// SPDX-License-Identifier: GPL-2.0-only /* * ROHM Colour Sensor driver for * - BU27008 RGBC sensor * - BU27010 RGBC + Flickering sensor * * Copyright (c) 2023, ROHM Semiconductor. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * A word about register address and mask definitions. * * At a quick glance to the data-sheet register tables, the BU27010 has all the * registers that the BU27008 has. On top of that the BU27010 adds couple of new * ones. * * So, all definitions BU27008_REG_* are there also for BU27010 but none of the * BU27010_REG_* are present on BU27008. This makes sense as BU27010 just adds * some features (Flicker FIFO, more power control) on top of the BU27008. * * Unfortunately, some of the wheel has been re-invented. Even though the names * of the registers have stayed the same, pretty much all of the functionality * provided by the registers has changed place. Contents of all MODE_CONTROL * registers on BU27008 and BU27010 are different. * * Chip-specific mapping from register addresses/bits to functionality is done * in bu27_chip_data structures. */ #define BU27008_REG_SYSTEM_CONTROL 0x40 #define BU27008_MASK_SW_RESET BIT(7) #define BU27008_MASK_PART_ID GENMASK(5, 0) #define BU27008_ID 0x1a #define BU27008_REG_MODE_CONTROL1 0x41 #define BU27008_MASK_MEAS_MODE GENMASK(2, 0) #define BU27008_MASK_CHAN_SEL GENMASK(3, 2) #define BU27008_REG_MODE_CONTROL2 0x42 #define BU27008_MASK_RGBC_GAIN GENMASK(7, 3) #define BU27008_MASK_IR_GAIN_LO GENMASK(2, 0) #define BU27008_SHIFT_IR_GAIN 3 #define BU27008_REG_MODE_CONTROL3 0x43 #define BU27008_MASK_VALID BIT(7) #define BU27008_MASK_INT_EN BIT(1) #define BU27008_INT_EN BU27008_MASK_INT_EN #define BU27008_INT_DIS 0 #define BU27008_MASK_MEAS_EN BIT(0) #define BU27008_MEAS_EN BIT(0) #define BU27008_MEAS_DIS 0 #define BU27008_REG_DATA0_LO 0x50 #define BU27008_REG_DATA1_LO 0x52 #define BU27008_REG_DATA2_LO 0x54 #define BU27008_REG_DATA3_LO 0x56 #define BU27008_REG_DATA3_HI 0x57 #define BU27008_REG_MANUFACTURER_ID 0x92 #define BU27008_REG_MAX BU27008_REG_MANUFACTURER_ID /* BU27010 specific definitions */ #define BU27010_MASK_SW_RESET BIT(7) #define BU27010_ID 0x1b #define BU27010_REG_POWER 0x3e #define BU27010_MASK_POWER BIT(0) #define BU27010_REG_RESET 0x3f #define BU27010_MASK_RESET BIT(0) #define BU27010_RESET_RELEASE BU27010_MASK_RESET #define BU27010_MASK_MEAS_EN BIT(1) #define BU27010_MASK_CHAN_SEL GENMASK(7, 6) #define BU27010_MASK_MEAS_MODE GENMASK(5, 4) #define BU27010_MASK_RGBC_GAIN GENMASK(3, 0) #define BU27010_MASK_DATA3_GAIN GENMASK(7, 6) #define BU27010_MASK_DATA2_GAIN GENMASK(5, 4) #define BU27010_MASK_DATA1_GAIN GENMASK(3, 2) #define BU27010_MASK_DATA0_GAIN GENMASK(1, 0) #define BU27010_MASK_FLC_MODE BIT(7) #define BU27010_MASK_FLC_GAIN GENMASK(4, 0) #define BU27010_REG_MODE_CONTROL4 0x44 /* If flicker is ever to be supported the IRQ must be handled as a field */ #define BU27010_IRQ_DIS_ALL GENMASK(1, 0) #define BU27010_DRDY_EN BIT(0) #define BU27010_MASK_INT_SEL GENMASK(1, 0) #define BU27010_REG_MODE_CONTROL5 0x45 #define BU27010_MASK_RGB_VALID BIT(7) #define BU27010_MASK_FLC_VALID BIT(6) #define BU27010_MASK_WAIT_EN BIT(3) #define BU27010_MASK_FIFO_EN BIT(2) #define BU27010_MASK_RGB_EN BIT(1) #define BU27010_MASK_FLC_EN BIT(0) #define BU27010_REG_DATA_FLICKER_LO 0x56 #define BU27010_MASK_DATA_FLICKER_HI GENMASK(2, 0) #define BU27010_REG_FLICKER_COUNT 0x5a #define BU27010_REG_FIFO_LEVEL_LO 0x5b #define BU27010_MASK_FIFO_LEVEL_HI BIT(0) #define BU27010_REG_FIFO_DATA_LO 0x5d #define BU27010_REG_FIFO_DATA_HI 0x5e #define BU27010_MASK_FIFO_DATA_HI GENMASK(2, 0) #define BU27010_REG_MANUFACTURER_ID 0x92 #define BU27010_REG_MAX BU27010_REG_MANUFACTURER_ID /** * enum bu27008_chan_type - BU27008 channel types * @BU27008_RED: Red channel. Always via data0. * @BU27008_GREEN: Green channel. Always via data1. * @BU27008_BLUE: Blue channel. Via data2 (when used). * @BU27008_CLEAR: Clear channel. Via data2 or data3 (when used). * @BU27008_IR: IR channel. Via data3 (when used). * @BU27008_LUX: Illuminance channel, computed using RGB and IR. * @BU27008_NUM_CHANS: Number of channel types. */ enum bu27008_chan_type { BU27008_RED, BU27008_GREEN, BU27008_BLUE, BU27008_CLEAR, BU27008_IR, BU27008_LUX, BU27008_NUM_CHANS }; /** * enum bu27008_chan - BU27008 physical data channel * @BU27008_DATA0: Always red. * @BU27008_DATA1: Always green. * @BU27008_DATA2: Blue or clear. * @BU27008_DATA3: IR or clear. * @BU27008_NUM_HW_CHANS: Number of physical channels */ enum bu27008_chan { BU27008_DATA0, BU27008_DATA1, BU27008_DATA2, BU27008_DATA3, BU27008_NUM_HW_CHANS }; /* We can always measure red and green at same time */ #define ALWAYS_SCANNABLE (BIT(BU27008_RED) | BIT(BU27008_GREEN)) /* We use these data channel configs. Ensure scan_masks below follow them too */ #define BU27008_BLUE2_CLEAR3 0x0 /* buffer is R, G, B, C */ #define BU27008_CLEAR2_IR3 0x1 /* buffer is R, G, C, IR */ #define BU27008_BLUE2_IR3 0x2 /* buffer is R, G, B, IR */ static const unsigned long bu27008_scan_masks[] = { /* buffer is R, G, B, C */ ALWAYS_SCANNABLE | BIT(BU27008_BLUE) | BIT(BU27008_CLEAR), /* buffer is R, G, C, IR */ ALWAYS_SCANNABLE | BIT(BU27008_CLEAR) | BIT(BU27008_IR), /* buffer is R, G, B, IR */ ALWAYS_SCANNABLE | BIT(BU27008_BLUE) | BIT(BU27008_IR), /* buffer is R, G, B, IR, LUX */ ALWAYS_SCANNABLE | BIT(BU27008_BLUE) | BIT(BU27008_IR) | BIT(BU27008_LUX), 0 }; /* * Available scales with gain 1x - 1024x, timings 55, 100, 200, 400 mS * Time impacts to gain: 1x, 2x, 4x, 8x. * * => Max total gain is HWGAIN * gain by integration time (8 * 1024) = 8192 * * Max amplification is (HWGAIN * MAX integration-time multiplier) 1024 * 8 * = 8192. With NANO scale we get rid of accuracy loss when we start with the * scale 16.0 for HWGAIN1, INT-TIME 55 mS. This way the nano scale for MAX * total gain 8192 will be 1953125 */ #define BU27008_SCALE_1X 16 /* * On BU27010 available scales with gain 1x - 4096x, * timings 55, 100, 200, 400 mS. Time impacts to gain: 1x, 2x, 4x, 8x. * * => Max total gain is HWGAIN * gain by integration time (8 * 4096) * * Using NANO precision for scale we must use scale 64x corresponding gain 1x * to avoid precision loss. */ #define BU27010_SCALE_1X 64 /* See the data sheet for the "Gain Setting" table */ #define BU27008_GSEL_1X 0x00 #define BU27008_GSEL_4X 0x08 #define BU27008_GSEL_8X 0x09 #define BU27008_GSEL_16X 0x0a #define BU27008_GSEL_32X 0x0b #define BU27008_GSEL_64X 0x0c #define BU27008_GSEL_256X 0x18 #define BU27008_GSEL_512X 0x19 #define BU27008_GSEL_1024X 0x1a static const struct iio_gain_sel_pair bu27008_gains[] = { GAIN_SCALE_GAIN(1, BU27008_GSEL_1X), GAIN_SCALE_GAIN(4, BU27008_GSEL_4X), GAIN_SCALE_GAIN(8, BU27008_GSEL_8X), GAIN_SCALE_GAIN(16, BU27008_GSEL_16X), GAIN_SCALE_GAIN(32, BU27008_GSEL_32X), GAIN_SCALE_GAIN(64, BU27008_GSEL_64X), GAIN_SCALE_GAIN(256, BU27008_GSEL_256X), GAIN_SCALE_GAIN(512, BU27008_GSEL_512X), GAIN_SCALE_GAIN(1024, BU27008_GSEL_1024X), }; static const struct iio_gain_sel_pair bu27008_gains_ir[] = { GAIN_SCALE_GAIN(2, BU27008_GSEL_1X), GAIN_SCALE_GAIN(4, BU27008_GSEL_4X), GAIN_SCALE_GAIN(8, BU27008_GSEL_8X), GAIN_SCALE_GAIN(16, BU27008_GSEL_16X), GAIN_SCALE_GAIN(32, BU27008_GSEL_32X), GAIN_SCALE_GAIN(64, BU27008_GSEL_64X), GAIN_SCALE_GAIN(256, BU27008_GSEL_256X), GAIN_SCALE_GAIN(512, BU27008_GSEL_512X), GAIN_SCALE_GAIN(1024, BU27008_GSEL_1024X), }; #define BU27010_GSEL_1X 0x00 /* 000000 */ #define BU27010_GSEL_4X 0x08 /* 001000 */ #define BU27010_GSEL_16X 0x09 /* 001001 */ #define BU27010_GSEL_64X 0x0e /* 001110 */ #define BU27010_GSEL_256X 0x1e /* 011110 */ #define BU27010_GSEL_1024X 0x2e /* 101110 */ #define BU27010_GSEL_4096X 0x3f /* 111111 */ static const struct iio_gain_sel_pair bu27010_gains[] = { GAIN_SCALE_GAIN(1, BU27010_GSEL_1X), GAIN_SCALE_GAIN(4, BU27010_GSEL_4X), GAIN_SCALE_GAIN(16, BU27010_GSEL_16X), GAIN_SCALE_GAIN(64, BU27010_GSEL_64X), GAIN_SCALE_GAIN(256, BU27010_GSEL_256X), GAIN_SCALE_GAIN(1024, BU27010_GSEL_1024X), GAIN_SCALE_GAIN(4096, BU27010_GSEL_4096X), }; static const struct iio_gain_sel_pair bu27010_gains_ir[] = { GAIN_SCALE_GAIN(2, BU27010_GSEL_1X), GAIN_SCALE_GAIN(4, BU27010_GSEL_4X), GAIN_SCALE_GAIN(16, BU27010_GSEL_16X), GAIN_SCALE_GAIN(64, BU27010_GSEL_64X), GAIN_SCALE_GAIN(256, BU27010_GSEL_256X), GAIN_SCALE_GAIN(1024, BU27010_GSEL_1024X), GAIN_SCALE_GAIN(4096, BU27010_GSEL_4096X), }; #define