/* * Copyright (c) 2012-2016, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* VADC register and bit definitions */ #define VADC_REVISION2 0x1 #define VADC_REVISION2_SUPPORTED_VADC 1 #define VADC_PERPH_TYPE 0x4 #define VADC_PERPH_TYPE_ADC 8 #define VADC_PERPH_SUBTYPE 0x5 #define VADC_PERPH_SUBTYPE_VADC 1 #define VADC_STATUS1 0x8 #define VADC_STATUS1_OP_MODE 4 #define VADC_STATUS1_REQ_STS BIT(1) #define VADC_STATUS1_EOC BIT(0) #define VADC_STATUS1_REQ_STS_EOC_MASK 0x3 #define VADC_MODE_CTL 0x40 #define VADC_OP_MODE_SHIFT 3 #define VADC_OP_MODE_NORMAL 0 #define VADC_AMUX_TRIM_EN BIT(1) #define VADC_ADC_TRIM_EN BIT(0) #define VADC_EN_CTL1 0x46 #define VADC_EN_CTL1_SET BIT(7) #define VADC_ADC_CH_SEL_CTL 0x48 #define VADC_ADC_DIG_PARAM 0x50 #define VADC_ADC_DIG_DEC_RATIO_SEL_SHIFT 2 #define VADC_HW_SETTLE_DELAY 0x51 #define VADC_CONV_REQ 0x52 #define VADC_CONV_REQ_SET BIT(7) #define VADC_FAST_AVG_CTL 0x5a #define VADC_FAST_AVG_EN 0x5b #define VADC_FAST_AVG_EN_SET BIT(7) #define VADC_ACCESS 0xd0 #define VADC_ACCESS_DATA 0xa5 #define VADC_PERH_RESET_CTL3 0xda #define VADC_FOLLOW_WARM_RB BIT(2) #define VADC_DATA 0x60 /* 16 bits */ #define VADC_CONV_TIME_MIN_US 2000 #define VADC_CONV_TIME_MAX_US 2100 /* Min ADC code represents 0V */ #define VADC_MIN_ADC_CODE 0x6000 /* Max ADC code represents full-scale range of 1.8V */ #define VADC_MAX_ADC_CODE 0xa800 #define VADC_ABSOLUTE_RANGE_UV 625000 #define VADC_RATIOMETRIC_RANGE 1800 #define VADC_DEF_PRESCALING 0 /* 1:1 */ #define VADC_DEF_DECIMATION 0 /* 512 */ #define VADC_DEF_HW_SETTLE_TIME 0 /* 0 us */ #define VADC_DEF_AVG_SAMPLES 0 /* 1 sample */ #define VADC_DEF_CALIB_TYPE VADC_CALIB_ABSOLUTE #define VADC_DECIMATION_MIN 512 #define VADC_DECIMATION_MAX 4096 #define VADC_HW_SETTLE_DELAY_MAX 10000 #define VADC_AVG_SAMPLES_MAX 512 #define KELVINMIL_CELSIUSMIL 273150 #define PMI_CHG_SCALE_1 -138890 #define PMI_CHG_SCALE_2 391750000000LL #define VADC_CHAN_MIN VADC_USBIN #define VADC_CHAN_MAX VADC_LR_MUX3_BUF_PU1_PU2_XO_THERM /** * struct vadc_map_pt - Map the graph representation for ADC channel * @x: Represent the ADC digitized code. * @y: Represent the physical data which can be temperature, voltage, * resistance. */ struct vadc_map_pt { s32 x; s32 y; }; /* * VADC_CALIB_ABSOLUTE: uses the 625mV and 1.25V as reference channels. * VADC_CALIB_RATIOMETRIC: uses the reference voltage (1.8V) and GND for * calibration. */ enum vadc_calibration { VADC_CALIB_ABSOLUTE = 0, VADC_CALIB_RATIOMETRIC }; /** * struct vadc_linear_graph - Represent ADC characteristics. * @dy: numerator slope to calculate the gain. * @dx: denominator slope to calculate the gain. * @gnd: A/D word of the ground reference used for the channel. * * Each ADC device has different offset and gain parameters which are * computed to calibrate the device. */ struct vadc_linear_graph { s32 dy; s32 dx; s32 gnd; }; /** * struct vadc_prescale_ratio - Represent scaling ratio for ADC input. * @num: the inverse numerator of the gain applied to the input channel. * @den: the inverse denominator of the gain applied to the input channel. */ struct vadc_prescale_ratio { u32 num; u32 den; }; /** * struct vadc_channel_prop - VADC channel property. * @channel: channel number, refer to the channel list. * @calibration: calibration type. * @decimation: sampling rate supported for the channel. * @prescale: channel scaling performed on the input signal. * @hw_settle_time: the time between AMUX being configured and the * start of conversion. * @avg_samples: ability to provide single result from the ADC * that is an average of multiple measurements. * @scale_fn: