dsi->input_div)); dw_mipi_dsi_phy_write(dsi, 0x18, LOOP_DIV_LOW_SEL(dsi->feedback_div) | LOW_PROGRAM_EN); dw_mipi_dsi_phy_write(dsi, 0x18, LOOP_DIV_HIGH_SEL(dsi->feedback_div) | HIGH_PROGRAM_EN); dw_mipi_dsi_phy_write(dsi, 0x19, PLL_LOOP_DIV_EN | PLL_INPUT_DIV_EN); dw_mipi_dsi_phy_write(dsi, 0x22, LOW_PROGRAM_EN | BIASEXTR_SEL(BIASEXTR_127_7)); dw_mipi_dsi_phy_write(dsi, 0x22, HIGH_PROGRAM_EN | BANDGAP_SEL(BANDGAP_96_10)); dw_mipi_dsi_phy_write(dsi, 0x20, POWER_CONTROL | INTERNAL_REG_CURRENT | BIAS_BLOCK_ON | BANDGAP_ON); dw_mipi_dsi_phy_write(dsi, 0x21, TER_RESISTOR_LOW | TER_CAL_DONE | SETRD_MAX | TER_RESISTORS_ON); dw_mipi_dsi_phy_write(dsi, 0x21, TER_RESISTOR_HIGH | LEVEL_SHIFTERS_ON | SETRD_MAX | POWER_MANAGE | TER_RESISTORS_ON); dw_mipi_dsi_phy_write(dsi, 0x60, TLP_PROGRAM_EN | ns2bc(dsi, 500)); dw_mipi_dsi_phy_write(dsi, 0x61, THS_PRE_PROGRAM_EN | ns2ui(dsi, 40)); dw_mipi_dsi_phy_write(dsi, 0x62, THS_ZERO_PROGRAM_EN | ns2bc(dsi, 300)); dw_mipi_dsi_phy_write(dsi, 0x63, THS_PRE_PROGRAM_EN | ns2ui(dsi, 100)); dw_mipi_dsi_phy_write(dsi, 0x64, BIT(5) | ns2bc(dsi, 100)); dw_mipi_dsi_phy_write(dsi, 0x65, BIT(5) | (ns2bc(dsi, 60) + 7)); dw_mipi_dsi_phy_write(dsi, 0x70, TLP_PROGRAM_EN | ns2bc(dsi, 500)); dw_mipi_dsi_phy_write(dsi, 0x71, THS_PRE_PROGRAM_EN | (ns2ui(dsi, 50) + 5)); dw_mipi_dsi_phy_write(dsi, 0x72, THS_ZERO_PROGRAM_EN | (ns2bc(dsi, 140) + 2)); dw_mipi_dsi_phy_write(dsi, 0x73, THS_PRE_PROGRAM_EN | (ns2ui(dsi, 60) + 8)); dw_mipi_dsi_phy_write(dsi, 0x74, BIT(5) | ns2bc(dsi, 100)); dsi_write(dsi, DSI_PHY_RSTZ, PHY_ENFORCEPLL | PHY_ENABLECLK | PHY_UNRSTZ | PHY_UNSHUTDOWNZ); ret = readl_poll_timeout(dsi->base + DSI_PHY_STATUS, val, val & LOCK, 1000, PHY_STATUS_TIMEOUT_US); if (ret < 0) { DRM_DEV_ERROR(dsi->dev, "failed to wait for phy lock state\n"); goto phy_init_end; } ret = readl_poll_timeout(dsi->base + DSI_PHY_STATUS, val, val & STOP_STATE_CLK_LANE, 1000, PHY_STATUS_TIMEOUT_US); if (ret < 0) DRM_DEV_ERROR(dsi->dev, "failed to wait for phy clk lane stop state\n"); phy_init_end: clk_disable_unprepare(dsi->phy_cfg_clk); return ret; } static int dw_mipi_dsi_get_lane_bps(struct dw_mipi_dsi *dsi, struct drm_display_mode *mode) { unsigned int i, pre; unsigned long mpclk, pllref, tmp; unsigned int m = 1, n = 1, target_mbps = 1000; unsigned int max_mbps = dptdin_map[ARRAY_SIZE(dptdin_map) - 1].max_mbps; int bpp; bpp = mipi_dsi_pixel_format_to_bpp(dsi->format); if (bpp < 0) { DRM_DEV_ERROR(dsi->dev, "failed to get bpp for pixel format %d\n", dsi->format); return bpp; } mpclk = DIV_ROUND_UP(mode->clock, MSEC_PER_SEC); if (mpclk) { /* take 1 / 0.8, since mbps must big than bandwidth of RGB */ tmp = mpclk * (bpp / dsi->lanes) * 10 / 8; if (tmp < max_mbps) target_mbps = tmp; else DRM_DEV_ERROR(dsi->dev, "DPHY clock frequency is out of range\n"); } pllref = DIV_ROUND_UP(clk_get_rate(dsi->pllref_clk), USEC_PER_SEC); tmp = pllref; /* * The limits on the PLL divisor are: * * 5MHz <= (pllref / n) <= 40MHz * * we walk over these values in descreasing order so that if we hit * an exact match for target_mbps it is more likely that "m" will be * even. * * TODO: ensure that "m" is even after this loop. */ for (i = pllref / 5; i > (pllref / 40); i--) { pre = pllref / i; if ((tmp > (target_mbps % pre)) && (target_mbps / pre < 512)) { tmp = target_mbps % pre; n = i; m = target_mbps / pre; } if (tmp == 0) break; } dsi->lane_mbps = pllref / n * m; dsi->input_div = n; dsi->feedback_div = m; return 0; } static int dw_mipi_dsi_host_attach(struct mipi_dsi_host *host, struct mipi_dsi_device *device) { struct dw_mipi_dsi *dsi = host_to_dsi(host); if (device->lanes > dsi->pdata->max_data_lanes) { DRM_DEV_ERROR(dsi->dev, "the number of data lanes(%u) is too many\n", device->lanes); return -EINVAL; } dsi->lanes = device->lanes; dsi->channel = device->channel; dsi->format = device->format; dsi->mode_flags = device->mode_flags; dsi->panel = of_drm_find_panel(device->dev.of_node); if (!IS_ERR(dsi->panel)) return drm_panel_attach(dsi->panel, &dsi->connector); return -EINVAL; } static int dw_mipi_dsi_host_detach(struct mipi_dsi_host *host, struct mipi_dsi_device *device) { struct dw_mipi_dsi *dsi = host_to_dsi(host); drm_panel_detach(dsi->panel); return 0; } static void dw_mipi_message_config(struct dw_mipi_dsi *dsi, const struct mipi_dsi_msg *msg) { bool lpm = msg->flags & MIPI_DSI_MSG_USE_LPM; u32 val = 0; if (msg->flags & MIPI_DSI_MSG_REQ_ACK) val |= EN_ACK_RQST; if (lpm) val |= CMD_MODE_ALL_LP; dsi_write(dsi, DSI_LPCLK_CTRL, lpm ? 0 : PHY_TXREQUESTCLKHS); dsi_write(dsi, DSI_CMD_MODE_CFG, val); } static int dw_mipi_dsi_gen_pkt_hdr_write(struct dw_mipi_dsi *dsi, u32 hdr_val) { int ret; u32 val, mask; ret = readl_poll_timeout(dsi->base + DSI_CMD_PKT_STATUS, val, !(val & GEN_CMD_FULL), 1000, CMD_PKT_STATUS_TIMEOUT_US); if (ret < 0) { DRM_DEV_ERROR(dsi->dev, "failed to get available command FIFO\n"); return ret; } dsi_write(dsi, DSI_GEN_HDR, hdr_val); mask = GEN_CMD_EMPTY | GEN_PLD_W_EMPTY; ret = readl_poll_timeout(dsi->base + DSI_CMD_PKT_STATUS, val, (val & mask) == mask, 1000, CMD_PKT_STATUS_TIMEOUT_US); if (ret < 0) { DRM_DEV_ERROR(dsi->dev, "failed to write command FIFO\n"); return ret; } return 0; } static int dw_mipi_dsi_dcs_short_write(struct dw_mipi_dsi *dsi, const struct mipi_dsi_msg *msg) { const u8 *tx_buf = msg->tx_buf; u16 data = 0; u32 val; if (msg->tx_len > 0) data |= tx_buf[0]; if (msg->tx_len > 1) data |= tx_buf[1] << 8; if (msg->tx_len > 2) { DRM_DEV_ERROR(dsi->dev, "too long tx buf length %zu for short write\n", msg->tx_len); return -EINVAL; } val = GEN_HDATA(data) | GEN_HTYPE(msg->type); return dw_mipi_dsi_gen_pkt_hdr_write(dsi, val); } static