BU27008_MEAS_MODE_100MS 0x00 #define BU27008_MEAS_MODE_55MS 0x01 #define BU27008_MEAS_MODE_200MS 0x02 #define BU27008_MEAS_MODE_400MS 0x04 #define BU27010_MEAS_MODE_100MS 0x00 #define BU27010_MEAS_MODE_55MS 0x03 #define BU27010_MEAS_MODE_200MS 0x01 #define BU27010_MEAS_MODE_400MS 0x02 #define BU27008_MEAS_TIME_MAX_MS 400 static const struct iio_itime_sel_mul bu27008_itimes[] = { GAIN_SCALE_ITIME_US(400000, BU27008_MEAS_MODE_400MS, 8), GAIN_SCALE_ITIME_US(200000, BU27008_MEAS_MODE_200MS, 4), GAIN_SCALE_ITIME_US(100000, BU27008_MEAS_MODE_100MS, 2), GAIN_SCALE_ITIME_US(55000, BU27008_MEAS_MODE_55MS, 1), }; static const struct iio_itime_sel_mul bu27010_itimes[] = { GAIN_SCALE_ITIME_US(400000, BU27010_MEAS_MODE_400MS, 8), GAIN_SCALE_ITIME_US(200000, BU27010_MEAS_MODE_200MS, 4), GAIN_SCALE_ITIME_US(100000, BU27010_MEAS_MODE_100MS, 2), GAIN_SCALE_ITIME_US(55000, BU27010_MEAS_MODE_55MS, 1), }; /* * All the RGBC channels share the same gain. * IR gain can be fine-tuned from the gain set for the RGBC by 2 bit, but this * would yield quite complex gain setting. Especially since not all bit * compinations are supported. And in any case setting GAIN for RGBC will * always also change the IR-gain. * * On top of this, the selector '0' which corresponds to hw-gain 1X on RGBC, * corresponds to gain 2X on IR. Rest of the selctors correspond to same gains * though. This, however, makes it not possible to use shared gain for all * RGBC and IR settings even though they are all changed at the one go. */ #define BU27008_CHAN(color, data, separate_avail) \ { \ .type = IIO_INTENSITY, \ .modified = 1, \ .channel2 = IIO_MOD_LIGHT_##color, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ BIT(IIO_CHAN_INFO_SCALE), \ .info_mask_separate_available = (separate_avail), \ .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_INT_TIME), \ .info_mask_shared_by_all_available = BIT(IIO_CHAN_INFO_INT_TIME), \ .address = BU27008_REG_##data##_LO, \ .scan_index = BU27008_##color, \ .scan_type = { \ .sign = 'u', \ .realbits = 16, \ .storagebits = 16, \ .endianness = IIO_LE, \ }, \ } /* For raw reads we always configure DATA3 for CLEAR */ static const struct iio_chan_spec bu27008_channels[] = { BU27008_CHAN(RED, DATA0, BIT(IIO_CHAN_INFO_SCALE)), BU27008_CHAN(GREEN, DATA1, BIT(IIO_CHAN_INFO_SCALE)), BU27008_CHAN(BLUE, DATA2, BIT(IIO_CHAN_INFO_SCALE)), BU27008_CHAN(CLEAR, DATA2, BIT(IIO_CHAN_INFO_SCALE)), /* * We don't allow setting scale for IR (because of shared gain bits). * Hence we don't advertise available ones either. */ BU27008_CHAN(IR, DATA3, 0), { .type = IIO_LIGHT, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), .channel = BU27008_LUX, .scan_index = BU27008_LUX, .scan_type = { .sign = 'u', .realbits = 64, .storagebits = 64, .endianness = IIO_CPU, }, }, IIO_CHAN_SOFT_TIMESTAMP(BU27008_NUM_CHANS), }; struct bu27008_data; struct bu27_chip_data { const char *name; int (*chip_init)(struct bu27008_data *data); int (*get_gain_sel)(struct bu27008_data *data, int *sel); int (*write_gain_sel)(struct bu27008_data *data, int sel); const struct regmap_config *regmap_cfg; const struct iio_gain_sel_pair *gains; const struct iio_gain_sel_pair *gains_ir; const struct iio_itime_sel_mul *itimes; int num_gains; int num_gains_ir; int num_itimes; int scale1x; int drdy_en_reg; int drdy_en_mask; int meas_en_reg; int meas_en_mask; int valid_reg; int chan_sel_reg; int chan_sel_mask; int int_time_mask; u8 part_id; }; struct bu27008_data { const struct bu27_chip_data *cd; struct regmap *regmap; struct iio_trigger *trig; struct device *dev; struct iio_gts gts; struct iio_gts gts_ir; int irq; /* * Prevent changing gain/time config when scale is read/written. * Similarly, protect the integration_time read/change sequence. * Prevent changing gain/time when data is read. */ struct mutex mutex; }; static const struct regmap_range bu27008_volatile_ranges[] = { { .range_min = BU27008_REG_SYSTEM_CONTROL, /* SWRESET */ .range_max = BU27008_REG_SYSTEM_CONTROL, }, { .range_min = BU27008_REG_MODE_CONTROL3, /* VALID */ .range_max = BU27008_REG_MODE_CONTROL3, }, { .range_min = BU27008_REG_DATA0_LO, /* DATA */ .range_max = BU27008_REG_DATA3_HI, }, }; static const struct