Represents the scaling function to convert voltage * physical units desired by the client for the channel. * Referenced from enum vadc_scale_fn_type. */ struct vadc_channel_prop { unsigned int channel; enum vadc_calibration calibration; unsigned int decimation; unsigned int prescale; unsigned int hw_settle_time; unsigned int avg_samples; unsigned int scale_fn; }; /** * struct vadc_priv - VADC private structure. * @regmap: pointer to struct regmap. * @dev: pointer to struct device. * @base: base address for the ADC peripheral. * @nchannels: number of VADC channels. * @chan_props: array of VADC channel properties. * @iio_chans: array of IIO channels specification. * @are_ref_measured: are reference points measured. * @poll_eoc: use polling instead of interrupt. * @complete: VADC result notification after interrupt is received. * @graph: store parameters for calibration. * @lock: ADC lock for access to the peripheral. */ struct vadc_priv { struct regmap *regmap; struct device *dev; u16 base; unsigned int nchannels; struct vadc_channel_prop *chan_props; struct iio_chan_spec *iio_chans; bool are_ref_measured; bool poll_eoc; struct completion complete; struct vadc_linear_graph graph[2]; struct mutex lock; }; /** * struct vadc_scale_fn - Scaling function prototype * @scale: Function pointer to one of the scaling functions * which takes the adc properties, channel properties, * and returns the physical result. */ struct vadc_scale_fn { int (*scale)(struct vadc_priv *, const struct vadc_channel_prop *, u16, int *); }; /** * enum vadc_scale_fn_type - Scaling function to convert ADC code to * physical scaled units for the channel. * SCALE_DEFAULT: Default scaling to convert raw adc code to voltage (uV). * SCALE_THERM_100K_PULLUP: Returns temperature in millidegC. * Uses a mapping table with 100K pullup. * SCALE_PMIC_THERM: Returns result in milli degree's Centigrade. * SCALE_XOTHERM: Returns XO thermistor voltage in millidegC. * SCALE_PMI_CHG_TEMP: Conversion for PMI CHG temp */ enum vadc_scale_fn_type { SCALE_DEFAULT = 0, SCALE_THERM_100K_PULLUP, SCALE_PMIC_THERM, SCALE_XOTHERM, SCALE_PMI_CHG_TEMP, }; static const struct vadc_prescale_ratio vadc_prescale_ratios[] = { {.num = 1, .den = 1}, {.num = 1, .den = 3}, {.num = 1, .den = 4}, {.num = 1, .den = 6}, {.num = 1, .den = 20}, {.num = 1, .den = 8}, {.num = 10, .den = 81}, {.num = 1, .den = 10} }; /* Voltage to temperature */ static const struct vadc_map_pt adcmap_100k_104ef_104fb[] = { {1758, -40}, {1742, -35}, {1719, -30}, {1691, -25}, {1654, -20}, {1608, -15}, {1551, -10}, {1483, -5}, {1404, 0}, {1315, 5}, {1218, 10}, {1114, 15}, {1007, 20}, {900, 25}, {795, 30}, {696, 35}, {605, 40}, {522, 45}, {448, 50}, {383, 55}, {327, 60}, {278, 65}, {237, 70}, {202, 75}, {172, 80}, {146, 85}, {125, 90}, {107, 95}, {92, 100}, {79, 105}, {68, 110}, {59, 115}, {51, 120}, {44, 125} }; static int vadc_read(struct vadc_priv *vadc, u16 offset, u8 *data) { return regmap_bulk_read(vadc->regmap, vadc->base + offset, data, 1); } static int vadc_write(struct vadc_priv *vadc, u16 offset, u8 data) { return regmap_write(vadc->regmap, vadc->base + offset, data); } static int vadc_reset(struct vadc_priv *vadc) { u8 data; int ret; ret = vadc_write(vadc, VADC_ACCESS, VADC_ACCESS_DATA); if (ret) return ret; ret = vadc_read(vadc, VADC_PERH_RESET_CTL3, &data); if (ret) return ret; ret = vadc_write(vadc, VADC_ACCESS, VADC_ACCESS_DATA); if (ret) return ret; data |= VADC_FOLLOW_WARM_RB; return vadc_write(vadc, VADC_PERH_RESET_CTL3, data); } static int vadc_set_state(struct vadc_priv *vadc, bool state) { return