int dw_mipi_dsi_dcs_long_write(struct dw_mipi_dsi *dsi, const struct mipi_dsi_msg *msg) { const u8 *tx_buf = msg->tx_buf; int len = msg->tx_len, pld_data_bytes = sizeof(u32), ret; u32 hdr_val = GEN_HDATA(msg->tx_len) | GEN_HTYPE(msg->type); u32 remainder; u32 val; if (msg->tx_len < 3) { DRM_DEV_ERROR(dsi->dev, "wrong tx buf length %zu for long write\n", msg->tx_len); return -EINVAL; } while (DIV_ROUND_UP(len, pld_data_bytes)) { if (len < pld_data_bytes) { remainder = 0; memcpy(&remainder, tx_buf, len); dsi_write(dsi, DSI_GEN_PLD_DATA, remainder); len = 0; } else { memcpy(&remainder, tx_buf, pld_data_bytes); dsi_write(dsi, DSI_GEN_PLD_DATA, remainder); tx_buf += pld_data_bytes; len -= pld_data_bytes; } ret = readl_poll_timeout(dsi->base + DSI_CMD_PKT_STATUS, val, !(val & GEN_PLD_W_FULL), 1000, CMD_PKT_STATUS_TIMEOUT_US); if (ret < 0) { DRM_DEV_ERROR(dsi->dev, "failed to get available write payload FIFO\n"); return ret; } } return dw_mipi_dsi_gen_pkt_hdr_write(dsi, hdr_val); } static ssize_t dw_mipi_dsi_host_transfer(struct mipi_dsi_host *host, const struct mipi_dsi_msg *msg) { struct dw_mipi_dsi *dsi = host_to_dsi(host); int ret; dw_mipi_message_config(dsi, msg); switch (msg->type) { case MIPI_DSI_DCS_SHORT_WRITE: case MIPI_DSI_DCS_SHORT_WRITE_PARAM: case MIPI_DSI_SET_MAXIMUM_RETURN_PACKET_SIZE: ret = dw_mipi_dsi_dcs_short_write(dsi, msg); break; case MIPI_DSI_DCS_LONG_WRITE: ret = dw_mipi_dsi_dcs_long_write(dsi, msg); break; default: DRM_DEV_ERROR(dsi->dev, "unsupported message type 0x%02x\n", msg->type); ret = -EINVAL; } return ret; } static const struct mipi_dsi_host_ops dw_mipi_dsi_host_ops = { .attach = dw_mipi_dsi_host_attach, .detach = dw_mipi_dsi_host_detach, .transfer = dw_mipi_dsi_host_transfer, }; static void dw_mipi_dsi_video_mode_config(struct dw_mipi_dsi *dsi) { u32 val; val = ENABLE_LOW_POWER; if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO_BURST) val |= VID_MODE_TYPE_BURST; else if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE) val |= VID_MODE_TYPE_NON_BURST_SYNC_PULSES; else val |= VID_MODE_TYPE_NON_BURST_SYNC_EVENTS; dsi_write(dsi, DSI_VID_MODE_CFG, val); } static void dw_mipi_dsi_set_mode(struct dw_mipi_dsi *dsi, enum dw_mipi_dsi_mode mode) { if (mode == DW_MIPI_DSI_CMD_MODE) { dsi_write(dsi, DSI_PWR_UP, RESET); dsi_write(dsi, DSI_MODE_CFG, ENABLE_CMD_MODE); dsi_write(dsi, DSI_PWR_UP, POWERUP); } else { dsi_write(dsi, DSI_PWR_UP, RESET); dsi_write(dsi, DSI_MODE_CFG, ENABLE_VIDEO_MODE); dw_mipi_dsi_video_mode_config(dsi); dsi_write(dsi, DSI_LPCLK_CTRL, PHY_TXREQUESTCLKHS); dsi_write(dsi, DSI_PWR_UP, POWERUP); } } static void dw_mipi_dsi_disable(struct dw_mipi_dsi *dsi) { dsi_write(dsi, DSI_PWR_UP, RESET); dsi_write(dsi, DSI_PHY_RSTZ, PHY_RSTZ); } static void dw_mipi_dsi_init(struct dw_mipi_dsi *dsi) { /* * The maximum permitted escape clock is 20MHz and it is derived from * lanebyteclk, which is running at "lane_mbps / 8". Thus we want: * * (lane_mbps >> 3) / esc_clk_division < 20 * which is: * (lane_mbps >> 3) / 20 > esc_clk_division */ u32 esc_clk_division = (dsi->lane_mbps >> 3) / 20 + 1; dsi_write(dsi, DSI_PWR_UP, RESET); dsi_write(dsi, DSI_PHY_RSTZ, PHY_DISFORCEPLL | PHY_DISABLECLK | PHY_RSTZ | PHY_SHUTDOWNZ); dsi_write(dsi, DSI_CLKMGR_CFG, TO_CLK_DIVIDSION(10) | TX_ESC_CLK_DIVIDSION(esc_clk_division)); } static void dw_mipi_dsi_dpi_config(struct dw_mipi_dsi *dsi, struct drm_display_mode *mode) { u32 val = 0, color = 0; switch (dsi->format) { case MIPI_DSI_FMT_RGB888: color = DPI_COLOR_CODING_24BIT; break; case MIPI_DSI_FMT_RGB666: color = DPI_COLOR_CODING_18BIT_2 | EN18_LOOSELY; break; case MIPI_DSI_FMT_RGB666_PACKED: color = DPI_COLOR_CODING_18BIT_1; break; case MIPI_DSI_FMT_RGB565: color = DPI_COLOR_CODING_16BIT_1; break; } if (mode->flags & DRM_MODE_FLAG_NVSYNC) val |= VSYNC_ACTIVE_LOW; if (mode->flags & DRM_MODE_FLAG_NHSYNC) val |= HSYNC_ACTIVE_LOW; dsi_write(dsi, DSI_DPI_VCID, DPI_VID(dsi->channel)); dsi_write(dsi, DSI_DPI_COLOR_CODING, color); dsi_write(dsi, DSI_DPI_CFG_POL, val); dsi_write(dsi, DSI_DPI_LP_CMD_TIM, OUTVACT_LPCMD_TIME(4) | INVACT_LPCMD_TIME(4)); } static void dw_mipi_dsi_packet_handler_config(struct dw_mipi_dsi *dsi) { dsi_write(dsi, DSI_PCKHDL_CFG, EN_CRC_RX | EN_ECC_RX | EN_BTA); } static void dw_mipi_dsi_video_packet_config(struct dw_mipi_dsi *dsi, struct drm_display_mode *mode) { dsi_write(dsi, DSI_VID_PKT_SIZE, VID_PKT_SIZE(mode->hdisplay)); } static void dw_mipi_dsi_command_mode_config(struct dw_mipi_dsi *dsi) { dsi_write(dsi, DSI_TO_CNT_CFG, HSTX_TO_CNT(1000) | LPRX_TO_CNT(1000)); dsi_write(dsi, DSI_BTA_TO_CNT, 0xd00); dsi_write(dsi, DSI_MODE_CFG, ENABLE_CMD_MODE); } /* Get lane byte clock cycles. */ static u32 dw_mipi_dsi_get_hcomponent_lbcc(struct dw_mipi_dsi *dsi, struct drm_display_mode *mode, u32 hcomponent) { u32 frac, lbcc; lbcc = hcomponent * dsi->lane_mbps * MSEC_PER_SEC / 8; frac = lbcc % mode->clock; lbcc = lbcc / mode->clock; if (frac) lbcc++; return lbcc; } static void dw_mipi_dsi_line_timer_config(struct dw_mipi_dsi *dsi, struct drm_display_mode *mode) { u32 htotal, hsa, hbp, lbcc; htotal = mode->htotal; hsa = mode->hsync_end - mode->hsync_start; hbp = mode->htotal - mode->hsync_end; lbcc = dw_mipi_dsi_get_hcomponent_lbcc(dsi, mode, htotal); dsi_write(dsi, DSI_VID_HLINE_TIME, lbcc); lbcc = dw_mipi_dsi_get_hcomponent_lbcc(dsi, mode, hsa); dsi_write(dsi, DSI_VID_HSA_TIME, lbcc); lbcc = dw_mipi_dsi_get_hcomponent_lbcc(dsi, mode, hbp); dsi_write(dsi, DSI_VID_HBP_TIME, lbcc); } static void dw_mipi_dsi_vertical_timing_config(struct dw_mipi_dsi *dsi, struct drm_display_mode *mode) { u32 vactive, vsa, vfp, vbp; vactive = mode->vdisplay; vsa = mode->vsync_end - mode->vsync_start; vfp = mode->vsync_start - mode->vdisplay; vbp = mode->vtotal - mode->vsync_end; dsi_write(dsi, DSI_VID_VACTIVE_LINES, vactive); dsi_write(dsi, DSI_VID_VSA_LINES, vsa); dsi_write(dsi, DSI_VID_VFP_LINES, vfp); dsi_write(dsi, DSI_VID_VBP_LINES, vbp); } static void dw_mipi_dsi_dphy_timing_config(struct dw_mipi_dsi *dsi) { dsi_write(dsi, DSI_PHY_TMR_CFG, PHY_HS2LP_TIME(0x40) | PHY_LP2HS_TIME(0x40) | MAX_RD_TIME(10000)); dsi_write(dsi, DSI_PHY_TMR_LPCLK_CFG, PHY_CLKHS2LP_TIME(0x40) | PHY_CLKLP2HS_TIME(0x40)); } static void dw_mipi_dsi_dphy_interface_config(struct dw_mipi_dsi *dsi) { dsi_write(dsi, DSI_PHY_IF_CFG, PHY_STOP_WAIT_TIME(0x20) | N_LANES(dsi->lanes)); } static void dw_mipi_dsi_clear_err(struct dw_mipi_dsi *dsi) { dsi_read(dsi, DSI_INT_ST0); dsi_read(dsi, DSI_INT_ST1); dsi_write(dsi, DSI_INT_MSK0, 0); dsi_write(dsi, DSI_INT_MSK1, 0); } static void dw_mipi_dsi_encoder_disable(struct drm_encoder *encoder) { struct dw_mipi_dsi *dsi = encoder_to_dsi(encoder); if (dsi->dpms_mode != DRM_MODE_DPMS_ON) return; if (clk_prepare_enable(dsi->pclk)) { DRM_DEV_ERROR(dsi->dev, "Failed to enable pclk\n"); return; } drm_panel_disable(dsi->panel); dw_mipi_dsi_set_mode(dsi, DW_MIPI_DSI_CMD_MODE); drm_panel_unprepare(dsi->panel); dw_mipi_dsi_disable(dsi); pm_runtime_put(dsi->dev); clk_disable_unprepare(dsi->pclk); dsi->dpms_mode = DRM_MODE_DPMS_OFF; } static void dw_mipi_dsi_encoder_enable(struct drm_encoder *encoder) { struct dw_mipi_dsi *dsi = encoder_to_dsi(encoder); struct drm_display_mode *mode = &encoder->crtc->state->adjusted_mode; const struct dw_mipi_dsi_plat_data *pdata = dsi->pdata; int mux = drm_of_encoder_active_endpoint_id(dsi->dev->of_node, encoder); u32 val; int ret; ret = dw_mipi_dsi_get_lane_bps(dsi, mode); if (ret < 0) return; if (dsi->dpms_mode == DRM_MODE_DPMS_ON) return; if (clk_prepare_enable(dsi->pclk)) { DRM_DEV_ERROR(dsi->dev, "Failed to enable pclk\n"); return; } pm_runtime_get_sync(dsi->dev); dw_mipi_dsi_init(dsi); dw_mipi_dsi_dpi_config(dsi, mode); dw_mipi_dsi_packet_handler_config(dsi); dw_mipi_dsi_video_mode_config(dsi); dw_mipi_dsi_video_packet_config(dsi, mode); dw_mipi_dsi_command_mode_config(dsi); dw_mipi_dsi_line_timer_config(dsi, mode); dw_mipi_dsi_vertical_timing_config(dsi, mode); dw_mipi_dsi_dphy_timing_config(dsi); dw_mipi_dsi_dphy_interface_config(dsi); dw_mipi_dsi_clear_err(dsi); /* * For the RK3399, the clk of grf must be enabled before writing grf * register. And for RK3288 or other soc, this grf_clk must be NULL, * the clk_prepare_enable return true directly. */ ret = clk_prepare_enable(dsi->grf_clk); if (ret) { DRM_DEV_ERROR(dsi->dev, "Failed to enable grf_clk: %d\n", ret); return; } if (pdata->grf_dsi0_mode_reg) regmap_write(dsi->grf_regmap, pdata->grf_dsi0_mode_reg, pdata->grf_dsi0_mode); dw_mipi_dsi_phy_init(dsi); dw_mipi_dsi_wait_for_two_frames(mode); dw_mipi_dsi_set_mode(dsi, DW_MIPI_DSI_CMD_MODE); if (drm_panel_prepare(dsi->panel)) DRM_DEV_ERROR(dsi->dev, "failed to prepare panel\n"); dw_mipi_dsi_set_mode(dsi, DW_MIPI_DSI_VID_MODE); drm_panel_enable(dsi->panel); clk_disable_unprepare(dsi->pclk); if (mux) val = pdata->dsi0_en_bit | (pdata->dsi0_en_bit << 16); else val = pdata->dsi0_en_bit << 16; regmap_write(dsi->grf_regmap, pdata->grf_switch_reg, val); DRM_DEV_DEBUG(dsi->dev, "vop %s output to dsi0\n", (mux) ? "LIT" : "BIG"); dsi->dpms_mode = DRM_MODE_DPMS_ON; clk_disable_unprepare(dsi->grf_clk); } static int dw_mipi_dsi_encoder_atomic_check(struct drm_encoder *encoder, struct drm_crtc_state *crtc_state, struct drm_connector_state *conn_state) { struct rockchip_crtc_state *s = to_rockchip_crtc_state(crtc_state); struct dw_mipi_dsi *dsi = encoder_to_dsi(encoder); switch (dsi->format) { case MIPI_DSI_FMT_RGB888: s->output_mode = ROCKCHIP_OUT_MODE_P888; break; case MIPI_DSI_FMT_RGB666: s->output_mode = ROCKCHIP_OUT_MODE_P666; break; case MIPI_DSI_FMT_RGB565: s->output_mode = ROCKCHIP_OUT_MODE_P565; break; default: WARN_ON(1); return -EINVAL; } s->output_type = DRM_MODE_CONNECTOR_DSI; return 0; } static const struct drm_encoder_helper_funcs dw_mipi_dsi_encoder_helper_funcs = { .enable = dw_mipi_dsi_encoder_enable, .disable = dw_mipi_dsi_encoder_disable, .atomic_check = dw_mipi_dsi_encoder_atomic_check, }; static const struct drm_encoder_funcs dw_mipi_dsi_encoder_funcs = { .destroy = drm_encoder_cleanup, }; static int dw_mipi_dsi_connector_get_modes(struct drm_connector *connector) { struct dw_mipi_dsi *dsi = con_to_dsi(connector); return drm_panel_get_modes(dsi->panel); } static struct drm_connector_helper_funcs dw_mipi_dsi_connector_helper_funcs = { .get_modes = dw_mipi_dsi_connector_get_modes, }; static void dw_mipi_dsi_drm_connector_destroy(struct drm_connector *connector) { drm_connector_unregister(connector); drm_connector_cleanup(connector); } static const struct drm_connector_funcs dw_mipi_dsi_atomic_connector_funcs = { .fill_modes = drm_helper_probe_single_connector_modes, .destroy = dw_mipi_dsi_drm_connector_destroy, .reset = drm_atomic_helper_connector_reset, .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state, .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, }; static int dw_mipi_dsi_register(struct drm_device *drm, struct dw_mipi_dsi *dsi) { struct drm_encoder *encoder = &dsi->encoder; struct drm_connector *connector = &dsi->connector; struct device *dev = dsi->dev; int ret; encoder->possible_crtcs = drm_of_find_possible_crtcs(drm, dev->of_node); /* * If we failed to find the CRTC(s) which this encoder is * supposed to be connected to, it's because the CRTC has * not been registered