regmap_range bu27010_volatile_ranges[] = { { .range_min = BU27010_REG_RESET, /* RSTB */ .range_max = BU27008_REG_SYSTEM_CONTROL, /* RESET */ }, { .range_min = BU27010_REG_MODE_CONTROL5, /* VALID bits */ .range_max = BU27010_REG_MODE_CONTROL5, }, { .range_min = BU27008_REG_DATA0_LO, .range_max = BU27010_REG_FIFO_DATA_HI, }, }; static const struct regmap_access_table bu27008_volatile_regs = { .yes_ranges = &bu27008_volatile_ranges[0], .n_yes_ranges = ARRAY_SIZE(bu27008_volatile_ranges), }; static const struct regmap_access_table bu27010_volatile_regs = { .yes_ranges = &bu27010_volatile_ranges[0], .n_yes_ranges = ARRAY_SIZE(bu27010_volatile_ranges), }; static const struct regmap_range bu27008_read_only_ranges[] = { { .range_min = BU27008_REG_DATA0_LO, .range_max = BU27008_REG_DATA3_HI, }, { .range_min = BU27008_REG_MANUFACTURER_ID, .range_max = BU27008_REG_MANUFACTURER_ID, }, }; static const struct regmap_range bu27010_read_only_ranges[] = { { .range_min = BU27008_REG_DATA0_LO, .range_max = BU27010_REG_FIFO_DATA_HI, }, { .range_min = BU27010_REG_MANUFACTURER_ID, .range_max = BU27010_REG_MANUFACTURER_ID, } }; static const struct regmap_access_table bu27008_ro_regs = { .no_ranges = &bu27008_read_only_ranges[0], .n_no_ranges = ARRAY_SIZE(bu27008_read_only_ranges), }; static const struct regmap_access_table bu27010_ro_regs = { .no_ranges = &bu27010_read_only_ranges[0], .n_no_ranges = ARRAY_SIZE(bu27010_read_only_ranges), }; static const struct regmap_config bu27008_regmap = { .reg_bits = 8, .val_bits = 8, .max_register = BU27008_REG_MAX, .cache_type = REGCACHE_RBTREE, .volatile_table = &bu27008_volatile_regs, .wr_table = &bu27008_ro_regs, /* * All register writes are serialized by the mutex which protects the * scale setting/getting. This is needed because scale is combined by * gain and integration time settings and we need to ensure those are * not read / written when scale is being computed. * * As a result of this serializing, we don't need regmap locking. Note, * this is not true if we add any configurations which are not * serialized by the mutex and which may need for example a protected * read-modify-write cycle (eg. regmap_update_bits()). Please, revise * this when adding features to the driver. */ .disable_locking = true, }; static const struct regmap_config bu27010_regmap = { .reg_bits = 8, .val_bits = 8, .max_register = BU27010_REG_MAX, .cache_type = REGCACHE_RBTREE, .volatile_table = &bu27010_volatile_regs, .wr_table = &bu27010_ro_regs, .disable_locking = true, }; static int bu27008_write_gain_sel(struct bu27008_data *data, int sel) { int regval; regval = FIELD_PREP(BU27008_MASK_RGBC_GAIN, sel); /* * We do always set also the LOW bits of IR-gain because othervice we * would risk resulting an invalid GAIN register value. * * We could allow setting separate gains for RGBC and IR when the * values were such that HW could support both gain settings. * Eg, when the shared bits were same for both gain values. * * This, however, has a negligible benefit compared to the increased * software complexity when we would need to go through the gains * for both channels separately when the integration time changes. * This would end up with nasty logic for computing gain values for * both channels - and rejecting them if shared bits changed. * * We should then build the logic by guessing what a user prefers. * RGBC or IR gains correctly set while other jumps to odd value? * Maybe look-up a value where both gains are somehow optimized * . Or maybe user would * expect us to reject changes when optimal gains can't be set to both * channels w/given integration time. At best that would result * solution that works well for a very specific subset of * configurations but causes unexpected corner-cases. * * So, we keep it simple. Always set same selector to IR and RGBC. * We disallow setting IR (as I expect that most of the users are * interested in RGBC). This way we can show the user that the scales * for RGBC and IR channels are different (1X Vs 2X with sel 0) while * still keeping the operation deterministic. */ regval |= FIELD_PREP(BU27008_MASK_IR_GAIN_LO, sel); return