// SPDX-License-Identifier: GPL-2.0-only /* * palmas-adc.c -- TI PALMAS GPADC. * * Copyright (c) 2013, NVIDIA Corporation. All rights reserved. * * Author: Pradeep Goudagunta */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define MOD_NAME "palmas-gpadc" #define PALMAS_ADC_CONVERSION_TIMEOUT (msecs_to_jiffies(5000)) #define PALMAS_TO_BE_CALCULATED 0 #define PALMAS_GPADC_TRIMINVALID -1 struct palmas_gpadc_info { /* calibration codes and regs */ int x1; /* lower ideal code */ int x2; /* higher ideal code */ int v1; /* expected lower volt reading */ int v2; /* expected higher volt reading */ u8 trim1_reg; /* register number for lower trim */ u8 trim2_reg; /* register number for upper trim */ int gain; /* calculated from above (after reading trim regs) */ int offset; /* calculated from above (after reading trim regs) */ int gain_error; /* calculated from above (after reading trim regs) */ bool is_uncalibrated; /* if channel has calibration data */ }; #define PALMAS_ADC_INFO(_chan, _x1, _x2, _v1, _v2, _t1, _t2, _is_uncalibrated) \ [PALMAS_ADC_CH_##_chan] = { \ .x1 = _x1, \ .x2 = _x2, \ .v1 = _v1, \ .v2 = _v2, \ .gain = PALMAS_TO_BE_CALCULATED, \ .offset = PALMAS_TO_BE_CALCULATED, \ .gain_error = PALMAS_TO_BE_CALCULATED, \ .trim1_reg = PALMAS_GPADC_TRIM##_t1, \ .trim2_reg = PALMAS_GPADC_TRIM##_t2, \ .is_uncalibrated = _is_uncalibrated \ } static struct palmas_gpadc_info palmas_gpadc_info[] = { PALMAS_ADC_INFO(IN0, 2064, 3112, 630, 950, 1, 2, false), PALMAS_ADC_INFO(IN1, 2064, 3112, 630, 950, 1, 2, false), PALMAS_ADC_INFO(IN2, 2064, 3112, 1260, 1900, 3, 4, false), PALMAS_ADC_INFO(IN3, 2064, 3112, 630, 950, 1, 2, false), PALMAS_ADC_INFO(IN4, 2064, 3112, 630, 950, 1, 2, false), PALMAS_ADC_INFO(IN5, 2064, 3112, 630, 950, 1, 2, false), PALMAS_ADC_INFO(IN6, 2064, 3112, 2520, 3800, 5, 6, false), PALMAS_ADC_INFO(IN7, 2064, 3112, 2520, 3800, 7, 8, false), PALMAS_ADC_INFO(IN8, 2064, 3112, 3150, 4750, 9, 10, false), PALMAS_ADC_INFO(IN9, 2064, 3112, 5670, 8550, 11, 12, false), PALMAS_ADC_INFO(IN10, 2064, 3112, 3465, 5225, 13, 14, false), PALMAS_ADC_INFO(IN11, 0, 0, 0, 0, INVALID, INVALID, true), PALMAS_ADC_INFO(IN12, 0, 0, 0, 0, INVALID, INVALID, true), PALMAS_ADC_INFO(IN13, 0, 0, 0, 0, INVALID, INVALID, true), PALMAS_ADC_INFO(IN14, 2064, 3112, 3645, 5225, 15, 16, false), PALMAS_ADC_INFO(IN15, 0, 0, 0, 0, INVALID, INVALID, true), }; struct palmas_adc_event { bool enabled; int channel; enum iio_event_direction direction; }; struct palmas_gpadc_thresholds { int high; int low; }; /* * struct palmas_gpadc - the palmas_gpadc structure * @ch0_current: channel 0 current source setting * 0: 0 uA * 1: 5 uA * 2: 15 uA * 3: 20 uA * @ch3_current: channel 0 current source setting * 0: 0 uA * 1: 10 uA * 2: 400 uA * 3: 800 uA * @extended_delay: enable the gpadc extended delay mode * @auto_conversion_period: define the auto_conversion_period * @lock: Lock to protect the device state during a potential concurrent * read access from userspace. Reading a raw value requires a sequence * of register writes, then a wait for a completion callback, * and finally a register read, during which userspace could issue * another read request. This lock protects a read access from * ocurring before another one has finished. * * This is the palmas_gpadc structure to store run-time information * and pointers for this driver instance. */ struct palmas_gpadc { struct device *dev; struct palmas *palmas; u8 ch0_current; u8 ch3_current; bool extended_delay; int irq; int irq_auto_0; int irq_auto_1; struct palmas_gpadc_info *adc_info; struct completion conv_completion; struct palmas_adc_event event0; struct palmas_adc_event event1; struct palmas_gpadc_thresholds thresholds[PALMAS_ADC_CH_MAX]; int