vadc_write(vadc, VADC_EN_CTL1, state ? VADC_EN_CTL1_SET : 0); } static void vadc_show_status(struct vadc_priv *vadc) { u8 mode, sta1, chan, dig, en, req; int ret; ret = vadc_read(vadc, VADC_MODE_CTL, &mode); if (ret) return; ret = vadc_read(vadc, VADC_ADC_DIG_PARAM, &dig); if (ret) return; ret = vadc_read(vadc, VADC_ADC_CH_SEL_CTL, &chan); if (ret) return; ret = vadc_read(vadc, VADC_CONV_REQ, &req); if (ret) return; ret = vadc_read(vadc, VADC_STATUS1, &sta1); if (ret) return; ret = vadc_read(vadc, VADC_EN_CTL1, &en); if (ret) return; dev_err(vadc->dev, "mode:%02x en:%02x chan:%02x dig:%02x req:%02x sta1:%02x\n", mode, en, chan, dig, req, sta1); } static int vadc_configure(struct vadc_priv *vadc, struct vadc_channel_prop *prop) { u8 decimation, mode_ctrl; int ret; /* Mode selection */ mode_ctrl = (VADC_OP_MODE_NORMAL << VADC_OP_MODE_SHIFT) | VADC_ADC_TRIM_EN | VADC_AMUX_TRIM_EN; ret = vadc_write(vadc, VADC_MODE_CTL, mode_ctrl); if (ret) return ret; /* Channel selection */ ret = vadc_write(vadc, VADC_ADC_CH_SEL_CTL, prop->channel); if (ret) return ret; /* Digital parameter setup */ decimation = prop->decimation << VADC_ADC_DIG_DEC_RATIO_SEL_SHIFT; ret = vadc_write(vadc, VADC_ADC_DIG_PARAM, decimation); if (ret) return ret; /* HW settle time delay */ ret = vadc_write(vadc, VADC_HW_SETTLE_DELAY, prop->hw_settle_time); if (ret) return ret; ret = vadc_write(vadc, VADC_FAST_AVG_CTL, prop->avg_samples); if (ret) return ret; if (prop->avg_samples) ret = vadc_write(vadc, VADC_FAST_AVG_EN, VADC_FAST_AVG_EN_SET); else ret = vadc_write(vadc, VADC_FAST_AVG_EN, 0); return ret; } static int vadc_poll_wait_eoc(struct vadc_priv *vadc, unsigned int interval_us) { unsigned int count, retry; u8 sta1; int ret; retry = interval_us / VADC_CONV_TIME_MIN_US; for (count = 0; count < retry; count++) { ret = vadc_read(vadc, VADC_STATUS1, &sta1); if (ret) return ret; sta1 &= VADC_STATUS1_REQ_STS_EOC_MASK; if (sta1 == VADC_STATUS1_EOC) return 0; usleep_range(VADC_CONV_TIME_MIN_US, VADC_CONV_TIME_MAX_US); } vadc_show_status(vadc); return -ETIMEDOUT; } static int vadc_read_result(struct vadc_priv *vadc, u16 *data) { int ret; ret = regmap_bulk_read(vadc->regmap, vadc->base + VADC_DATA, data, 2); if (ret) return ret; *data = clamp_t(u16, *data, VADC_MIN_ADC_CODE, VADC_MAX_ADC_CODE); return 0; } static struct vadc_channel_prop *vadc_get_channel(struct vadc_priv *vadc, unsigned int num) { unsigned int i; for (i = 0; i < vadc->nchannels; i++) if (vadc->chan_props[i].channel == num) return &vadc->chan_props[i]; dev_dbg(vadc->dev, "no such channel %02x\n", num); return NULL; } static int vadc_do_conversion(struct vadc_priv *vadc, struct vadc_channel_prop *prop, u16 *data) { unsigned int timeout; int ret; mutex_lock(&vadc->lock); ret = vadc_configure(vadc, prop); if (ret) goto unlock; if (!vadc->poll_eoc) reinit_completion(&vadc->complete); ret = vadc_set_state(vadc, true); if (ret) goto unlock; ret = vadc_write(vadc, VADC_CONV_REQ, VADC_CONV_REQ_SET); if (ret) goto err_disable; timeout = BIT(prop->avg_samples) * VADC_CONV_TIME_MIN_US * 2; if (vadc->poll_eoc) { ret = vadc_poll_wait_eoc(vadc, timeout); } else { ret = wait_for_completion_timeout(&vadc->complete, timeout); if (!ret) { ret = -ETIMEDOUT; goto err_disable; } /* Double check conversion status */ ret = vadc_poll_wait_eoc(vadc, VADC_CONV_TIME_MIN_US); if (ret) goto err_disable; } ret = vadc_read_result(vadc, data); err_disable: vadc_set_state(vadc, false); if (ret) dev_err(vadc->dev, "conversion failed\n"); unlock: mutex_unlock(&vadc->lock); return ret; } static int vadc_measure_ref_points(struct vadc_priv *vadc) { struct