regmap_update_bits(data->regmap, BU27008_REG_MODE_CONTROL2, BU27008_MASK_RGBC_GAIN, regval); } static int bu27010_write_gain_sel(struct bu27008_data *data, int sel) { unsigned int regval; int ret, chan_selector; /* * Gain 'selector' is composed of two registers. Selector is 6bit value, * 4 high bits being the RGBC gain fieild in MODE_CONTROL1 register and * two low bits being the channel specific gain in MODE_CONTROL2. * * Let's take the 4 high bits of whole 6 bit selector, and prepare * the MODE_CONTROL1 value (RGBC gain part). */ regval = FIELD_PREP(BU27010_MASK_RGBC_GAIN, (sel >> 2)); ret = regmap_update_bits(data->regmap, BU27008_REG_MODE_CONTROL1, BU27010_MASK_RGBC_GAIN, regval); if (ret) return ret; /* * Two low two bits of the selector must be written for all 4 * channels in the MODE_CONTROL2 register. Copy these two bits for * all channels. */ chan_selector = sel & GENMASK(1, 0); regval = FIELD_PREP(BU27010_MASK_DATA0_GAIN, chan_selector); regval |= FIELD_PREP(BU27010_MASK_DATA1_GAIN, chan_selector); regval |= FIELD_PREP(BU27010_MASK_DATA2_GAIN, chan_selector); regval |= FIELD_PREP(BU27010_MASK_DATA3_GAIN, chan_selector); return regmap_write(data->regmap, BU27008_REG_MODE_CONTROL2, regval); } static int bu27008_get_gain_sel(struct bu27008_data *data, int *sel) { int ret; /* * If we always "lock" the gain selectors for all channels to prevent * unsupported configs, then it does not matter which channel is used * we can just return selector from any of them. * * This, however is not true if we decide to support only 4X and 16X * and then individual gains for channels. Currently this is not the * case. * * If we some day decide to support individual gains, then we need to * have channel information here. */ ret = regmap_read(data->regmap, BU27008_REG_MODE_CONTROL2, sel); if (ret) return ret; *sel = FIELD_GET(BU27008_MASK_RGBC_GAIN, *sel); return 0; } static int bu27010_get_gain_sel(struct bu27008_data *data, int *sel) { int ret, tmp; /* * We always "lock" the gain selectors for all channels to prevent * unsupported configs. It does not matter which channel is used * we can just return selector from any of them. * * Read the channel0 gain. */ ret = regmap_read(data->regmap, BU27008_REG_MODE_CONTROL2, sel); if (ret) return ret; *sel = FIELD_GET(BU27010_MASK_DATA0_GAIN, *sel); /* Read the shared gain */ ret = regmap_read(data->regmap, BU27008_REG_MODE_CONTROL1, &tmp); if (ret) return ret; /* * The gain selector is made as a combination of common RGBC gain and * the channel specific gain. The channel specific gain forms the low * bits of selector and RGBC gain is appended right after it. * * Compose the selector from channel0 gain and shared RGBC gain. */ *sel |= FIELD_GET(BU27010_MASK_RGBC_GAIN, tmp) << fls(BU27010_MASK_DATA0_GAIN); return ret; } static int bu27008_chip_init(struct bu27008_data *data) { int ret; ret = regmap_write_bits(data->regmap, BU27008_REG_SYSTEM_CONTROL, BU27008_MASK_SW_RESET, BU27008_MASK_SW_RESET); if (ret) return dev_err_probe(data->dev, ret, "Sensor reset failed\n"); /* * The data-sheet does not tell how long performing the IC reset takes. * However, the data-sheet says the minimum time it takes the IC to be * able to take inputs after power is applied, is 100 uS. I'd assume * > 1 mS is enough. */ msleep(1); ret = regmap_reinit_cache(data->regmap, data->cd->regmap_cfg); if (ret) dev_err(data->dev, "Failed to reinit reg cache\n"); return ret; } static int bu27010_chip_init(struct bu27008_data *data) { int ret; ret = regmap_write_bits(data->regmap, BU27008_REG_SYSTEM_CONTROL, BU27010_MASK_SW_RESET, BU27010_MASK_SW_RESET); if (ret) return dev_err_probe(data->dev, ret, "Sensor reset failed\n"); msleep(1); /* Power ON*/ ret = regmap_write_bits(data->regmap, BU27010_REG_POWER, BU27010_MASK_POWER, BU27010_MASK_POWER); if (ret) return dev_err_probe(data->dev, ret, "Sensor power-on failed\n"); msleep(1); /* Release blocks from reset */ ret = regmap_write_bits(data->regmap, BU27010_REG_RESET, BU27010_MASK_RESET, BU27010_RESET_RELEASE); if (ret) return dev_err_probe(data->dev, ret, "Sensor powering failed\n"); msleep(1); /* * The IRQ enabling on BU27010 is done in a peculiar way. The IRQ * enabling is not a bit mask where