auto_conversion_period; struct mutex lock; }; static struct palmas_adc_event *palmas_gpadc_get_event(struct palmas_gpadc *adc, int adc_chan, enum iio_event_direction dir) { if (adc_chan == adc->event0.channel && dir == adc->event0.direction) return &adc->event0; if (adc_chan == adc->event1.channel && dir == adc->event1.direction) return &adc->event1; return NULL; } static bool palmas_gpadc_channel_is_freerunning(struct palmas_gpadc *adc, int adc_chan) { return palmas_gpadc_get_event(adc, adc_chan, IIO_EV_DIR_RISING) || palmas_gpadc_get_event(adc, adc_chan, IIO_EV_DIR_FALLING); } /* * GPADC lock issue in AUTO mode. * Impact: In AUTO mode, GPADC conversion can be locked after disabling AUTO * mode feature. * Details: * When the AUTO mode is the only conversion mode enabled, if the AUTO * mode feature is disabled with bit GPADC_AUTO_CTRL. AUTO_CONV1_EN = 0 * or bit GPADC_AUTO_CTRL. AUTO_CONV0_EN = 0 during a conversion, the * conversion mechanism can be seen as locked meaning that all following * conversion will give 0 as a result. Bit GPADC_STATUS.GPADC_AVAILABLE * will stay at 0 meaning that GPADC is busy. An RT conversion can unlock * the GPADC. * * Workaround(s): * To avoid the lock mechanism, the workaround to follow before any stop * conversion request is: * Force the GPADC state machine to be ON by using the GPADC_CTRL1. * GPADC_FORCE bit = 1 * Shutdown the GPADC AUTO conversion using * GPADC_AUTO_CTRL.SHUTDOWN_CONV[01] = 0. * After 100us, force the GPADC state machine to be OFF by using the * GPADC_CTRL1. GPADC_FORCE bit = 0 */ static int palmas_disable_auto_conversion(struct palmas_gpadc *adc) { int ret; ret = palmas_update_bits(adc->palmas, PALMAS_GPADC_BASE, PALMAS_GPADC_CTRL1, PALMAS_GPADC_CTRL1_GPADC_FORCE, PALMAS_GPADC_CTRL1_GPADC_FORCE); if (ret < 0) { dev_err(adc->dev, "GPADC_CTRL1 update failed: %d\n", ret); return ret; } ret = palmas_update_bits(adc->palmas, PALMAS_GPADC_BASE, PALMAS_GPADC_AUTO_CTRL, PALMAS_GPADC_AUTO_CTRL_SHUTDOWN_CONV1 | PALMAS_GPADC_AUTO_CTRL_SHUTDOWN_CONV0, 0); if (ret < 0) { dev_err(adc->dev, "AUTO_CTRL update failed: %d\n", ret); return ret; } udelay(100); ret = palmas_update_bits(adc->palmas, PALMAS_GPADC_BASE, PALMAS_GPADC_CTRL1, PALMAS_GPADC_CTRL1_GPADC_FORCE, 0); if (ret < 0) dev_err(adc->dev, "GPADC_CTRL1 update failed: %d\n", ret); return ret; } static irqreturn_t palmas_gpadc_irq(int irq, void *data) { struct palmas_gpadc *adc = data; complete(&adc->conv_completion); return IRQ_HANDLED; } static irqreturn_t palmas_gpadc_irq_auto(int irq, void *data) { struct iio_dev *indio_dev = data; struct palmas_gpadc *adc = iio_priv(indio_dev); struct palmas_adc_event *ev; dev_dbg(adc->dev, "Threshold interrupt %d occurs\n", irq); palmas_disable_auto_conversion(adc); ev = (irq == adc->irq_auto_0) ? &adc->event0 : &adc->event1; if (ev->channel != -1) { enum iio_event_direction dir; u64 code; dir = ev->direction; code = IIO_UNMOD_EVENT_CODE(IIO_VOLTAGE, ev->channel, IIO_EV_TYPE_THRESH, dir); iio_push_event(indio_dev, code, iio_get_time_ns(indio_dev)); } return IRQ_HANDLED; } static int palmas_gpadc_start_mask_interrupt(struct palmas_gpadc *adc, bool mask) { int ret; if (!mask) ret = palmas_update_bits(adc->palmas, PALMAS_INTERRUPT_BASE, PALMAS_INT3_MASK, PALMAS_INT3_MASK_GPADC_EOC_SW, 0); else ret = palmas_update_bits(adc->palmas, PALMAS_INTERRUPT_BASE, PALMAS_INT3_MASK, PALMAS_INT3_MASK_GPADC_EOC_SW, PALMAS_INT3_MASK_GPADC_EOC_SW); if (ret < 0) dev_err(adc->dev, "GPADC INT MASK update failed: %d\n", ret); return ret; } static int palmas_gpadc_enable(struct palmas_gpadc *adc, int adc_chan, int enable) { unsigned int mask, val; int ret; if (enable) { val = (adc->extended_delay << PALMAS_GPADC_RT_CTRL_EXTEND_DELAY_SHIFT); ret = palmas_update_bits(adc->palmas, PALMAS_GPADC_BASE, PALMAS_GPADC_RT_CTRL, PALMAS_GPADC_RT_CTRL_EXTEND_DELAY, val); if (ret < 0) { dev_err(adc->dev, "RT_CTRL update failed: %d\n", ret); return ret; } mask = (PALMAS_GPADC_CTRL1_CURRENT_SRC_CH0_MASK | PALMAS_GPADC_CTRL1_CURRENT_SRC_CH3_MASK | PALMAS_GPADC_CTRL1_GPADC_FORCE); val = (adc->ch0_current << PALMAS_GPADC_CTRL1_CURRENT_SRC_CH0_SHIFT); val |= (adc->ch3_current << PALMAS_GPADC_CTRL1_CURRENT_SRC_CH3_SHIFT); val |= PALMAS_GPADC_CTRL1_GPADC_FORCE; ret = palmas_update_bits(adc->palmas, PALMAS_GPADC_BASE, PALMAS_GPADC_CTRL1, mask, val); if (ret < 0) { dev_err(adc->dev, "Failed to update current setting: %d\n", ret); return ret; } mask = (PALMAS_GPADC_SW_SELECT_SW_CONV0_SEL_MASK | PALMAS_GPADC_SW_SELECT_SW_CONV_EN); val = (adc_chan | PALMAS_GPADC_SW_SELECT_SW_CONV_EN); ret = palmas_update_bits(adc->palmas, PALMAS_GPADC_BASE, PALMAS_GPADC_SW_SELECT, mask, val); if (ret < 0) { dev_err(adc->dev, "SW_SELECT update failed: %d\n", ret); return ret; } } else { ret = palmas_write(adc->palmas, PALMAS_GPADC_BASE, PALMAS_GPADC_SW_SELECT, 0); if (ret < 0) dev_err(adc->dev, "SW_SELECT write failed: %d\n", ret); ret = palmas_update_bits(adc->palmas, PALMAS_GPADC_BASE, PALMAS_GPADC_CTRL1, PALMAS_GPADC_CTRL1_GPADC_FORCE, 0); if (ret < 0) { dev_err(adc->dev, "CTRL1 update failed: %d\n", ret); return ret; } } return ret; } static int palmas_gpadc_read_prepare(struct palmas_gpadc *adc, int adc_chan) { int ret; if (palmas_gpadc_channel_is_freerunning(adc, adc_chan)) return 0; /* ADC already running */ ret = palmas_gpadc_enable(adc, adc_chan, true); if (ret < 0) return ret; return palmas_gpadc_start_mask_interrupt(adc, 0); } static void palmas_gpadc_read_done(struct palmas_gpadc *adc, int adc_chan) { palmas_gpadc_start_mask_interrupt(adc, 1); palmas_gpadc_enable(adc, adc_chan, false); } static int palmas_gpadc_calibrate(struct palmas_gpadc *adc, int adc_chan) { int k; int d1; int d2; int ret; int gain; int x1 = adc->adc_info[adc_chan].x1; int x2 = adc->adc_info[adc_chan].x2; int v1 = adc->adc_info[adc_chan].v1; int v2 = adc->adc_info[adc_chan].v2; ret = palmas_read(adc->palmas, PALMAS_TRIM_GPADC_BASE, adc->adc_info[adc_chan].trim1_reg, &d1); if (ret < 0) { dev_err(adc->dev, "TRIM read failed: %d\n", ret); goto scrub; } ret = palmas_read(adc->palmas, PALMAS_TRIM_GPADC_BASE, adc->adc_info[adc_chan].trim2_reg, &d2); if (ret < 0) { dev_err(adc->dev, "TRIM read failed: %d\n", ret); goto scrub; } /* gain error calculation */ k = (1000 + (1000 * (d2 - d1)) / (x2 - x1)); /* gain calculation */ gain = ((v2 - v1) * 1000) / (x2 - x1); adc->adc_info[adc_chan].gain_error = k; adc->adc_info[adc_chan].gain = gain; /* offset Calculation */ adc->adc_info[adc_chan].offset = (d1 * 1000) - ((k - 1000) * x1); scrub: return ret; } static int palmas_gpadc_start_conversion(struct palmas_gpadc *adc, int adc_chan) { unsigned int val; int ret; if (palmas_gpadc_channel_is_freerunning(adc, adc_chan)) { int event = (adc_chan == adc->event0.channel) ? 0 : 1; unsigned int reg = (event == 0) ? PALMAS_GPADC_AUTO_CONV0_LSB : PALMAS_GPADC_AUTO_CONV1_LSB; ret = palmas_bulk_read(adc->palmas, PALMAS_GPADC_BASE, reg, &val, 2); if (ret < 0) { dev_err(adc->dev, "AUTO_CONV%x_LSB read failed: %d\n", event, ret); return ret; } } else { init_completion(&adc->conv_completion); ret = palmas_update_bits(adc->palmas, PALMAS_GPADC_BASE, PALMAS_GPADC_SW_SELECT, PALMAS_GPADC_SW_SELECT_SW_START_CONV0, PALMAS_GPADC_SW_SELECT_SW_START_CONV0); if (ret < 0) { dev_err(adc->dev, "SELECT_SW_START write failed: %d\n", ret); return ret; } ret = wait_for_completion_timeout(&adc->conv_completion, PALMAS_ADC_CONVERSION_TIMEOUT); if (ret == 0) { dev_err(adc->dev, "conversion not completed\n"); return -ETIMEDOUT; } ret = palmas_bulk_read(adc->palmas, PALMAS_GPADC_BASE, PALMAS_GPADC_SW_CONV0_LSB, &val, 2); if (ret < 0) { dev_err(adc->dev, "SW_CONV0_LSB read failed: %d\n", ret); return ret; } } ret = val & 0xFFF; return ret; } static int palmas_gpadc_get_calibrated_code(struct palmas_gpadc *adc, int adc_chan, int val) { if (!adc->adc_info[adc_chan].is_uncalibrated) val = (val*1000 - adc->adc_info[adc_chan].offset) / adc->adc_info[adc_chan].gain_error; if (val < 0) { if (val < -10) dev_err(adc->dev, "Mismatch with calibration var = %d\n", val); return 0; } val = (val * adc->adc_info[adc_chan].gain) / 1000; return val; } /* * The high and low threshold values are calculated based on the advice given * in TI Application Report SLIA087A, "Guide to Using the GPADC in PS65903x, * TPS65917-Q1, TPS65919-Q1, and TPS65916 Devices". This document recommend * taking ADC tolerances into account and is based on the device integral non- * linearity (INL), offset error and gain error: * * raw high threshold = (ideal threshold + INL) * gain error + offset error * * The gain error include both gain error, as specified in the datasheet, and * the gain error drift. These paramenters vary depending on device and whether * the channel is calibrated (trimmed) or not. */ static int palmas_gpadc_threshold_with_tolerance(int val, const int INL, const int gain_error, const int offset_error) { val = ((val + INL) * (1000 + gain_error)) / 1000 + offset_error; return clamp(val, 0, 0xFFF); } /* * The values below are taken from the datasheet of TWL6035, TWL6037. * todo: get max INL, gain error, and offset error from OF. */ static int palmas_gpadc_get_high_threshold_raw(struct palmas_gpadc *adc, struct palmas_adc_event *ev) { const int adc_chan = ev->channel; int val = adc->thresholds[adc_chan].high; /* integral nonlinearity, measured in LSB */ const int max_INL = 2; /* measured in LSB */ int max_offset_error; /* 0.2% when calibrated */ int max_gain_error = 2; val = (val * 1000) / adc->adc_info[adc_chan].gain; if (adc->adc_info[adc_chan].is_uncalibrated) { /* 2% worse */ max_gain_error += 20; max_offset_error = 36; } else { val = (val * adc->adc_info[adc_chan].gain_error + adc->adc_info[adc_chan].offset) / 1000; max_offset_error = 2; } return palmas_gpadc_threshold_with_tolerance(val, max_INL, max_gain_error, max_offset_error); } /* * The values below are taken from the datasheet of TWL6035, TWL6037. * todo: get min INL, gain error, and offset error from OF. */ static int palmas_gpadc_get_low_threshold_raw(struct palmas_gpadc *adc, struct palmas_adc_event *ev) { const int adc_chan = ev->channel; int val = adc->thresholds[adc_chan].low; /* integral nonlinearity, measured in LSB */ const int min_INL = -2; /* measured in LSB */ int min_offset_error; /* -0.6% when calibrated */ int min_gain_error = -6; val = (val * 1000) / adc->adc_info[adc_chan].gain; if (adc->adc_info[adc_chan].is_uncalibrated) { /* 2% worse */ min_gain_error -= 20; min_offset_error = -36; } else { val = (val * adc->adc_info[adc_chan].gain_error - adc->adc_info[adc_chan].offset) / 1000; min_offset_error = -2; } return palmas_gpadc_threshold_with_tolerance(val, min_INL, min_gain_error, min_offset_error); } static int palmas_gpadc_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct palmas_gpadc *adc = iio_priv(indio_dev); int adc_chan = chan->channel; int ret = 0; if (adc_chan >= PALMAS_ADC_CH_MAX) return -EINVAL; mutex_lock(&adc->lock); switch (mask) { case IIO_CHAN_INFO_RAW: case IIO_CHAN_INFO_PROCESSED: ret = palmas_gpadc_read_prepare(adc, adc_chan); if (ret < 0) goto out; ret = palmas_gpadc_start_conversion(adc, adc_chan); if (ret < 0) { dev_err(adc->dev, "ADC start conversion failed\n"); goto out; } if (mask == IIO_CHAN_INFO_PROCESSED) ret = palmas_gpadc_get_calibrated_code( adc, adc_chan, ret); *val = ret; ret = IIO_VAL_INT; goto out; } mutex_unlock(&adc->lock); return ret; out: palmas_gpadc_read_done(adc, adc_chan); mutex_unlock(&adc->lock); return ret; } static int palmas_gpadc_read_event_config(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir) { struct palmas_gpadc *adc = iio_priv(indio_dev); int adc_chan = chan->channel; int ret = 0; if (adc_chan >= PALMAS_ADC_CH_MAX || type != IIO_EV_TYPE_THRESH) return -EINVAL; mutex_lock(&adc->lock); if (palmas_gpadc_get_event(adc, adc_chan, dir)) ret = 1; mutex_unlock(&adc->lock); return ret; } static int palmas_adc_configure_events(struct palmas_gpadc *adc); static int palmas_adc_reset_events(struct palmas_gpadc *adc); static int palmas_gpadc_reconfigure_event_channels(struct palmas_gpadc *adc) { return (adc->event0.enabled || adc->event1.enabled) ? palmas_adc_configure_events(adc) : palmas_adc_reset_events(adc); } static int palmas_gpadc_enable_event_config(struct palmas_gpadc *adc, const struct iio_chan_spec *chan, enum iio_event_direction dir) { struct palmas_adc_event *ev; int adc_chan = chan->channel; if (palmas_gpadc_get_event(adc, adc_chan, dir)) /* already enabled */ return 0; if (adc->event0.channel == -1) { ev = &adc->event0; } else if (adc->event1.channel == -1) { /* event0 has to be the lowest channel */ if (adc_chan < adc->event0.channel) { adc->event1 = adc->event0; ev = &adc->event0; } else { ev = &adc->event1; } } else { /* both AUTO channels already in use */ dev_warn(adc->dev, "event0 - %d, event1 - %d\n", adc->event0.channel, adc->event1.channel); return -EBUSY; } ev->enabled = true; ev->channel = adc_chan; ev->direction = dir; return palmas_gpadc_reconfigure_event_channels(adc); } static int palmas_gpadc_disable_event_config(struct palmas_gpadc *adc, const struct iio_chan_spec *chan, enum iio_event_direction dir) { int adc_chan = chan->channel; struct palmas_adc_event *ev = palmas_gpadc_get_event(adc, adc_chan, dir); if (!ev) return 0; if (ev == &adc->event0) { adc->event0 = adc->event1; ev = &adc->event1; } ev->enabled = false; ev->channel = -1; ev->direction = IIO_EV_DIR_NONE; return palmas_gpadc_reconfigure_event_channels(adc); } static int palmas_gpadc_write_event_config(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, int state) { struct palmas_gpadc *adc = iio_priv(indio_dev); int adc_chan = chan->channel; int ret; if (adc_chan >= PALMAS_ADC_CH_MAX || type != IIO_EV_TYPE_THRESH) return -EINVAL; mutex_lock(&adc->lock); if (state) ret = palmas_gpadc_enable_event_config(adc, chan, dir); else ret = palmas_gpadc_disable_event_config(adc, chan, dir); mutex_unlock(&adc->lock); return ret; } static int palmas_gpadc_read_event_value(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, enum iio_event_info info, int *val, int *val2) { struct palmas_gpadc *adc = iio_priv(indio_dev); int adc_chan = chan->channel; int ret; if (adc_chan >= PALMAS_ADC_CH_MAX || type != IIO_EV_TYPE_THRESH) return -EINVAL; mutex_lock(&adc->lock); switch (info) { case IIO_EV_INFO_VALUE: *val = (dir == IIO_EV_DIR_RISING) ? adc->thresholds[adc_chan].high : adc->thresholds[adc_chan].low; ret = IIO_VAL_INT; break; default: ret = -EINVAL; break; } mutex_unlock(&adc->lock); return ret; } static int palmas_gpadc_write_event_value(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, enum iio_event_info info, int val, int val2) { struct palmas_gpadc *adc = iio_priv(indio_dev); int adc_chan = chan->channel; int old; int ret; if (adc_chan >= PALMAS_ADC_CH_MAX || type != IIO_EV_TYPE_THRESH) return -EINVAL; mutex_lock(&adc->lock); switch (info) { case IIO_EV_INFO_VALUE: if (val < 0 || val > 0xFFF) { ret = -EINVAL; goto