// SPDX-License-Identifier: MIT /* * Copyright © 2022 Intel Corporation */ #include "xe_guc_ct.h" #include #include #include #include #include "xe_bo.h" #include "xe_device.h" #include "xe_gt.h" #include "xe_gt_pagefault.h" #include "xe_gt_tlb_invalidation.h" #include "xe_guc.h" #include "xe_guc_submit.h" #include "xe_map.h" #include "xe_trace.h" /* Used when a CT send wants to block and / or receive data */ struct g2h_fence { u32 *response_buffer; u32 seqno; u16 response_len; u16 error; u16 hint; u16 reason; bool retry; bool fail; bool done; }; static void g2h_fence_init(struct g2h_fence *g2h_fence, u32 *response_buffer) { g2h_fence->response_buffer = response_buffer; g2h_fence->response_len = 0; g2h_fence->fail = false; g2h_fence->retry = false; g2h_fence->done = false; g2h_fence->seqno = ~0x0; } static bool g2h_fence_needs_alloc(struct g2h_fence *g2h_fence) { return g2h_fence->seqno == ~0x0; } static struct xe_guc * ct_to_guc(struct xe_guc_ct *ct) { return container_of(ct, struct xe_guc, ct); } static struct xe_gt * ct_to_gt(struct xe_guc_ct *ct) { return container_of(ct, struct xe_gt, uc.guc.ct); } static struct xe_device * ct_to_xe(struct xe_guc_ct *ct) { return gt_to_xe(ct_to_gt(ct)); } /** * DOC: GuC CTB Blob * * We allocate single blob to hold both CTB descriptors and buffers: * * +--------+-----------------------------------------------+------+ * | offset | contents | size | * +========+===============================================+======+ * | 0x0000 | H2G CTB Descriptor (send) | | * +--------+-----------------------------------------------+ 4K | * | 0x0800 | G2H CTB Descriptor (g2h) | | * +--------+-----------------------------------------------+------+ * | 0x1000 | H2G CT Buffer (send) | n*4K | * | | | | * +--------+-----------------------------------------------+------+ * | 0x1000 | G2H CT Buffer (g2h) | m*4K | * | + n*4K | | | * +--------+-----------------------------------------------+------+ * * Size of each ``CT Buffer`` must be multiple of 4K. * We don't expect too many messages in flight at any time, unless we are * using the GuC submission. In that case each request requires a minimum * 2 dwords which gives us a maximum 256 queue'd requests. Hopefully this * enough space to avoid backpressure on the driver. We increase the size * of the receive buffer (relative to the send) to ensure a G2H response * CTB has a landing spot. */ #define CTB_DESC_SIZE ALIGN(sizeof(struct guc_ct_buffer_desc), SZ_2K) #define CTB_H2G_BUFFER_SIZE (SZ_4K) #define CTB_G2H_BUFFER_SIZE (4 * CTB_H2G_BUFFER_SIZE) #define G2H_ROOM_BUFFER_SIZE (CTB_G2H_BUFFER_SIZE / 4) static size_t guc_ct_size(void) { return 2 * CTB_DESC_SIZE + CTB_H2G_BUFFER_SIZE + CTB_G2H_BUFFER_SIZE; } static void guc_ct_fini(struct drm_device *drm, void *arg) { struct xe_guc_ct *ct = arg; xa_destroy(&ct->fence_lookup); xe_bo_unpin_map_no_vm(ct->bo); } static void g2h_worker_func(struct work_struct *w); static void primelockdep(struct xe_guc_ct *ct) { if (!IS_ENABLED(CONFIG_LOCKDEP)) return; fs_reclaim_acquire(GFP_KERNEL); might_lock(&ct->lock); fs_reclaim_release(GFP_KERNEL); } int xe_guc_ct_init(struct xe_guc_ct *ct) { struct xe_device *xe = ct_to_xe(ct); struct xe_gt *gt = ct_to_gt(ct); struct xe_bo *bo; int err; XE_BUG_ON(guc_ct_size() % PAGE_SIZE); mutex_init(&ct->lock); spin_lock_init(&ct->fast_lock); xa_init(&ct->fence_lookup); ct->fence_context = dma_fence_context_alloc(1); INIT_WORK(&ct->g2h_worker, g2h_worker_func); init_waitqueue_head(&ct->wq); init_waitqueue_head(&ct->g2h_fence_wq); primelockdep(ct); bo = xe_bo_create_pin_map(xe, gt, NULL, guc_ct_size(), ttm_bo_type_kernel, XE_BO_CREATE_VRAM_IF_DGFX(gt) | XE_BO_CREATE_GGTT_BIT); if (IS_ERR(bo)) return PTR_ERR(bo); ct->bo = bo; err = drmm_add_action_or_reset(&xe->drm, guc_ct_fini, ct); if (err) return err; return 0; } #define desc_read(xe_, guc_ctb__, field_) \ xe_map_rd_field(xe_, &guc_ctb__->desc, 0, \ struct guc_ct_buffer_desc, field_) #define desc_write(xe_, guc_ctb__, field_, val_) \ xe_map_wr_field(xe_, &guc_ctb__->desc, 0, \ struct guc_ct_buffer_desc, field_, val_) static void guc_ct_ctb_h2g_init(struct xe_device *xe, struct guc_ctb *h2g, struct iosys_map *map) { h2g->size = CTB_H2G_BUFFER_SIZE / sizeof(u32); h2g->resv_space = 0; h2g->tail = 0; h2g->head = 0; h2g->space = CIRC_SPACE(h2g->tail, h2g->head, h2g->size) - h2g->resv_space; h2g->broken = false; h2g->desc = *map; xe_map_memset(xe, &h2g->desc, 0, 0, sizeof(struct guc_ct_buffer_desc)); h2g->cmds = IOSYS_MAP_INIT_OFFSET(map, CTB_DESC_SIZE * 2); } static void guc_ct_ctb_g2h_init(struct xe_device *xe, struct guc_ctb *g2h, struct iosys_map *map) { g2h->size = CTB_G2H_BUFFER_SIZE / sizeof(u32); g2h->resv_space = G2H_ROOM_BUFFER_SIZE / sizeof(u32); g2h->head = 0; g2h->tail = 0; g2h->space = CIRC_SPACE(g2h->tail, g2h->head, g2h->size) - g2h->resv_space; g2h->broken = false; g2h->desc = IOSYS_MAP_INIT_OFFSET(map, CTB_DESC_SIZE); xe_map_memset(xe, &g2h->desc, 0, 0, sizeof(struct guc_ct_buffer_desc)); g2h->cmds = IOSYS_MAP_INIT_OFFSET(map, CTB_DESC_SIZE * 2 + CTB_H2G_BUFFER_SIZE); } static int guc_ct_ctb_h2g_register(struct xe_guc_ct *ct) { struct xe_guc *guc = ct_to_guc(ct); u32 desc_addr, ctb_addr, size; int err; desc_addr = xe_bo_ggtt_addr(ct->bo); ctb_addr = xe_bo_ggtt_addr(ct->bo) + CTB_DESC_SIZE * 2; size = ct->ctbs.h2g.size * sizeof(u32); err = xe_guc_self_cfg64(guc, GUC_KLV_SELF_CFG_H2G_CTB_DESCRIPTOR_ADDR_KEY, desc_addr); if (err) return err; err = xe_guc_self_cfg64(guc, GUC_KLV_SELF_CFG_H2G_CTB_ADDR_KEY, ctb_addr); if (err) return err; return xe_guc_self_cfg32(guc, GUC_KLV_SELF_CFG_H2G_CTB_SIZE_KEY, size); } static int guc_ct_ctb_g2h_register(struct xe_guc_ct *ct) { struct xe_guc *guc = ct_to_guc(ct); u32 desc_addr, ctb_addr, size; int err; desc_addr = xe_bo_ggtt_addr(ct->bo) + CTB_DESC_SIZE; ctb_addr = xe_bo_ggtt_addr(ct->bo) + CTB_DESC_SIZE * 2 + CTB_H2G_BUFFER_SIZE; size = ct->ctbs.g2h.size * sizeof(u32); err = xe_guc_self_cfg64(guc, GUC_KLV_SELF_CFG_G2H_CTB_DESCRIPTOR_ADDR_KEY, desc_addr); if (err) return err; err = xe_guc_self_cfg64(guc, GUC_KLV_SELF_CFG_G2H_CTB_ADDR_KEY, ctb_addr); if (err) return err; return xe_guc_self_cfg32(guc, GUC_KLV_SELF_CFG_G2H_CTB_SIZE_KEY, size); } static int guc_ct_control_toggle(struct xe_guc_ct *ct, bool enable) { u32 request[HOST2GUC_CONTROL_CTB_REQUEST_MSG_LEN] = { FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) | FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) | FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION, GUC_ACTION_HOST2GUC_CONTROL_CTB), FIELD_PREP(HOST2GUC_CONTROL_CTB_REQUEST_MSG_1_CONTROL, enable ? GUC_CTB_CONTROL_ENABLE : GUC_CTB_CONTROL_DISABLE), }; int ret = xe_guc_mmio_send(ct_to_guc(ct), request, ARRAY_SIZE(request)); return ret > 0 ? -EPROTO : ret; } int xe_guc_ct_enable(struct xe_guc_ct *ct) { struct xe_device *xe = ct_to_xe(ct); int err; XE_BUG_ON(ct->enabled); guc_ct_ctb_h2g_init(xe, &ct->ctbs.h2g, &ct->bo->vmap); guc_ct_ctb_g2h_init(xe, &ct->ctbs.g2h, &ct->bo->vmap); err = guc_ct_ctb_h2g_register(ct); if (err) goto err_out; err = guc_ct_ctb_g2h_register(ct); if (err) goto err_out; err = guc_ct_control_toggle(ct, true); if (err) goto err_out; mutex_lock(&ct->lock); ct->g2h_outstanding = 0; ct->enabled = true; mutex_unlock(&ct->lock); smp_mb(); wake_up_all(&ct->wq); drm_dbg(&xe->drm, "GuC CT communication channel enabled\n"); return 0; err_out: drm_err(&xe->drm, "Failed to enabled CT (%d)\n", err); return err; } void xe_guc_ct_disable(struct xe_guc_ct *ct) { mutex_lock(&ct->lock); ct->enabled = false; mutex_unlock(&ct->lock); xa_destroy(&ct->fence_lookup); } static bool h2g_has_room(struct xe_guc_ct *ct, u32 cmd_len) { struct guc_ctb *h2g = &ct->ctbs.h2g; lockdep_assert_held(&ct->lock); if (cmd_len > h2g->space) { h2g->head = desc_read(ct_to_xe(ct), h2g, head); h2g->space = CIRC_SPACE(h2g->tail, h2g->head, h2g->size) - h2g->resv_space; if (cmd_len > h2g->space) return false; } return true; } static bool g2h_has_room(struct xe_guc_ct *ct, u32 g2h_len) { lockdep_assert_held(&ct->lock); return ct->ctbs.g2h.space > g2h_len; } static int has_room(struct xe_guc_ct *ct, u32 cmd_len, u32 g2h_len) { lockdep_assert_held(&ct->lock); if (!g2h_has_room(ct, g2h_len) || !h2g_has_room(ct, cmd_len)) return -EBUSY; return 0; } static void h2g_reserve_space(struct xe_guc_ct *ct, u32 cmd_len) { lockdep_assert_held(&ct->lock); ct->ctbs.h2g.space -= cmd_len; } static void g2h_reserve_space(struct xe_guc_ct *ct, u32 g2h_len, u32 num_g2h) { XE_BUG_ON(g2h_len > ct->ctbs.g2h.space); if (g2h_len) { spin_lock_irq(&ct->fast_lock); ct->ctbs.g2h.space -= g2h_len; ct->g2h_outstanding += num_g2h; spin_unlock_irq(&ct->fast_lock); } } static void __g2h_release_space(struct xe_guc_ct *ct, u32 g2h_len) { lockdep_assert_held(&ct->fast_lock); XE_WARN_ON(ct->ctbs.g2h.space + g2h_len > ct->ctbs.g2h.size - ct->ctbs.g2h.resv_space); ct->ctbs.g2h.space += g2h_len; --ct->g2h_outstanding; } static void g2h_release_space(struct xe_guc_ct *ct, u32 g2h_len) { spin_lock_irq(&ct->fast_lock); __g2h_release_space(ct, g2h_len); spin_unlock_irq(&ct->fast_lock); } static int h2g_write(struct xe_guc_ct *ct, const u32 *action, u32 len, u32 ct_fence_value, bool want_response) { struct xe_device *xe = ct_to_xe(ct); struct guc_ctb *h2g = &ct->ctbs.h2g; u32 cmd[GUC_CTB_MSG_MAX_LEN / sizeof(u32)]; u32 cmd_len = len + GUC_CTB_HDR_LEN; u32 cmd_idx = 0, i; u32 tail = h2g->tail; struct iosys_map map = IOSYS_MAP_INIT_OFFSET(&h2g->cmds, tail * sizeof(u32)); lockdep_assert_held(&ct->lock); XE_BUG_ON(len * sizeof(u32) > GUC_CTB_MSG_MAX_LEN); XE_BUG_ON(tail > h2g->size); /* Command will wrap, zero fill (NOPs), return and check credits again */ if (tail + cmd_len > h2g->size) { xe_map_memset(xe, &map, 0, 0, (h2g->size - tail) * sizeof(u32)); h2g_reserve_space(ct, (h2g->size - tail)); h2g->tail = 0; desc_write(xe, h2g, tail, h2g->tail); return -EAGAIN; } /* * dw0: CT header (including fence) * dw1: HXG header (including action code) * dw2+: action data */ cmd[cmd_idx++] = FIELD_PREP(GUC_CTB_MSG_0_FORMAT, GUC_CTB_FORMAT_HXG) | FIELD_PREP(GUC_CTB_MSG_0_NUM_DWORDS, len) | FIELD_PREP(GUC_CTB_MSG_0_FENCE, ct_fence_value); if (want_response) { cmd[cmd_idx++] = FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) | FIELD_PREP(GUC_HXG_EVENT_MSG_0_ACTION | GUC_HXG_EVENT_MSG_0_DATA0, action[0]); } else { cmd[cmd_idx++] = FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_EVENT) | FIELD_PREP(GUC_HXG_EVENT_MSG_0_ACTION | GUC_HXG_EVENT_MSG_0_DATA0, action[0]); } for (i = 1; i < len; ++i) cmd[cmd_idx++] = action[i]; /* Write H2G ensuring visable before descriptor update */ xe_map_memcpy_to(xe, &map, 0, cmd, cmd_len * sizeof(u32)); xe_device_wmb(ct_to_xe(ct)); /* Update local copies */ h2g->tail = (tail + cmd_len) % h2g->size; h2g_reserve_space(ct, cmd_len); /* Update descriptor */ desc_write(xe, h2g, tail, h2g->tail); return 0; } static