individual IRQs could be enabled but * a field which values are: * 00 => IRQs disabled * 01 => Data-ready (RGBC/IR) * 10 => Data-ready (flicker) * 11 => Flicker FIFO * * So, only one IRQ can be enabled at a time and enabling for example * flicker FIFO would automagically disable data-ready IRQ. * * Currently the driver does not support the flicker. Hence, we can * just treat the RGBC data-ready as single bit which can be enabled / * disabled. This works for as long as the second bit in the field * stays zero. Here we ensure it gets zeroed. */ return regmap_clear_bits(data->regmap, BU27010_REG_MODE_CONTROL4, BU27010_IRQ_DIS_ALL); } static const struct bu27_chip_data bu27010_chip = { .name = "bu27010", .chip_init = bu27010_chip_init, .get_gain_sel = bu27010_get_gain_sel, .write_gain_sel = bu27010_write_gain_sel, .regmap_cfg = &bu27010_regmap, .gains = &bu27010_gains[0], .gains_ir = &bu27010_gains_ir[0], .itimes = &bu27010_itimes[0], .num_gains = ARRAY_SIZE(bu27010_gains), .num_gains_ir = ARRAY_SIZE(bu27010_gains_ir), .num_itimes = ARRAY_SIZE(bu27010_itimes), .scale1x = BU27010_SCALE_1X, .drdy_en_reg = BU27010_REG_MODE_CONTROL4, .drdy_en_mask = BU27010_DRDY_EN, .meas_en_reg = BU27010_REG_MODE_CONTROL5, .meas_en_mask = BU27010_MASK_MEAS_EN, .valid_reg = BU27010_REG_MODE_CONTROL5, .chan_sel_reg = BU27008_REG_MODE_CONTROL1, .chan_sel_mask = BU27010_MASK_CHAN_SEL, .int_time_mask = BU27010_MASK_MEAS_MODE, .part_id = BU27010_ID, }; static const struct bu27_chip_data bu27008_chip = { .name = "bu27008", .chip_init = bu27008_chip_init, .get_gain_sel = bu27008_get_gain_sel, .write_gain_sel = bu27008_write_gain_sel, .regmap_cfg = &bu27008_regmap, .gains = &bu27008_gains[0], .gains_ir = &bu27008_gains_ir[0], .itimes = &bu27008_itimes[0], .num_gains = ARRAY_SIZE(bu27008_gains), .num_gains_ir = ARRAY_SIZE(bu27008_gains_ir), .num_itimes = ARRAY_SIZE(bu27008_itimes), .scale1x = BU27008_SCALE_1X, .drdy_en_reg = BU27008_REG_MODE_CONTROL3, .drdy_en_mask = BU27008_MASK_INT_EN, .valid_reg = BU27008_REG_MODE_CONTROL3, .meas_en_reg = BU27008_REG_MODE_CONTROL3, .meas_en_mask = BU27008_MASK_MEAS_EN, .chan_sel_reg = BU27008_REG_MODE_CONTROL3, .chan_sel_mask = BU27008_MASK_CHAN_SEL, .int_time_mask = BU27008_MASK_MEAS_MODE, .part_id = BU27008_ID, }; #define BU27008_MAX_VALID_RESULT_WAIT_US 50000 #define BU27008_VALID_RESULT_WAIT_QUANTA_US 1000 static int bu27008_chan_read_data(struct bu27008_data *data, int reg, int *val) { int ret, valid; __le16 tmp; ret = regmap_read_poll_timeout(data->regmap, data->cd->valid_reg, valid, (valid & BU27008_MASK_VALID), BU27008_VALID_RESULT_WAIT_QUANTA_US, BU27008_MAX_VALID_RESULT_WAIT_US); if (ret) return ret; ret = regmap_bulk_read(data->regmap, reg, &tmp, sizeof(tmp)); if (ret) dev_err(data->dev, "Reading channel data failed\n"); *val = le16_to_cpu(tmp); return ret; } static int bu27008_get_gain(struct bu27008_data *data, struct iio_gts *gts, int *gain) { int ret, sel; ret = data->cd->get_gain_sel(data, &sel); if (ret) return ret; ret = iio_gts_find_gain_by_sel(gts, sel); if (ret < 0) { dev_err(data->dev, "unknown gain value 0x%x\n", sel); return ret; } *gain = ret; return 0; } static int bu27008_set_gain(struct bu27008_data *data, int gain) { int ret; ret = iio_gts_find_sel_by_gain(&data->gts, gain); if (ret < 0) return ret; return data->cd->write_gain_sel(data, ret); } static int bu27008_get_int_time_sel(struct bu27008_data *data, int *sel) { int ret, val; ret = regmap_read(data->regmap, BU27008_REG_MODE_CONTROL1, &val); if (ret) return ret; val &= data->cd->int_time_mask; val >>= ffs(data->cd->int_time_mask) - 1; *sel = val; return 0; } static int bu27008_set_int_time_sel(struct bu27008_data *data, int sel) { sel <<= ffs(data->cd->int_time_mask) - 1; return regmap_update_bits(data->regmap, BU27008_REG_MODE_CONTROL1, data->cd->int_time_mask, sel); } static int bu27008_get_int_time_us(struct bu27008_data *data) { int ret, sel; ret = bu27008_get_int_time_sel(data, &sel); if (ret) return ret; return iio_gts_find_int_time_by_sel(&data->gts, sel); } static int _bu27008_get_scale(struct bu27008_data *data, bool ir, int *val, int *val2) { struct iio_gts *gts; int gain, ret; if (ir) gts = &data->gts_ir; else