out_unlock; } if (dir == IIO_EV_DIR_RISING) { old = adc->thresholds[adc_chan].high; adc->thresholds[adc_chan].high = val; } else { old = adc->thresholds[adc_chan].low; adc->thresholds[adc_chan].low = val; } ret = 0; break; default: ret = -EINVAL; goto out_unlock; } if (val != old && palmas_gpadc_get_event(adc, adc_chan, dir)) ret = palmas_gpadc_reconfigure_event_channels(adc); out_unlock: mutex_unlock(&adc->lock); return ret; } static const struct iio_info palmas_gpadc_iio_info = { .read_raw = palmas_gpadc_read_raw, .read_event_config = palmas_gpadc_read_event_config, .write_event_config = palmas_gpadc_write_event_config, .read_event_value = palmas_gpadc_read_event_value, .write_event_value = palmas_gpadc_write_event_value, }; static const struct iio_event_spec palmas_gpadc_events[] = { { .type = IIO_EV_TYPE_THRESH, .dir = IIO_EV_DIR_RISING, .mask_separate = BIT(IIO_EV_INFO_VALUE) | BIT(IIO_EV_INFO_ENABLE), }, { .type = IIO_EV_TYPE_THRESH, .dir = IIO_EV_DIR_FALLING, .mask_separate = BIT(IIO_EV_INFO_VALUE) | BIT(IIO_EV_INFO_ENABLE), }, }; #define PALMAS_ADC_CHAN_IIO(chan, _type, chan_info) \ { \ .datasheet_name = PALMAS_DATASHEET_NAME(chan), \ .type = _type, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ BIT(chan_info), \ .indexed = 1, \ .channel = PALMAS_ADC_CH_##chan, \ .event_spec = palmas_gpadc_events, \ .num_event_specs = ARRAY_SIZE(palmas_gpadc_events) \ } static const struct iio_chan_spec palmas_gpadc_iio_channel[] = { PALMAS_ADC_CHAN_IIO(IN0, IIO_VOLTAGE, IIO_CHAN_INFO_PROCESSED), PALMAS_ADC_CHAN_IIO(IN1, IIO_TEMP, IIO_CHAN_INFO_RAW), PALMAS_ADC_CHAN_IIO(IN2, IIO_VOLTAGE, IIO_CHAN_INFO_PROCESSED), PALMAS_ADC_CHAN_IIO(IN3, IIO_TEMP, IIO_CHAN_INFO_RAW), PALMAS_ADC_CHAN_IIO(IN4, IIO_VOLTAGE, IIO_CHAN_INFO_PROCESSED), PALMAS_ADC_CHAN_IIO(IN5, IIO_VOLTAGE, IIO_CHAN_INFO_PROCESSED), PALMAS_ADC_CHAN_IIO(IN6, IIO_VOLTAGE, IIO_CHAN_INFO_PROCESSED), PALMAS_ADC_CHAN_IIO(IN7, IIO_VOLTAGE, IIO_CHAN_INFO_PROCESSED), PALMAS_ADC_CHAN_IIO(IN8, IIO_VOLTAGE, IIO_CHAN_INFO_PROCESSED), PALMAS_ADC_CHAN_IIO(IN9, IIO_VOLTAGE, IIO_CHAN_INFO_PROCESSED), PALMAS_ADC_CHAN_IIO(IN10, IIO_VOLTAGE, IIO_CHAN_INFO_PROCESSED), PALMAS_ADC_CHAN_IIO(IN11, IIO_VOLTAGE, IIO_CHAN_INFO_PROCESSED), PALMAS_ADC_CHAN_IIO(IN12, IIO_TEMP, IIO_CHAN_INFO_RAW), PALMAS_ADC_CHAN_IIO(IN13, IIO_TEMP, IIO_CHAN_INFO_RAW), PALMAS_ADC_CHAN_IIO(IN14, IIO_VOLTAGE, IIO_CHAN_INFO_PROCESSED), PALMAS_ADC_CHAN_IIO(IN15, IIO_VOLTAGE, IIO_CHAN_INFO_PROCESSED), }; static int palmas_gpadc_get_adc_dt_data(struct platform_device *pdev, struct palmas_gpadc_platform_data **gpadc_pdata) { struct device_node *np = pdev->dev.of_node; struct palmas_gpadc_platform_data *gp_data; int ret; u32 pval; gp_data = devm_kzalloc(&pdev->dev, sizeof(*gp_data), GFP_KERNEL); if (!gp_data) return -ENOMEM; ret = of_property_read_u32(np, "ti,channel0-current-microamp", &pval); if (!ret) gp_data->ch0_current = pval; ret = of_property_read_u32(np, "ti,channel3-current-microamp", &pval); if (!ret) gp_data->ch3_current = pval; gp_data->extended_delay = of_property_read_bool(np, "ti,enable-extended-delay"); *gpadc_pdata = gp_data; return 0; } static void palmas_gpadc_reset(void *data) { struct palmas_gpadc *adc = data; if (adc->event0.enabled || adc->event1.enabled) palmas_adc_reset_events(adc); } static int palmas_gpadc_probe(struct platform_device *pdev) { struct palmas_gpadc *adc; struct palmas_platform_data *pdata; struct palmas_gpadc_platform_data *gpadc_pdata = NULL; struct iio_dev *indio_dev; int ret, i; pdata = dev_get_platdata(pdev->dev.parent); if (pdata && pdata->gpadc_pdata) gpadc_pdata = pdata->gpadc_pdata; if (!gpadc_pdata && pdev->dev.of_node) { ret = palmas_gpadc_get_adc_dt_data(pdev, &gpadc_pdata); if (ret < 0) return