int __guc_ct_send_locked(struct xe_guc_ct *ct, const u32 *action, u32 len, u32 g2h_len, u32 num_g2h, struct g2h_fence *g2h_fence) { int ret; XE_BUG_ON(g2h_len && g2h_fence); XE_BUG_ON(num_g2h && g2h_fence); XE_BUG_ON(g2h_len && !num_g2h); XE_BUG_ON(!g2h_len && num_g2h); lockdep_assert_held(&ct->lock); if (unlikely(ct->ctbs.h2g.broken)) { ret = -EPIPE; goto out; } if (unlikely(!ct->enabled)) { ret = -ENODEV; goto out; } if (g2h_fence) { g2h_len = GUC_CTB_HXG_MSG_MAX_LEN; num_g2h = 1; if (g2h_fence_needs_alloc(g2h_fence)) { void *ptr; g2h_fence->seqno = (ct->fence_seqno++ & 0xffff); ptr = xa_store(&ct->fence_lookup, g2h_fence->seqno, g2h_fence, GFP_ATOMIC); if (IS_ERR(ptr)) { ret = PTR_ERR(ptr); goto out; } } } xe_device_mem_access_get(ct_to_xe(ct)); retry: ret = has_room(ct, len + GUC_CTB_HDR_LEN, g2h_len); if (unlikely(ret)) goto put_wa; ret = h2g_write(ct, action, len, g2h_fence ? g2h_fence->seqno : 0, !!g2h_fence); if (unlikely(ret)) { if (ret == -EAGAIN) goto retry; goto put_wa; } g2h_reserve_space(ct, g2h_len, num_g2h); xe_guc_notify(ct_to_guc(ct)); put_wa: xe_device_mem_access_put(ct_to_xe(ct)); out: return ret; } static void kick_reset(struct xe_guc_ct *ct) { xe_gt_reset_async(ct_to_gt(ct)); } static int dequeue_one_g2h(struct xe_guc_ct *ct); static int guc_ct_send_locked(struct xe_guc_ct *ct, const u32 *action, u32 len, u32 g2h_len, u32 num_g2h, struct g2h_fence *g2h_fence) { struct drm_device *drm = &ct_to_xe(ct)->drm; struct drm_printer p = drm_info_printer(drm->dev); unsigned int sleep_period_ms = 1; int ret; XE_BUG_ON(g2h_len && g2h_fence); lockdep_assert_held(&ct->lock); try_again: ret = __guc_ct_send_locked(ct, action, len, g2h_len, num_g2h, g2h_fence); /* * We wait to try to restore credits for about 1 second before bailing. * In the case of H2G credits we have no choice but just to wait for the * GuC to consume H2Gs in the channel so we use a wait / sleep loop. In * the case of G2H we process any G2H in the channel, hopefully freeing * credits as we consume the G2H messages. */ if (unlikely(ret == -EBUSY && !h2g_has_room(ct, len + GUC_CTB_HDR_LEN))) { struct guc_ctb *h2g = &ct->ctbs.h2g; if (sleep_period_ms == 1024) goto broken; trace_xe_guc_ct_h2g_flow_control(h2g->head, h2g->tail, h2g->size, h2g->space, len + GUC_CTB_HDR_LEN); msleep(sleep_period_ms); sleep_period_ms <<= 1; goto try_again; } else if (unlikely(ret == -EBUSY)) { struct xe_device *xe = ct_to_xe(ct); struct guc_ctb *g2h = &ct->ctbs.g2h; trace_xe_guc_ct_g2h_flow_control(g2h->head, desc_read(xe, g2h, tail), g2h->size, g2h->space, g2h_fence ? GUC_CTB_HXG_MSG_MAX_LEN : g2h_len); #define g2h_avail(ct) \ (desc_read(ct_to_xe(ct), (&ct->ctbs.g2h), tail) != ct->ctbs.g2h.head) if (!wait_event_timeout(ct->wq, !ct->g2h_outstanding || g2h_avail(ct), HZ)) goto broken; #undef g2h_avail if (dequeue_one_g2h(ct) < 0) goto broken; goto try_again; } return ret; broken: drm_err(drm, "No forward process on H2G, reset required"); xe_guc_ct_print(ct, &p); ct->ctbs.h2g.broken = true; return -EDEADLK; } static int guc_ct_send(struct xe_guc_ct *ct, const u32 *action, u32 len, u32 g2h_len, u32 num_g2h, struct g2h_fence *g2h_fence) { int ret; XE_BUG_ON(g2h_len && g2h_fence); mutex_lock(&ct->lock); ret = guc_ct_send_locked(ct, action, len, g2h_len, num_g2h, g2h_fence); mutex_unlock(&ct->lock); return ret; } int xe_guc_ct_send(struct xe_guc_ct *ct, const u32 *action, u32 len, u32 g2h_len, u32 num_g2h) { int ret; ret = guc_ct_send(ct, action, len, g2h_len, num_g2h, NULL); if (ret == -EDEADLK) kick_reset(ct); return ret; } int xe_guc_ct_send_locked(struct xe_guc_ct *ct, const u32 *action, u32 