yet. Defer probing, and hope that * the required CRTC is added later. */ if (encoder->possible_crtcs == 0) return -EPROBE_DEFER; drm_encoder_helper_add(&dsi->encoder, &dw_mipi_dsi_encoder_helper_funcs); ret = drm_encoder_init(drm, &dsi->encoder, &dw_mipi_dsi_encoder_funcs, DRM_MODE_ENCODER_DSI, NULL); if (ret) { DRM_DEV_ERROR(dev, "Failed to initialize encoder with drm\n"); return ret; } drm_connector_helper_add(connector, &dw_mipi_dsi_connector_helper_funcs); drm_connector_init(drm, &dsi->connector, &dw_mipi_dsi_atomic_connector_funcs, DRM_MODE_CONNECTOR_DSI); drm_connector_attach_encoder(connector, encoder); return 0; } static int rockchip_mipi_parse_dt(struct dw_mipi_dsi *dsi) { struct device_node *np = dsi->dev->of_node; dsi->grf_regmap = syscon_regmap_lookup_by_phandle(np, "rockchip,grf"); if (IS_ERR(dsi->grf_regmap)) { DRM_DEV_ERROR(dsi->dev, "Unable to get rockchip,grf\n"); return PTR_ERR(dsi->grf_regmap); } return 0; } static struct dw_mipi_dsi_plat_data rk3288_mipi_dsi_drv_data = { .dsi0_en_bit = RK3288_DSI0_SEL_VOP_LIT, .dsi1_en_bit = RK3288_DSI1_SEL_VOP_LIT, .grf_switch_reg = RK3288_GRF_SOC_CON6, .max_data_lanes = 4, }; static struct dw_mipi_dsi_plat_data rk3399_mipi_dsi_drv_data = { .dsi0_en_bit = RK3399_DSI0_SEL_VOP_LIT, .dsi1_en_bit = RK3399_DSI1_SEL_VOP_LIT, .grf_switch_reg = RK3399_GRF_SOC_CON20, .grf_dsi0_mode = RK3399_GRF_DSI_MODE, .grf_dsi0_mode_reg = RK3399_GRF_SOC_CON22, .flags = DW_MIPI_NEEDS_PHY_CFG_CLK | DW_MIPI_NEEDS_GRF_CLK, .max_data_lanes = 4, }; static const struct of_device_id dw_mipi_dsi_dt_ids[] = { { .compatible = "rockchip,rk3288-mipi-dsi", .data = &rk3288_mipi_dsi_drv_data, }, { .compatible = "rockchip,rk3399-mipi-dsi", .data = &rk3399_mipi_dsi_drv_data, }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, dw_mipi_dsi_dt_ids); static int dw_mipi_dsi_bind(struct device *dev, struct device *master, void *data) { const struct of_device_id *of_id = of_match_device(dw_mipi_dsi_dt_ids, dev); const struct dw_mipi_dsi_plat_data *pdata = of_id->data; struct platform_device *pdev = to_platform_device(dev); struct reset_control *apb_rst; struct drm_device *drm = data; struct dw_mipi_dsi *dsi; struct resource *res; int ret; dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL); if (!dsi) return -ENOMEM; dsi->dev = dev; dsi->pdata = pdata; dsi->dpms_mode = DRM_MODE_DPMS_OFF; ret = rockchip_mipi_parse_dt(dsi); if (ret) return ret; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); dsi->base = devm_ioremap_resource(dev, res); if (IS_ERR(dsi->base)) return PTR_ERR(dsi->base); dsi->pllref_clk = devm_clk_get(dev, "ref"); if (IS_ERR(dsi->pllref_clk)) { ret = PTR_ERR(dsi->pllref_clk); DRM_DEV_ERROR(dev, "Unable to get pll reference clock: %d\n", ret); return ret; } dsi->pclk = devm_clk_get(dev, "pclk"); if (IS_ERR(dsi->pclk)) { ret = PTR_ERR(dsi->pclk); DRM_DEV_ERROR(dev, "Unable to get pclk: %d\n", ret); return ret; } /* * Note that the reset was not defined in the initial device tree, so * we have to be prepared for it not being found. */ apb_rst = devm_reset_control_get(dev, "apb"); if (IS_ERR(apb_rst)) { ret = PTR_ERR(apb_rst); if (ret == -ENOENT) { apb_rst = NULL; } else { DRM_DEV_ERROR(dev, "Unable to get reset control: %d\n", ret); return ret; } } if (apb_rst) { ret = clk_prepare_enable(dsi->pclk); if (ret) { DRM_DEV_ERROR(dev, "Failed to enable pclk\n"); return ret; } reset_control_assert(apb_rst); usleep_range(10, 20); reset_control_deassert(apb_rst); clk_disable_unprepare(dsi->pclk); } if (pdata->flags & DW_MIPI_NEEDS_PHY_CFG_CLK) { dsi->phy_cfg_clk = devm_clk_get(dev, "phy_cfg"); if (IS_ERR(dsi->phy_cfg_clk)) { ret = PTR_ERR(dsi->phy_cfg_clk); DRM_DEV_ERROR(dev, "Unable to get phy_cfg_clk: %d\n", ret); return ret; } } if (pdata->flags & DW_MIPI_NEEDS_GRF_CLK) { dsi->grf_clk = devm_clk_get(dev, "grf"); if (IS_ERR(dsi->grf_clk)) { ret = PTR_ERR(dsi->grf_clk); DRM_DEV_ERROR(dev, "Unable to get grf_clk: %d\n", ret); return ret; } } ret = clk_prepare_enable(dsi->pllref_clk); if (ret) { DRM_DEV_ERROR(dev, "Failed to enable pllref_clk\n"); return ret; } ret = dw_mipi_dsi_register(drm, dsi); if (ret) { DRM_DEV_ERROR(dev, "Failed to register mipi_dsi: %d\n", ret); goto err_pllref; } dsi->dsi_host.ops = &dw_mipi_dsi_host_ops; dsi->dsi_host.dev = dev; ret = mipi_dsi_host_register(&dsi->dsi_host); if (ret) { DRM_DEV_ERROR(dev, "Failed to register MIPI host: %d\n", ret); goto err_cleanup; } if (!dsi->panel) { ret = -EPROBE_DEFER; goto err_mipi_dsi_host; } dev_set_drvdata(dev, dsi); pm_runtime_enable(dev); return 0; err_mipi_dsi_host: mipi_dsi_host_unregister(&dsi->dsi_host); err_cleanup: dsi->connector.funcs->destroy(&dsi->connector); dsi->encoder.funcs->destroy(&dsi->encoder); err_pllref: clk_disable_unprepare(dsi->pllref_clk); return ret; } static void dw_mipi_dsi_unbind(struct device *dev, struct device *master, void *data) { struct dw_mipi_dsi *dsi = dev_get_drvdata(dev); mipi_dsi_host_unregister(&dsi->dsi_host); pm_runtime_disable(dev); dsi->connector.funcs->destroy(&dsi->connector); dsi->encoder.funcs->destroy(&dsi->encoder); clk_disable_unprepare(dsi->pllref_clk); } static const struct component_ops dw_mipi_dsi_ops = { .bind = dw_mipi_dsi_bind, .unbind = dw_mipi_dsi_unbind, }; static int dw_mipi_dsi_probe(struct platform_device *pdev) { return component_add(&pdev->dev, &dw_mipi_dsi_ops); } static int dw_mipi_dsi_remove(struct platform_device *pdev) { component_del(&pdev->dev, &dw_mipi_dsi_ops); return 0; } struct platform_driver dw_mipi_dsi_driver = { .probe = dw_mipi_dsi_probe, .remove = dw_mipi_dsi_remove, .driver = { .of_match_table = dw_mipi_dsi_dt_ids, .name = DRIVER_NAME, }, };