ret; } if (!gpadc_pdata) return -EINVAL; indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*adc)); if (!indio_dev) { dev_err(&pdev->dev, "iio_device_alloc failed\n"); return -ENOMEM; } adc = iio_priv(indio_dev); adc->dev = &pdev->dev; adc->palmas = dev_get_drvdata(pdev->dev.parent); adc->adc_info = palmas_gpadc_info; mutex_init(&adc->lock); init_completion(&adc->conv_completion); platform_set_drvdata(pdev, indio_dev); adc->auto_conversion_period = gpadc_pdata->auto_conversion_period_ms; adc->irq = palmas_irq_get_virq(adc->palmas, PALMAS_GPADC_EOC_SW_IRQ); if (adc->irq < 0) return dev_err_probe(adc->dev, adc->irq, "get virq failed\n"); ret = devm_request_threaded_irq(&pdev->dev, adc->irq, NULL, palmas_gpadc_irq, IRQF_ONESHOT, dev_name(adc->dev), adc); if (ret < 0) return dev_err_probe(adc->dev, ret, "request irq %d failed\n", adc->irq); adc->irq_auto_0 = platform_get_irq(pdev, 1); if (adc->irq_auto_0 < 0) return adc->irq_auto_0; ret = devm_request_threaded_irq(&pdev->dev, adc->irq_auto_0, NULL, palmas_gpadc_irq_auto, IRQF_ONESHOT, "palmas-adc-auto-0", indio_dev); if (ret < 0) return dev_err_probe(adc->dev, ret, "request auto0 irq %d failed\n", adc->irq_auto_0); adc->irq_auto_1 = platform_get_irq(pdev, 2); if (adc->irq_auto_1 < 0) return adc->irq_auto_1; ret = devm_request_threaded_irq(&pdev->dev, adc->irq_auto_1, NULL, palmas_gpadc_irq_auto, IRQF_ONESHOT, "palmas-adc-auto-1", indio_dev); if (ret < 0) return dev_err_probe(adc->dev, ret, "request auto1 irq %d failed\n", adc->irq_auto_1); adc->event0.enabled = false; adc->event0.channel = -1; adc->event0.direction = IIO_EV_DIR_NONE; adc->event1.enabled = false; adc->event1.channel = -1; adc->event1.direction = IIO_EV_DIR_NONE; /* set the current source 0 (value 0/5/15/20 uA => 0..3) */ if (gpadc_pdata->ch0_current <= 1) adc->ch0_current = PALMAS_ADC_CH0_CURRENT_SRC_0; else if (gpadc_pdata->ch0_current <= 5) adc->ch0_current = PALMAS_ADC_CH0_CURRENT_SRC_5; else if (gpadc_pdata->ch0_current <= 15) adc->ch0_current = PALMAS_ADC_CH0_CURRENT_SRC_15; else adc->ch0_current = PALMAS_ADC_CH0_CURRENT_SRC_20; /* set the current source 3 (value 0/10/400/800 uA => 0..3) */ if (gpadc_pdata->ch3_current <= 1) adc->ch3_current = PALMAS_ADC_CH3_CURRENT_SRC_0; else if (gpadc_pdata->ch3_current <= 10) adc->ch3_current = PALMAS_ADC_CH3_CURRENT_SRC_10; else if (gpadc_pdata->ch3_current <= 400) adc->ch3_current = PALMAS_ADC_CH3_CURRENT_SRC_400; else adc->ch3_current = PALMAS_ADC_CH3_CURRENT_SRC_800; adc->extended_delay = gpadc_pdata->extended_delay; indio_dev->name = MOD_NAME; indio_dev->info = &palmas_gpadc_iio_info; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->channels = palmas_gpadc_iio_channel; indio_dev->num_channels = ARRAY_SIZE(palmas_gpadc_iio_channel); ret = devm_iio_device_register(&pdev->dev, indio_dev); if (ret < 0) return dev_err_probe(adc->dev, ret, "iio_device_register() failed\n"); device_set_wakeup_capable(&pdev->dev, 1); for (i = 0; i < PALMAS_ADC_CH_MAX; i++) { if (!(adc->adc_info[i].is_uncalibrated)) palmas_gpadc_calibrate(adc, i); } ret = devm_add_action(&pdev->dev, palmas_gpadc_reset, adc); if (ret) return ret; return 0; } static int palmas_adc_configure_events(struct palmas_gpadc *adc) { int adc_period, conv; int i; int ch0 = 0, ch1 = 0; int thres; int ret; adc_period = adc->auto_conversion_period; for (i = 0; i < 16; ++i) { if (((1000 * (1 << i)) / 32) >= adc_period) break; } if (i > 0) i--; adc_period = i; ret = palmas_update_bits(adc->palmas, PALMAS_GPADC_BASE, PALMAS_GPADC_AUTO_CTRL, PALMAS_GPADC_AUTO_CTRL_COUNTER_CONV_MASK, adc_period); if (ret < 0) { dev_err(adc->dev, "AUTO_CTRL write failed: %d\n", ret); return ret; } conv = 0; if (adc->event0.enabled) { struct palmas_adc_event *ev = &adc->event0; int polarity; ch0 = ev->channel; conv |= PALMAS_GPADC_AUTO_CTRL_AUTO_CONV0_EN; switch (ev->direction) { case IIO_EV_DIR_RISING: thres = palmas_gpadc_get_high_threshold_raw(adc, ev); polarity = 0; break; case IIO_EV_DIR_FALLING: thres = palmas_gpadc_get_low_threshold_raw(adc, ev); polarity = PALMAS_GPADC_THRES_CONV0_MSB_THRES_CONV0_POL; break; default: return -EINVAL; } ret = palmas_write(adc->palmas, PALMAS_GPADC_BASE, PALMAS_GPADC_THRES_CONV0_LSB, thres & 0xFF); if (ret < 0) { dev_err(adc->dev, "THRES_CONV0_LSB write failed: %d\n", ret); return ret; } ret = palmas_write(adc->palmas, PALMAS_GPADC_BASE, PALMAS_GPADC_THRES_CONV0_MSB, ((thres >> 8) & 0xF) | polarity); if (ret < 0) { dev_err(adc->dev, "THRES_CONV0_MSB write failed: %d\n", ret); return ret; } } if (adc->event1.enabled) { struct palmas_adc_event *ev = &adc->event1; int polarity; ch1 = ev->channel; conv |= PALMAS_GPADC_AUTO_CTRL_AUTO_CONV1_EN; switch (ev->direction) { case IIO_EV_DIR_RISING: thres = palmas_gpadc_get_high_threshold_raw(adc, ev); polarity = 0; break; case IIO_EV_DIR_FALLING: thres = palmas_gpadc_get_low_threshold_raw(adc, ev); polarity = PALMAS_GPADC_THRES_CONV1_MSB_THRES_CONV1_POL; break; default: return -EINVAL; } ret = palmas_write(adc->palmas, PALMAS_GPADC_BASE, PALMAS_GPADC_THRES_CONV1_LSB, thres & 0xFF); if (ret < 0) { dev_err(adc->dev, "THRES_CONV1_LSB write failed: %d\n", ret); return ret; } ret = palmas_write(adc->palmas, PALMAS_GPADC_BASE, PALMAS_GPADC_THRES_CONV1_MSB, ((thres >> 8) & 0xF) | polarity); if (ret < 0) { dev_err(adc->dev, "THRES_CONV1_MSB write failed: %d\n", ret); return ret; } } ret = palmas_write(adc->palmas, PALMAS_GPADC_BASE, PALMAS_GPADC_AUTO_SELECT, (ch1 << 4) | ch0); if (ret < 0) { dev_err(adc->dev, "AUTO_SELECT write failed: %d\n", ret); return ret; } ret = palmas_update_bits(adc->palmas, PALMAS_GPADC_BASE, PALMAS_GPADC_AUTO_CTRL, PALMAS_GPADC_AUTO_CTRL_AUTO_CONV1_EN | PALMAS_GPADC_AUTO_CTRL_AUTO_CONV0_EN, conv); if (ret < 0) dev_err(adc->dev, "AUTO_CTRL write failed: %d\n", ret); return ret; } static int palmas_adc_reset_events(struct palmas_gpadc *adc) { int ret; ret = palmas_write(adc->palmas, PALMAS_GPADC_BASE, PALMAS_GPADC_AUTO_SELECT, 0); if (ret < 0) { dev_err(adc->dev, "AUTO_SELECT write failed: %d\n", ret); return ret; } ret = palmas_disable_auto_conversion(adc); if (ret < 0) dev_err(adc->dev, "Disable auto conversion failed: %d\n", ret); return ret; } static int palmas_gpadc_suspend(struct device *dev) { struct iio_dev *indio_dev = dev_get_drvdata(dev); struct palmas_gpadc *adc = iio_priv(indio_dev); if (!device_may_wakeup(dev)) return 0; if (adc->event0.enabled) enable_irq_wake(adc->irq_auto_0); if (adc->event1.enabled) enable_irq_wake(adc->irq_auto_1); return 0; } static int palmas_gpadc_resume(struct device *dev) { struct iio_dev *indio_dev = dev_get_drvdata(dev); struct palmas_gpadc *adc = iio_priv(indio_dev); if (!device_may_wakeup(dev)) return 0; if (adc->event0.enabled) disable_irq_wake(adc->irq_auto_0); if (adc->event1.enabled) disable_irq_wake(adc->irq_auto_1); return 0; }; static DEFINE_SIMPLE_DEV_PM_OPS(palmas_pm_ops, palmas_gpadc_suspend, palmas_gpadc_resume); static const struct of_device_id of_palmas_gpadc_match_tbl[] = { { .compatible = "ti,palmas-gpadc", }, { /* end */ } }; MODULE_DEVICE_TABLE(of, of_palmas_gpadc_match_tbl); static struct platform_driver palmas_gpadc_driver = { .probe = palmas_gpadc_probe, .driver = { .name = MOD_NAME, .pm = pm_sleep_ptr(&palmas_pm_ops), .of_match_table = of_palmas_gpadc_match_tbl, }, }; module_platform_driver(palmas_gpadc_driver); MODULE_DESCRIPTION("palmas GPADC driver"); MODULE_AUTHOR("Pradeep Goudagunta"); MODULE_ALIAS("platform:palmas-gpadc"); MODULE_LICENSE("GPL v2");