len, u32 g2h_len, u32 num_g2h) { int ret; ret = guc_ct_send_locked(ct, action, len, g2h_len, num_g2h, NULL); if (ret == -EDEADLK) kick_reset(ct); return ret; } int xe_guc_ct_send_g2h_handler(struct xe_guc_ct *ct, const u32 *action, u32 len) { int ret; lockdep_assert_held(&ct->lock); ret = guc_ct_send_locked(ct, action, len, 0, 0, NULL); if (ret == -EDEADLK) kick_reset(ct); return ret; } /* * Check if a GT reset is in progress or will occur and if GT reset brought the * CT back up. Randomly picking 5 seconds for an upper limit to do a GT a reset. */ static bool retry_failure(struct xe_guc_ct *ct, int ret) { if (!(ret == -EDEADLK || ret == -EPIPE || ret == -ENODEV)) return false; #define ct_alive(ct) \ (ct->enabled && !ct->ctbs.h2g.broken && !ct->ctbs.g2h.broken) if (!wait_event_interruptible_timeout(ct->wq, ct_alive(ct), HZ * 5)) return false; #undef ct_alive return true; } static int guc_ct_send_recv(struct xe_guc_ct *ct, const u32 *action, u32 len, u32 *response_buffer, bool no_fail) { struct xe_device *xe = ct_to_xe(ct); struct g2h_fence g2h_fence; int ret = 0; /* * We use a fence to implement blocking sends / receiving response data. * The seqno of the fence is sent in the H2G, returned in the G2H, and * an xarray is used as storage media with the seqno being to key. * Fields in the fence hold success, failure, retry status and the * response data. Safe to allocate on the stack as the xarray is the * only reference and it cannot be present after this function exits. */ retry: g2h_fence_init(&g2h_fence, response_buffer); retry_same_fence: ret = guc_ct_send(ct, action, len, 0, 0, &g2h_fence); if (unlikely(ret == -ENOMEM)) { void *ptr; /* Retry allocation /w GFP_KERNEL */ ptr = xa_store(&ct->fence_lookup, g2h_fence.seqno, &g2h_fence, GFP_KERNEL); if (IS_ERR(ptr)) { return PTR_ERR(ptr); } goto retry_same_fence; } else if (unlikely(ret)) { if (ret == -EDEADLK) kick_reset(ct); if (no_fail && retry_failure(ct, ret)) goto retry_same_fence; if (!g2h_fence_needs_alloc(&g2h_fence)) xa_erase_irq(&ct->fence_lookup, g2h_fence.seqno); return ret; } ret = wait_event_timeout(ct->g2h_fence_wq, g2h_fence.done, HZ); if (!ret) { drm_err(&xe->drm, "Timed out wait for G2H, fence %u, action %04x", g2h_fence.seqno, action[0]); xa_erase_irq(&ct->fence_lookup, g2h_fence.seqno); return -ETIME; } if (g2h_fence.retry) { drm_warn(&xe->drm, "Send retry, action 0x%04x, reason %d", action[0], g2h_fence.reason); goto retry; } if (g2h_fence.fail) { drm_err(&xe->drm, "Send failed, action 0x%04x, error %d, hint %d", action[0], g2h_fence.error, g2h_fence.hint); ret = -EIO; } return ret > 0 ? 0 : ret; } int xe_guc_ct_send_recv(struct xe_guc_ct *ct, const u32 *action, u32 len, u32 *response_buffer) { return guc_ct_send_recv(ct, action, len, response_buffer, false); } int xe_guc_ct_send_recv_no_fail(struct xe_guc_ct *ct, const u32 *action, u32 len, u32 *response_buffer) { return guc_ct_send_recv(ct, action, len, response_buffer, true); } static int parse_g2h_event(struct xe_guc_ct *ct, u32 *msg, u32 len) { u32 action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, msg[1]); lockdep_assert_held(&ct->lock); switch (action) { case XE_GUC_ACTION_SCHED_CONTEXT_MODE_DONE: case XE_GUC_ACTION_DEREGISTER_CONTEXT_DONE: case XE_GUC_ACTION_SCHED_ENGINE_MODE_DONE: case XE_GUC_ACTION_TLB_INVALIDATION_DONE: g2h_release_space(ct, len); } return 0; } static int parse_g2h_response(struct xe_guc_ct *ct, u32 *msg, u32 len) { struct xe_device *xe = ct_to_xe(ct); u32 response_len = len - GUC_CTB_MSG_MIN_LEN; u32 fence = FIELD_GET(GUC_CTB_MSG_0_FENCE, msg[0]); u32 type = FIELD_GET(GUC_HXG_MSG_0_TYPE, msg[1]); struct g2h_fence *g2h_fence; lockdep_assert_held(&ct->lock); g2h_fence = xa_erase(&ct->fence_lookup, fence); if (unlikely(!g2h_fence)) { /* Don't tear down channel, as send could've timed out */ drm_warn(&xe->drm, "G2H fence (%u) not found!