vadc_channel_prop *prop; u16 read_1, read_2; int ret; vadc->graph[VADC_CALIB_RATIOMETRIC].dx = VADC_RATIOMETRIC_RANGE; vadc->graph[VADC_CALIB_ABSOLUTE].dx = VADC_ABSOLUTE_RANGE_UV; prop = vadc_get_channel(vadc, VADC_REF_1250MV); ret = vadc_do_conversion(vadc, prop, &read_1); if (ret) goto err; /* Try with buffered 625mV channel first */ prop = vadc_get_channel(vadc, VADC_SPARE1); if (!prop) prop = vadc_get_channel(vadc, VADC_REF_625MV); ret = vadc_do_conversion(vadc, prop, &read_2); if (ret) goto err; if (read_1 == read_2) { ret = -EINVAL; goto err; } vadc->graph[VADC_CALIB_ABSOLUTE].dy = read_1 - read_2; vadc->graph[VADC_CALIB_ABSOLUTE].gnd = read_2; /* Ratiometric calibration */ prop = vadc_get_channel(vadc, VADC_VDD_VADC); ret = vadc_do_conversion(vadc, prop, &read_1); if (ret) goto err; prop = vadc_get_channel(vadc, VADC_GND_REF); ret = vadc_do_conversion(vadc, prop, &read_2); if (ret) goto err; if (read_1 == read_2) { ret = -EINVAL; goto err; } vadc->graph[VADC_CALIB_RATIOMETRIC].dy = read_1 - read_2; vadc->graph[VADC_CALIB_RATIOMETRIC].gnd = read_2; err: if (ret) dev_err(vadc->dev, "measure reference points failed\n"); return ret; } static int vadc_map_voltage_temp(const struct vadc_map_pt *pts, u32 tablesize, s32 input, s64 *output) { bool descending = 1; u32 i = 0; if (!pts) return -EINVAL; /* Check if table is descending or ascending */ if (tablesize > 1) { if (pts[0].x < pts[1].x) descending = 0; } while (i < tablesize) { if ((descending) && (pts[i].x < input)) { /* table entry is less than measured*/ /* value and table is descending, stop */ break; } else if ((!descending) && (pts[i].x > input)) { /* table entry is greater than measured*/ /*value and table is ascending, stop */ break; } i++; } if (i == 0) { *output = pts[0].y; } else if (i == tablesize) { *output = pts[tablesize - 1].y; } else { /* result is between search_index and search_index-1 */ /* interpolate linearly */ *output = (((s32)((pts[i].y - pts[i - 1].y) * (input - pts[i - 1].x)) / (pts[i].x - pts[i - 1].x)) + pts[i - 1].y); } return 0; } static void vadc_scale_calib(struct vadc_priv *vadc, u16 adc_code, const struct vadc_channel_prop *prop, s64 *scale_voltage) { *scale_voltage = (adc_code - vadc->graph[prop->calibration].gnd); *scale_voltage *= vadc->graph[prop->calibration].dx; *scale_voltage = div64_s64(*scale_voltage, vadc->graph[prop->calibration].dy); if (prop->calibration == VADC_CALIB_ABSOLUTE) *scale_voltage += vadc->graph[prop->calibration].dx; if (*scale_voltage < 0) *scale_voltage = 0; } static int vadc_scale_volt(struct vadc_priv *vadc, const struct vadc_channel_prop *prop, u16 adc_code, int *result_uv) { const struct vadc_prescale_ratio *prescale; s64 voltage = 0, result = 0; vadc_scale_calib(vadc, adc_code, prop, &voltage); prescale = &vadc_prescale_ratios[prop->prescale]; voltage = voltage * prescale->den; result = div64_s64(voltage, prescale->num); *result_uv = result; return 0; } static int vadc_scale_therm(struct vadc_priv *vadc, const struct vadc_channel_prop *prop, u16 adc_code, int *result_mdec) { s64 voltage = 0, result = 0; vadc_scale_calib(vadc, adc_code, prop, &voltage); if (prop->calibration == VADC_CALIB_ABSOLUTE) voltage = div64_s64(voltage, 1000); vadc_map_voltage_temp(adcmap_100k_104ef_104fb, ARRAY_SIZE(adcmap_100k_104ef_104fb), voltage, &result); result *= 1000; *result_mdec = result; return 0; } static int vadc_scale_die_temp(struct vadc_priv *vadc, const struct vadc_channel_prop *prop, u16 adc_code, int *result_mdec) { const struct vadc_prescale_ratio *prescale; s64 voltage = 0; u64 temp; /* Temporary variable for do_div */ vadc_scale_calib(vadc, adc_code, prop, &voltage); if (voltage > 0) { prescale = &vadc_prescale_ratios[prop->prescale]; temp = voltage * prescale->den; do_div(temp, prescale->num * 2); voltage = temp; } else { voltage = 0; } voltage -= KELVINMIL_CELSIUSMIL; *result_mdec = voltage; return 0; } static int vadc_scale_chg_temp(struct vadc_priv *vadc, const struct vadc_channel_prop *prop, u16 adc_code, int *result_mdec) { const struct vadc_prescale_ratio *prescale; s64 voltage = 0, result = 0; vadc_scale_calib(vadc, adc_code, prop, &voltage); prescale = &vadc_prescale_ratios[prop->prescale]; voltage = voltage * prescale->den; voltage = div64_s64(voltage, prescale->num); voltage = ((PMI_CHG_SCALE_1) * (voltage * 2)); voltage = (voltage + PMI_CHG_SCALE_2); result = div64_s64(voltage, 1000000); *result_mdec = result; return 0; } static int vadc_decimation_from_dt(u32 value) { if (!is_power_of_2(value) || value < VADC_DECIMATION_MIN || value > VADC_DECIMATION_MAX) return -EINVAL; return __ffs64(value / VADC_DECIMATION_MIN); } static int vadc_prescaling_from_dt(u32 num, u32 den) { unsigned int pre; for (pre = 0; pre < ARRAY_SIZE(vadc_prescale_ratios); pre++) if (vadc_prescale_ratios[pre].num == num && vadc_prescale_ratios[pre].den == den) break; if (pre == ARRAY_SIZE(vadc_prescale_ratios)) return -EINVAL; return pre; } static int vadc_hw_settle_time_from_dt(u32 value) { if ((value <= 1000 && value % 100) || (value > 1000 && value % 2000)) return -EINVAL; if (value <= 1000) value /= 100; else value = value / 2000 + 10; return value; } static int vadc_avg_samples_from_dt(u32 value) { if (!is_power_of_2(value) || value > VADC_AVG_SAMPLES_MAX) return -EINVAL; return __ffs64(value); } static struct vadc_scale_fn scale_fn[] = { [SCALE_DEFAULT] = {vadc_scale_volt}, [SCALE_THERM_100K_PULLUP] = {vadc_scale_therm}, [SCALE_PMIC_THERM] = {vadc_scale_die_temp}, [SCALE_XOTHERM] = {vadc_scale_therm}, [SCALE_PMI_CHG_TEMP] = {vadc_scale_chg_temp}, }; static int vadc_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct vadc_priv *vadc = iio_priv(indio_dev); struct vadc_channel_prop *prop; u16 adc_code; int ret; switch (mask) { case IIO_CHAN_INFO_PROCESSED: prop = &vadc->chan_props[chan->address]; ret = vadc_do_conversion(vadc, prop, &adc_code); if (ret) break; scale_fn[prop->scale_fn].scale(vadc, prop, adc_code, val); return IIO_VAL_INT; case IIO_CHAN_INFO_RAW: prop = &vadc->chan_props[chan->address]; ret = vadc_do_conversion(vadc, prop, &adc_code); if (ret) break; *val = (int)adc_code; return IIO_VAL_INT; default: ret = -EINVAL; break; } return ret; } static int vadc_of_xlate(struct iio_dev *indio_dev, const struct of_phandle_args *iiospec) { struct vadc_priv *vadc = iio_priv(indio_dev); unsigned int i; for (i = 0; i < vadc->nchannels; i++) if (vadc->iio_chans[i].channel == iiospec->args[0]) return i; return -EINVAL; } static const struct iio_info vadc_info = { .read_raw = vadc_read_raw, .of_xlate = vadc_of_xlate, .driver_module = THIS_MODULE, }; struct vadc_channels { const char *datasheet_name; unsigned int prescale_index; enum iio_chan_type type; long info_mask; unsigned int scale_fn; }; #define VADC_CHAN(_dname, _type, _mask, _pre, _scale) \ [VADC_##_dname] = { \ .datasheet_name = __stringify(_dname), \ .prescale_index = _pre, \ .type = _type, \ .info_mask = _mask, \ .scale_fn = _scale \ }, \ #define VADC_NO_CHAN(_dname, _type, _mask, _pre) \ [VADC_##_dname] = { \ .datasheet_name = __stringify(_dname), \ .prescale_index = _pre, \ .type = _type, \ .info_mask = _mask \ }, #define VADC_CHAN_TEMP(_dname, _pre, _scale) \ VADC_CHAN(_dname, IIO_TEMP, \ BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_PROCESSED), \ _pre, _scale) \ #define VADC_CHAN_VOLT(_dname, _pre, _scale) \ VADC_CHAN(_dname, IIO_VOLTAGE, \ BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_PROCESSED),\ _pre, _scale) \ #define VADC_CHAN_NO_SCALE(_dname, _pre) \ VADC_NO_CHAN(_dname, IIO_VOLTAGE, \ BIT(IIO_CHAN_INFO_RAW), \ _pre) \ /* * The array represents all possible ADC channels found in the supported PMICs. * Every index in the array is equal to the channel number per datasheet. The * gaps in the array should be treated as reserved channels. */ static const struct vadc_channels vadc_chans[] = { VADC_CHAN_VOLT(USBIN, 4, SCALE_DEFAULT) VADC_CHAN_VOLT(DCIN, 4, SCALE_DEFAULT) VADC_CHAN_NO_SCALE(VCHG_SNS, 3) VADC_CHAN_NO_SCALE(SPARE1_03, 1) VADC_CHAN_NO_SCALE(USB_ID_MV, 1) VADC_CHAN_VOLT(VCOIN, 1, SCALE_DEFAULT) VADC_CHAN_NO_SCALE(VBAT_SNS, 1) VADC_CHAN_VOLT(VSYS, 1, SCALE_DEFAULT) VADC_CHAN_TEMP(DIE_TEMP, 0, SCALE_PMIC_THERM) VADC_CHAN_VOLT(REF_625MV, 0, SCALE_DEFAULT) VADC_CHAN_VOLT(REF_1250MV, 0, SCALE_DEFAULT) VADC_CHAN_NO_SCALE(CHG_TEMP, 0) VADC_CHAN_NO_SCALE(SPARE1, 0) VADC_CHAN_TEMP(SPARE2, 0, SCALE_PMI_CHG_TEMP) VADC_CHAN_VOLT(GND_REF, 0, SCALE_DEFAULT) VADC_CHAN_VOLT(VDD_VADC, 0, SCALE_DEFAULT) VADC_CHAN_NO_SCALE(P_MUX1_1_1, 0) VADC_CHAN_NO_SCALE(P_MUX2_1_1, 0) VADC_CHAN_NO_SCALE(P_MUX3_1_1, 0) VADC_CHAN_NO_SCALE(P_MUX4_1_1, 0) VADC_CHAN_NO_SCALE(P_MUX5_1_1, 0) VADC_CHAN_NO_SCALE(P_MUX6_1_1, 0) VADC_CHAN_NO_SCALE(P_MUX7_1_1, 0) VADC_CHAN_NO_SCALE(P_MUX8_1_1, 0) VADC_CHAN_NO_SCALE(P_MUX9_1_1, 0) VADC_CHAN_NO_SCALE(P_MUX10_1_1, 0) VADC_CHAN_NO_SCALE(P_MUX11_1_1, 0) VADC_CHAN_NO_SCALE(P_MUX12_1_1, 0) VADC_CHAN_NO_SCALE(P_MUX13_1_1, 0) VADC_CHAN_NO_SCALE(P_MUX14_1_1, 0) VADC_CHAN_NO_SCALE(P_MUX15_1_1, 0) VADC_CHAN_NO_SCALE(P_MUX16_1_1, 0) VADC_CHAN_NO_SCALE(P_MUX1_1_3, 1) VADC_CHAN_NO_SCALE(P_MUX2_1_3, 1) VADC_CHAN_NO_SCALE(P_MUX3_1_3, 1) VADC_CHAN_NO_SCALE(P_MUX4_1_3, 1) VADC_CHAN_NO_SCALE(P_MUX5_1_3, 1) VADC_CHAN_NO_SCALE(P_MUX6_1_3, 1) VADC_CHAN_NO_SCALE(P_MUX7_1_3, 1) VADC_CHAN_NO_SCALE(P_MUX8_1_3, 1) VADC_CHAN_NO_SCALE(P_MUX9_1_3, 1) VADC_CHAN_NO_SCALE(P_MUX10_1_3, 1) VADC_CHAN_NO_SCALE(P_MUX11_1_3, 1) VADC_CHAN_NO_SCALE(P_MUX12_1_3, 1) VADC_CHAN_NO_SCALE(P_MUX13_1_3, 1) VADC_CHAN_NO_SCALE(P_MUX14_1_3, 1) VADC_CHAN_NO_SCALE(P_MUX15_1_3, 1) VADC_CHAN_NO_SCALE(P_MUX16_1_3, 1) VADC_CHAN_NO_SCALE(LR_MUX1_BAT_THERM, 0) VADC_CHAN_NO_SCALE(LR_MUX2_BAT_ID, 0) VADC_CHAN_NO_SCALE(LR_MUX3_XO_THERM, 0) VADC_CHAN_NO_SCALE(LR_MUX4_AMUX_THM1, 0) VADC_CHAN_NO_SCALE(LR_MUX5_AMUX_THM2, 0) VADC_CHAN_NO_SCALE(LR_MUX6_AMUX_THM3, 0) VADC_CHAN_NO_SCALE(LR_MUX7_HW_ID, 0) VADC_CHAN_NO_SCALE(LR_MUX8_AMUX_THM4, 0) VADC_CHAN_NO_SCALE(LR_MUX9_AMUX_THM5, 0) VADC_CHAN_NO_SCALE(LR_MUX10_USB_ID, 0) VADC_CHAN_NO_SCALE(AMUX_PU1, 0) VADC_CHAN_NO_SCALE(AMUX_PU2, 0) VADC_CHAN_NO_SCALE(LR_MUX3_BUF_XO_THERM, 0) VADC_CHAN_NO_SCALE(LR_MUX1_PU1_BAT_THERM, 0) VADC_CHAN_NO_SCALE(LR_MUX2_PU1_BAT_ID, 0) VADC_CHAN_NO_SCALE(LR_MUX3_PU1_XO_THERM, 0) VADC_CHAN_TEMP(LR_MUX4_PU1_AMUX_THM1, 0, SCALE_THERM_100K_PULLUP) VADC_CHAN_TEMP(LR_MUX5_PU1_AMUX_THM2, 0, SCALE_THERM_100K_PULLUP) VADC_CHAN_TEMP(LR_MUX6_PU1_AMUX_THM3, 0, SCALE_THERM_100K_PULLUP) VADC_CHAN_NO_SCALE(LR_MUX7_PU1_AMUX_HW_ID, 0) VADC_CHAN_TEMP(LR_MUX8_PU1_AMUX_THM4, 0, SCALE_THERM_100K_PULLUP) VADC_CHAN_TEMP(LR_MUX9_PU1_AMUX_THM5, 0, SCALE_THERM_100K_PULLUP) VADC_CHAN_NO_SCALE(LR_MUX10_PU1_AMUX_USB_ID, 0) VADC_CHAN_TEMP(LR_MUX3_BUF_PU1_XO_THERM, 0, SCALE_XOTHERM) VADC_CHAN_NO_SCALE(LR_MUX1_PU2_BAT_THERM, 0) VADC_CHAN_NO_SCALE(LR_MUX2_PU2_BAT_ID, 0) VADC_CHAN_NO_SCALE(LR_MUX3_PU2_XO_THERM, 