\n", fence); g2h_release_space(ct, GUC_CTB_HXG_MSG_MAX_LEN); return 0; } XE_WARN_ON(fence != g2h_fence->seqno); if (type == GUC_HXG_TYPE_RESPONSE_FAILURE) { g2h_fence->fail = true; g2h_fence->error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, msg[0]); g2h_fence->hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, msg[0]); } else if (type == GUC_HXG_TYPE_NO_RESPONSE_RETRY) { g2h_fence->retry = true; g2h_fence->reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, msg[0]); } else if (g2h_fence->response_buffer) { g2h_fence->response_len = response_len; memcpy(g2h_fence->response_buffer, msg + GUC_CTB_MSG_MIN_LEN, response_len * sizeof(u32)); } g2h_release_space(ct, GUC_CTB_HXG_MSG_MAX_LEN); g2h_fence->done = true; smp_mb(); wake_up_all(&ct->g2h_fence_wq); return 0; } static int parse_g2h_msg(struct xe_guc_ct *ct, u32 *msg, u32 len) { struct xe_device *xe = ct_to_xe(ct); u32 header, hxg, origin, type; int ret; lockdep_assert_held(&ct->lock); header = msg[0]; hxg = msg[1]; origin = FIELD_GET(GUC_HXG_MSG_0_ORIGIN, hxg); if (unlikely(origin != GUC_HXG_ORIGIN_GUC)) { drm_err(&xe->drm, "G2H channel broken on read, origin=%d, reset required\n", origin); ct->ctbs.g2h.broken = true; return -EPROTO; } type = FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg); switch (type) { case GUC_HXG_TYPE_EVENT: ret = parse_g2h_event(ct, msg, len); break; case GUC_HXG_TYPE_RESPONSE_SUCCESS: case GUC_HXG_TYPE_RESPONSE_FAILURE: case GUC_HXG_TYPE_NO_RESPONSE_RETRY: ret = parse_g2h_response(ct, msg, len); break; default: drm_err(&xe->drm, "G2H channel broken on read, type=%d, reset required\n", type); ct->ctbs.g2h.broken = true; ret = -EOPNOTSUPP; } return ret; } static int process_g2h_msg(struct xe_guc_ct *ct, u32 *msg, u32 len) { struct xe_device *xe = ct_to_xe(ct); struct xe_guc *guc = ct_to_guc(ct); u32 action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, msg[1]); u32 *payload = msg + GUC_CTB_HXG_MSG_MIN_LEN; u32 adj_len = len - GUC_CTB_HXG_MSG_MIN_LEN; int ret = 0; if (FIELD_GET(GUC_HXG_MSG_0_TYPE, msg[1]) != GUC_HXG_TYPE_EVENT) return 0; switch (action) { case XE_GUC_ACTION_SCHED_CONTEXT_MODE_DONE: ret = xe_guc_sched_done_handler(guc, payload, adj_len); break; case XE_GUC_ACTION_DEREGISTER_CONTEXT_DONE: ret = xe_guc_deregister_done_handler(guc, payload, adj_len); break; case XE_GUC_ACTION_CONTEXT_RESET_NOTIFICATION: ret = xe_guc_engine_reset_handler(guc, payload, adj_len); break; case XE_GUC_ACTION_ENGINE_FAILURE_NOTIFICATION: ret = xe_guc_engine_reset_failure_handler(guc, payload, adj_len); break; case XE_GUC_ACTION_SCHED_ENGINE_MODE_DONE: /* Selftest only at the moment */ break; case XE_GUC_ACTION_STATE_CAPTURE_NOTIFICATION: case XE_GUC_ACTION_NOTIFY_FLUSH_LOG_BUFFER_TO_FILE: /* FIXME: Handle this */ break; case XE_GUC_ACTION_NOTIFY_MEMORY_CAT_ERROR: ret = xe_guc_engine_memory_cat_error_handler(guc, payload, adj_len); break; case XE_GUC_ACTION_REPORT_PAGE_FAULT_REQ_DESC: ret = xe_guc_pagefault_handler(guc, payload, adj_len); break; case XE_GUC_ACTION_TLB_INVALIDATION_DONE: ret = xe_guc_tlb_invalidation_done_handler(guc, payload, adj_len); break; case XE_GUC_ACTION_ACCESS_COUNTER_NOTIFY: ret = xe_guc_access_counter_notify_handler(guc, payload, adj_len); break; default: drm_err(&xe->drm, "unexpected action 0x%04x\n", action); } if (ret) drm_err(&xe->drm, "action 0x%04x failed processing, ret=%d\n", action, ret); return 0; } static int g2h_read(struct xe_guc_ct *ct, u32 *msg, bool fast_path) { struct xe_device *xe = ct_to_xe(ct); struct guc_ctb *g2h = &ct->ctbs.g2h; u32 tail, head, len; s32 avail; lockdep_assert_held(&ct->fast_lock); if (!ct->enabled) return -ENODEV; if (g2h->broken) return -EPIPE; /* Calculate DW available to read */ tail = desc_read(xe, g2h, tail); avail = tail - g2h->head; if (unlikely(avail == 0)) return 0; if (avail < 0) avail += g2h->size; /* Read header */ xe_map_memcpy_from(xe, msg, &g2h->cmds, sizeof(u32) * g2h->head, sizeof(u32)); len = FIELD_GET(GUC_CTB_MSG_0_NUM_DWORDS, msg[0]) + GUC_CTB_MSG_MIN_LEN; if (len > avail) { drm_err(&xe->drm, "G2H channel broken on read, avail=%d, len=%d, reset required\n", avail, len); g2h->broken = true; return -EPROTO; } head = (g2h->head + 1) % g2h->size; avail = len - 1; /* Read G2H message */ if (avail + head > g2h->size) { u32 avail_til_wrap = g2h->size - head; xe_map_memcpy_from(xe, msg + 1, &g2h->cmds, sizeof(u32) * head, avail_til_wrap * sizeof(u32)); xe_map_memcpy_from(xe, msg + 1 + avail_til_wrap, &g2h->cmds, 0, (avail - avail_til_wrap) * sizeof(u32)); } else { xe_map_memcpy_from(xe, msg + 1, &g2h->cmds, sizeof(u32) * head, avail * sizeof(u32)); } if (fast_path) { if (FIELD_GET(GUC_HXG_MSG_0_TYPE, msg[1]) != GUC_HXG_TYPE_EVENT) return 0; switch (FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, msg[1])) { /* * FIXME: We really should process * XE_GUC_ACTION_TLB_INVALIDATION_DONE here in the fast-path as * these critical for page fault performance. We currently can't * due to TLB invalidation done algorithm expecting the seqno * returned in-order. With some small changes to the algorithm * and locking we should be able to support out-of-order seqno. */ case XE_GUC_ACTION_REPORT_PAGE_FAULT_REQ_DESC: break; /* Process these in fast-path */ default: return 0; } } /* Update local / descriptor header */ g2h->head = (head + avail) % g2h->size; desc_write(xe, g2h, head, g2h->head); return len; } static void g2h_fast_path(struct xe_guc_ct *ct, u32 *msg, u32 len) { struct xe_device *xe = ct_to_xe(ct); struct xe_guc *guc = ct_to_guc(ct); u32 action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, msg[1]); u32 *payload = msg + GUC_CTB_HXG_MSG_MIN_LEN; u32 adj_len = len - GUC_CTB_HXG_MSG_MIN_LEN; int ret = 0; switch (action) { case XE_GUC_ACTION_REPORT_PAGE_FAULT_REQ_DESC: ret = xe_guc_pagefault_handler(guc, payload, adj_len); break; case XE_GUC_ACTION_TLB_INVALIDATION_DONE: __g2h_release_space(ct, len); ret = xe_guc_tlb_invalidation_done_handler(guc, payload, adj_len); break; default: XE_WARN_ON("NOT_POSSIBLE"); } if (ret) drm_err(&xe->drm, "action 0x%04x failed processing, ret=%d\n", action, ret); } /** * xe_guc_ct_fast_path - process critical G2H in the IRQ handler * @ct: GuC CT object * * Anything related to page faults is critical for performance, process these * critical G2H in the IRQ. This is safe as these handlers either just wake up * waiters or queue another worker. */ void xe_guc_ct_fast_path(struct xe_guc_ct *ct) { struct xe_device *xe = ct_to_xe(ct); int len; if (!xe_device_in_fault_mode(xe) || !xe_device_mem_access_ongoing(xe)) return; spin_lock(&ct->fast_lock); do { len = g2h_read(ct, ct->fast_msg, true); if (len > 0) g2h_fast_path(ct, ct->fast_msg, len); } while (len > 0); spin_unlock(&ct->fast_lock); } /* Returns less than zero on error, 0 on done, 1 on more available */ static int dequeue_one_g2h(struct xe_guc_ct *ct) { int len; int ret; lockdep_assert_held(&ct->lock); spin_lock_irq(&ct->fast_lock); len = g2h_read(ct, ct->msg, false); spin_unlock_irq(&ct->fast_lock); if (len <= 0) return len; ret = parse_g2h_msg(ct, ct->msg, len); if (unlikely(ret < 0)) return ret; ret = process_g2h_msg(ct, ct->msg, len); if (unlikely(ret < 0)) return ret; return 1; } static void g2h_worker_func(struct work_struct *w) { struct xe_guc_ct *ct = container_of(w, struct xe_guc_ct, g2h_worker); int ret; xe_device_mem_access_get(ct_to_xe(ct)); do { mutex_lock(&ct->lock); ret = dequeue_one_g2h(ct); mutex_unlock(&ct->lock); if (unlikely(ret == -EPROTO || ret == -EOPNOTSUPP)) { struct drm_device *drm = &ct_to_xe(ct)->drm; struct drm_printer p = drm_info_printer(drm->dev); xe_guc_ct_print(ct, &p); kick_reset(ct); } } while (ret == 1); xe_device_mem_access_put(ct_to_xe(ct)); } static void guc_ct_ctb_print(struct xe_device *xe, struct guc_ctb *ctb, struct drm_printer *p) { u32 head, tail; drm_printf(p, "\tsize: %d\n", ctb->size); drm_printf(p, "\tresv_space: %d\n", ctb->resv_space); drm_printf(p, "\thead: %d\n", ctb->head); drm_printf(p, "\ttail: %d\n", ctb->tail); drm_printf(p, "\tspace: %d\n", ctb->space); drm_printf(p, "\tbroken: %d\n", ctb->broken); head = desc_read(xe, ctb, head); tail = desc_read(xe, ctb, tail); drm_printf(p, "\thead (memory): %d\n", head); drm_printf(p, "\ttail (memory): %d\n", tail); drm_printf(p, "\tstatus (memory): 0x%x\n", desc_read(xe, ctb, status)); if (head != tail) { struct iosys_map map = IOSYS_MAP_INIT_OFFSET(&ctb->cmds, head * sizeof(u32)); while (head != tail) { drm_printf(p, "\tcmd[%d]: 0x%08x\n", head, xe_map_rd(xe, &map, 0, u32)); ++head; if (head == ctb->size) { head = 0; map = ctb->cmds; } else { iosys_map_incr(&map, sizeof(u32)); } } } } void xe_guc_ct_print(struct xe_guc_ct *ct, struct drm_printer *p) { if (ct->enabled) { drm_puts(p, "\nH2G CTB (all sizes in DW):\n"); guc_ct_ctb_print(ct_to_xe(ct), &ct->ctbs.h2g, p); drm_puts(p, "\nG2H CTB (all sizes in DW):\n"); guc_ct_ctb_print(ct_to_xe(ct), &ct->ctbs.g2h, p); drm_printf(p, "\tg2h outstanding: %d\n", ct->g2h_outstanding); } else { drm_puts(p, "\nCT disabled\n"); } } #ifdef XE_GUC_CT_SELFTEST /* * Disable G2H processing in IRQ handler to force xe_guc_ct_send to enter flow * control if enough sent, 8k sends is enough. Verify forward process, verify * credits expected values on exit. */ void xe_guc_ct_selftest(struct xe_guc_ct *ct, struct drm_printer *p) { struct guc_ctb *g2h = &ct->ctbs.g2h; u32 action[] = { XE_GUC_ACTION_SCHED_ENGINE_MODE_SET, 0, 0, 1, }; u32 bad_action[] = { XE_GUC_ACTION_SCHED_CONTEXT_MODE_SET, 0, 0, }; int ret; int i; ct->suppress_irq_handler = true; drm_puts(p, "Starting GuC CT selftest\n"); for (i = 0; i < 8192; ++i) { ret = xe_guc_ct_send(ct, action, ARRAY_SIZE(action), 4, 1); if (ret) { drm_printf(p, "Aborted pass %d, ret %d\n", i, ret); xe_guc_ct_print(ct, p); break; } } ct->suppress_irq_handler = false; if (!ret) { xe_guc_ct_irq_handler(ct); msleep(200); if (g2h->space != CIRC_SPACE(0, 0, g2h->size) - g2h->resv_space) { drm_printf(p, "Mismatch on space %d, %d\n", g2h->space, CIRC_SPACE(0, 0, g2h->size) - g2h->resv_space); ret = -EIO; } if (ct->g2h_outstanding) { drm_printf(p, "Outstanding G2H, %d\n", ct->g2h_outstanding); ret = -EIO; } } /* Check failure path for blocking CTs too */ xe_guc_ct_send_block(ct, bad_action, ARRAY_SIZE(bad_action)); if (g2h->space != CIRC_SPACE(0, 0, g2h->size) - g2h->resv_space) { drm_printf(p, "Mismatch on space %d, %d\n", g2h->space, CIRC_SPACE(0, 0, g2h->size) - g2h->resv_space); ret = -EIO; } if (ct->g2h_outstanding) { drm_printf(p, "Outstanding G2H, %d\n", ct->g2h_outstanding); ret = -EIO; } drm_printf(p, "GuC CT selftest done - %s\n", ret ? "FAIL" : "PASS"); } #endif