0) VADC_CHAN_NO_SCALE(LR_MUX4_PU2_AMUX_THM1, 0) VADC_CHAN_NO_SCALE(LR_MUX5_PU2_AMUX_THM2, 0) VADC_CHAN_NO_SCALE(LR_MUX6_PU2_AMUX_THM3, 0) VADC_CHAN_NO_SCALE(LR_MUX7_PU2_AMUX_HW_ID, 0) VADC_CHAN_NO_SCALE(LR_MUX8_PU2_AMUX_THM4, 0) VADC_CHAN_NO_SCALE(LR_MUX9_PU2_AMUX_THM5, 0) VADC_CHAN_NO_SCALE(LR_MUX10_PU2_AMUX_USB_ID, 0) VADC_CHAN_NO_SCALE(LR_MUX3_BUF_PU2_XO_THERM, 0) VADC_CHAN_NO_SCALE(LR_MUX1_PU1_PU2_BAT_THERM, 0) VADC_CHAN_NO_SCALE(LR_MUX2_PU1_PU2_BAT_ID, 0) VADC_CHAN_NO_SCALE(LR_MUX3_PU1_PU2_XO_THERM, 0) VADC_CHAN_NO_SCALE(LR_MUX4_PU1_PU2_AMUX_THM1, 0) VADC_CHAN_NO_SCALE(LR_MUX5_PU1_PU2_AMUX_THM2, 0) VADC_CHAN_NO_SCALE(LR_MUX6_PU1_PU2_AMUX_THM3, 0) VADC_CHAN_NO_SCALE(LR_MUX7_PU1_PU2_AMUX_HW_ID, 0) VADC_CHAN_NO_SCALE(LR_MUX8_PU1_PU2_AMUX_THM4, 0) VADC_CHAN_NO_SCALE(LR_MUX9_PU1_PU2_AMUX_THM5, 0) VADC_CHAN_NO_SCALE(LR_MUX10_PU1_PU2_AMUX_USB_ID, 0) VADC_CHAN_NO_SCALE(LR_MUX3_BUF_PU1_PU2_XO_THERM, 0) }; static int vadc_get_dt_channel_data(struct device *dev, struct vadc_channel_prop *prop, struct device_node *node) { const char *name = node->name; u32 chan, value, varr[2]; int ret; ret = of_property_read_u32(node, "reg", &chan); if (ret) { dev_err(dev, "invalid channel number %s\n", name); return ret; } if (chan > VADC_CHAN_MAX || chan < VADC_CHAN_MIN) { dev_err(dev, "%s invalid channel number %d\n", name, chan); return -EINVAL; } /* the channel has DT description */ prop->channel = chan; ret = of_property_read_u32(node, "qcom,decimation", &value); if (!ret) { ret = vadc_decimation_from_dt(value); if (ret < 0) { dev_err(dev, "%02x invalid decimation %d\n", chan, value); return ret; } prop->decimation = ret; } else { prop->decimation = VADC_DEF_DECIMATION; } ret = of_property_read_u32_array(node, "qcom,pre-scaling", varr, 2); if (!ret) { ret = vadc_prescaling_from_dt(varr[0], varr[1]); if (ret < 0) { dev_err(dev, "%02x invalid pre-scaling <%d %d>\n", chan, varr[0], varr[1]); return ret; } prop->prescale = ret; } else { prop->prescale = vadc_chans[prop->channel].prescale_index; } ret = of_property_read_u32(node, "qcom,hw-settle-time", &value); if (!ret) { ret = vadc_hw_settle_time_from_dt(value); if (ret < 0) { dev_err(dev, "%02x invalid hw-settle-time %d us\n", chan, value); return ret; } prop->hw_settle_time = ret; } else { prop->hw_settle_time = VADC_DEF_HW_SETTLE_TIME; } ret = of_property_read_u32(node, "qcom,avg-samples", &value); if (!ret) { ret = vadc_avg_samples_from_dt(value); if (ret < 0) { dev_err(dev, "%02x invalid avg-samples %d\n", chan, value); return ret; } prop->avg_samples = ret; } else { prop->avg_samples = VADC_DEF_AVG_SAMPLES; } if (of_property_read_bool(node, "qcom,ratiometric")) prop->calibration = VADC_CALIB_RATIOMETRIC; else prop->calibration = VADC_CALIB_ABSOLUTE; dev_dbg(dev, "%02x name %s\n", chan, name); return 0; } static int vadc_get_dt_data(struct vadc_priv *vadc, struct device_node *node) { const struct vadc_channels *vadc_chan; struct iio_chan_spec *iio_chan; struct vadc_channel_prop prop; struct device_node *child; unsigned int index = 0; int ret; vadc->nchannels = of_get_available_child_count(node); if (!vadc->nchannels) return -EINVAL; vadc->iio_chans = devm_kcalloc(vadc->dev, vadc->nchannels, sizeof(*vadc->iio_chans), GFP_KERNEL); if (!vadc->iio_chans) return -ENOMEM; vadc->chan_props = devm_kcalloc(vadc->dev, vadc->nchannels, sizeof(*vadc->chan_props), GFP_KERNEL); if (!vadc->chan_props) return -ENOMEM; iio_chan = vadc->iio_chans; for_each_available_child_of_node(node, child) { ret = vadc_get_dt_channel_data(vadc->dev, &prop, child); if (ret) { of_node_put(child); return ret; } prop.scale_fn = vadc_chans[prop.channel].scale_fn; vadc->chan_props[index] = prop; vadc_chan = &vadc_chans[prop.channel]; iio_chan->channel = prop.channel; iio_chan->datasheet_name = vadc_chan->datasheet_name; iio_chan->info_mask_separate = vadc_chan->info_mask; iio_chan->type = vadc_chan->type; iio_chan->indexed = 1; iio_chan->address = index++; iio_chan++; } /* These channels are mandatory, they are used as reference points */ if (!vadc_get_channel(vadc, VADC_REF_1250MV)) { dev_err(vadc->dev, "Please define 1.25V channel\n"); return -ENODEV; } if (!vadc_get_channel(vadc, VADC_REF_625MV)) { dev_err(vadc->dev, "Please define 0.625V channel\n"); return -ENODEV; } if (!vadc_get_channel(vadc, VADC_VDD_VADC)) { dev_err(vadc->dev, "Please define VDD channel\n"); return -ENODEV; } if (!vadc_get_channel(vadc, VADC_GND_REF)) { dev_err(vadc->dev, "Please define GND channel\n"); return -ENODEV; } return 0; } static irqreturn_t vadc_isr(int irq, void *dev_id) { struct vadc_priv *vadc = dev_id; complete(&vadc->complete); return IRQ_HANDLED; } static int vadc_check_revision(struct vadc_priv *vadc) { u8 val; int ret; ret = vadc_read(vadc, VADC_PERPH_TYPE, &val); if (ret) return ret; if (val < VADC_PERPH_TYPE_ADC) { dev_err(vadc->dev, "%d is not ADC\n", val); return -ENODEV; } ret = vadc_read(vadc, VADC_PERPH_SUBTYPE, &val); if (ret) return ret; if (val < VADC_PERPH_SUBTYPE_VADC) { dev_err(vadc->dev, "%d is not VADC\n", val); return -ENODEV; } ret = vadc_read(vadc, VADC_REVISION2, &val); if (ret) return ret; if (val < VADC_REVISION2_SUPPORTED_VADC) { dev_err(vadc->dev, "revision %d not supported\n", val); return -ENODEV; } return 0; } static int vadc_probe(struct platform_device *pdev) { struct device_node *node = pdev->dev.of_node; struct device *dev = &pdev->dev; struct iio_dev *indio_dev; struct vadc_priv *vadc; struct regmap *regmap; int ret, irq_eoc; u32 reg; regmap = dev_get_regmap(dev->parent, NULL); if (!regmap) return -ENODEV; ret = of_property_read_u32(node, "reg", ®); if (ret < 0) return ret; indio_dev = devm_iio_device_alloc(dev, sizeof(*vadc)); if (!indio_dev) return -ENOMEM; vadc = iio_priv(indio_dev); vadc->regmap = regmap; vadc->dev = dev; vadc->base = reg; vadc->are_ref_measured = false; init_completion(&vadc->complete); mutex_init(&vadc->lock); ret = vadc_check_revision(vadc); if (ret) return ret; ret = vadc_get_dt_data(vadc, node); if (ret) return ret; irq_eoc = platform_get_irq(pdev, 0); if (irq_eoc < 0) { if (irq_eoc == -EPROBE_DEFER || irq_eoc == -EINVAL) return irq_eoc; vadc->poll_eoc = true; } else { ret = devm_request_irq(dev, irq_eoc, vadc_isr, 0, "spmi-vadc", vadc); if (ret) return ret; } ret = vadc_reset(vadc); if (ret) { dev_err(dev, "reset failed\n"); return ret; } ret = vadc_measure_ref_points(vadc); if (ret) return ret; indio_dev->dev.parent = dev; indio_dev->dev.of_node = node; indio_dev->name = pdev->name; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->info = &vadc_info; indio_dev->channels = vadc->iio_chans; indio_dev->num_channels = vadc->nchannels; return devm_iio_device_register(dev, indio_dev); } static const struct of_device_id vadc_match_table[] = { { .compatible = "qcom,spmi-vadc" }, { } }; MODULE_DEVICE_TABLE(of, vadc_match_table); static struct platform_driver vadc_driver = { .driver = { .name = "qcom-spmi-vadc", .of_match_table = vadc_match_table, }, .probe = vadc_probe, }; module_platform_driver(vadc_driver); MODULE_ALIAS("platform:qcom-spmi-vadc"); MODULE_DESCRIPTION("Qualcomm SPMI PMIC voltage ADC driver"); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Stanimir Varbanov "); MODULE_AUTHOR("Ivan T. Ivanov ");