gts = &data->gts; ret = bu27008_get_gain(data, gts, &gain); if (ret) return ret; ret = bu27008_get_int_time_us(data); if (ret < 0) return ret; return iio_gts_get_scale(gts, gain, ret, val, val2); } static int bu27008_get_scale(struct bu27008_data *data, bool ir, int *val, int *val2) { int ret; mutex_lock(&data->mutex); ret = _bu27008_get_scale(data, ir, val, val2); mutex_unlock(&data->mutex); return ret; } static int bu27008_set_int_time(struct bu27008_data *data, int time) { int ret; ret = iio_gts_find_sel_by_int_time(&data->gts, time); if (ret < 0) return ret; return bu27008_set_int_time_sel(data, ret); } /* Try to change the time so that the scale is maintained */ static int bu27008_try_set_int_time(struct bu27008_data *data, int int_time_new) { int ret, old_time_sel, new_time_sel, old_gain, new_gain; mutex_lock(&data->mutex); ret = bu27008_get_int_time_sel(data, &old_time_sel); if (ret < 0) goto unlock_out; if (!iio_gts_valid_time(&data->gts, int_time_new)) { dev_dbg(data->dev, "Unsupported integration time %u\n", int_time_new); ret = -EINVAL; goto unlock_out; } /* If we already use requested time, then we're done */ new_time_sel = iio_gts_find_sel_by_int_time(&data->gts, int_time_new); if (new_time_sel == old_time_sel) goto unlock_out; ret = bu27008_get_gain(data, &data->gts, &old_gain); if (ret) goto unlock_out; ret = iio_gts_find_new_gain_sel_by_old_gain_time(&data->gts, old_gain, old_time_sel, new_time_sel, &new_gain); if (ret) { int scale1, scale2; bool ok; _bu27008_get_scale(data, false, &scale1, &scale2); dev_dbg(data->dev, "Can't support time %u with current scale %u %u\n", int_time_new, scale1, scale2); if (new_gain < 0) goto unlock_out; /* * If caller requests for integration time change and we * can't support the scale - then the caller should be * prepared to 'pick up the pieces and deal with the * fact that the scale changed'. */ ret = iio_find_closest_gain_low(&data->gts, new_gain, &ok); if (!ok) dev_dbg(data->dev, "optimal gain out of range\n"); if (ret < 0) { dev_dbg(data->dev, "Total gain increase. Risk of saturation"); ret = iio_gts_get_min_gain(&data->gts); if (ret < 0) goto unlock_out; } new_gain = ret; dev_dbg(data->dev, "scale changed, new gain %u\n", new_gain); } ret = bu27008_set_gain(data, new_gain); if (ret) goto unlock_out; ret = bu27008_set_int_time(data, int_time_new); unlock_out: mutex_unlock(&data->mutex); return ret; } static int bu27008_meas_set(struct bu27008_data *data, bool enable) { if (enable) return regmap_set_bits(data->regmap, data->cd->meas_en_reg, data->cd->meas_en_mask); return regmap_clear_bits(data->regmap, data->cd->meas_en_reg, data->cd->meas_en_mask); } static int bu27008_chan_cfg(struct bu27008_data *data, struct iio_chan_spec const *chan) { int chan_sel; if (chan->scan_index == BU27008_BLUE) chan_sel = BU27008_BLUE2_CLEAR3; else chan_sel = BU27008_CLEAR2_IR3; /* * prepare bitfield for channel sel. The FIELD_PREP works only when * mask is constant. In our case the mask is assigned based on the * chip type. Hence the open-coded FIELD_PREP here. We don't bother * zeroing the irrelevant bits though - update_bits takes care of that. */ chan_sel <<= ffs(data->cd->chan_sel_mask) - 1; return regmap_update_bits(data->regmap, data->cd->chan_sel_reg, BU27008_MASK_CHAN_SEL, chan_sel); } static int bu27008_read_one(struct bu27008_data *data, struct iio_dev *idev, struct iio_chan_spec const *chan, int *val, int *val2) { int ret, int_time; ret = bu27008_chan_cfg(data, chan); if (ret) return ret; ret = bu27008_meas_set(data, true); if (ret) return ret; ret = bu27008_get_int_time_us(data); if (ret < 0) int_time = BU27008_MEAS_TIME_MAX_MS; else int_time = ret / USEC_PER_MSEC; msleep(int_time); ret = bu27008_chan_read_data(data, chan->address, val); if (!ret) ret = IIO_VAL_INT; if (bu27008_meas_set(data, false)) dev_warn(data->dev, "measurement disabling failed\n"); return ret; } #define BU27008_LUX_DATA_RED 0 #define BU27008_LUX_DATA_GREEN 1 #define BU27008_LUX_DATA_BLUE 2 #define BU27008_LUX_DATA_IR 3 #define LUX_DATA_SIZE (BU27008_NUM_HW_CHANS * sizeof(__le16)) static int bu27008_read_lux_chans(struct bu27008_data *data, unsigned int time, __le16 *chan_data) { int ret, chan_sel, tmpret, valid; chan_sel = BU27008_BLUE2_IR3 << (ffs(data->cd->chan_sel_mask) - 1); ret = regmap_update_bits(data->regmap, data->cd->chan_sel_reg, data->cd->chan_sel_mask, chan_sel); if (ret) return ret; ret = bu27008_meas_set(data, true); if (ret) return ret; msleep(time / USEC_PER_MSEC); ret = regmap_read_poll_timeout(data->regmap, data->cd->valid_reg, valid, (valid & BU27008_MASK_VALID), BU27008_VALID_RESULT_WAIT_QUANTA_US, BU27008_MAX_VALID_RESULT_WAIT_US); if (ret) goto out; ret = regmap_bulk_read(data->regmap, BU27008_REG_DATA0_LO, chan_data, LUX_DATA_SIZE); if (ret) goto out; out: tmpret = bu27008_meas_set(data, false); if (tmpret) dev_warn(data->dev, "Stopping measurement failed\n"); return ret; } /* * Following equation for computing lux out of register values was given by * ROHM HW colleagues; * * Red = RedData*1024 / Gain * 20 / meas_mode * Green = GreenData* 1024 / Gain * 20 / meas_mode * Blue = BlueData* 1024 / Gain * 20 / meas_mode * IR = IrData* 1024 / Gain * 20 / meas_mode * * where meas_mode is the integration time in mS / 10 * * IRratio = (IR > 0.18 * Green) ? 0 : 1 * * Lx = max(c1*Red + c2*Green + c3*Blue,0) * * for * IRratio 0: c1 = -0.00002237, c2 = 0.0003219, c3 = -0.000120371 * IRratio 1: c1 = -0.00001074, c2 = 0.000305415, c3 = -0.000129367 */ /* * The max chan data is 0xffff. When we multiply it by 1024 * 20, we'll get * 0x4FFFB000 which still fits in 32-bit integer. This won't overflow. */ #define NORM_CHAN_DATA_FOR_LX_CALC(chan, gain, time) (le16_to_cpu(chan) * \ 1024 * 20 / (gain) / (time)) static u64 bu27008_calc_nlux(struct bu27008_data *data, __le16 *lux_data, unsigned int gain, unsigned int gain_ir, unsigned int time) { unsigned int red, green, blue, ir; s64 c1, c2, c3, nlux; time /= 10000; ir = NORM_CHAN_DATA_FOR_LX_CALC(lux_data[BU27008_LUX_DATA_IR], gain_ir, time); red = NORM_CHAN_DATA_FOR_LX_CALC(lux_data[BU27008_LUX_DATA_RED], gain, time); green = NORM_CHAN_DATA_FOR_LX_CALC(lux_data[BU27008_LUX_DATA_GREEN], gain, time); blue = NORM_CHAN_DATA_FOR_LX_CALC(lux_data[BU27008_LUX_DATA_BLUE], gain, time); if ((u64)ir * 100LLU > (u64)green * 18LLU) { c1 = -22370; c2 = 321900; c3 = -120371; } else { c1 = -10740; c2 = 305415; c3 = -129367; } nlux = c1 * red + c2 * green + c3 * blue; return max_t(s64, 0, nlux); } static int bu27008_get_time_n_gains(struct bu27008_data *data, unsigned int *gain, unsigned int *gain_ir, unsigned int *time) { int ret; ret = bu27008_get_gain(data, &data->gts, gain); if (ret < 0) return ret; ret = bu27008_get_gain(data, &data->gts_ir, gain_ir); if (ret < 0) return ret; ret = bu27008_get_int_time_us(data); if (ret < 0) return ret; /* Max integration time is 400000. Fits in signed int. */ *time = ret; return 0; } struct bu27008_buf { __le16 chan[BU27008_NUM_HW_CHANS]; u64 lux __aligned(8); s64 ts __aligned(8); }; static int bu27008_buffer_fill_lux(struct bu27008_data *data, struct bu27008_buf *raw) { unsigned int gain, gain_ir, time; int ret; ret = bu27008_get_time_n_gains(data, &gain, &gain_ir, &time); if (ret) return ret; raw->lux = bu27008_calc_nlux(data, raw->chan, gain, gain_ir, time); return 0; } static int bu27008_read_lux(struct bu27008_data *data, struct iio_dev *idev, struct iio_chan_spec const *chan, int *val, int *val2) { __le16 lux_data[BU27008_NUM_HW_CHANS]; unsigned int gain, gain_ir, time; u64 nlux; int ret; ret = bu27008_get_time_n_gains(data, &gain, &gain_ir, &time); if (ret) return ret; ret = bu27008_read_lux_chans(data, time, lux_data); if (ret) return ret; nlux = bu27008_calc_nlux(data, lux_data, gain, gain_ir, time); *val = (int)nlux; *val2 = nlux >> 32LLU; return IIO_VAL_INT_64; } static int bu27008_read_raw(struct iio_dev *idev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct bu27008_data *data = iio_priv(idev); int busy, ret; switch (mask) { case IIO_CHAN_INFO_RAW: busy = iio_device_claim_direct_mode(idev); if (busy) return -EBUSY; mutex_lock(&data->mutex); if (chan->type == IIO_LIGHT) ret = bu27008_read_lux(data, idev, chan, val, val2); else ret = bu27008_read_one(data, idev, chan, val, val2); mutex_unlock(&data->mutex); iio_device_release_direct_mode(idev); return ret; case IIO_CHAN_INFO_SCALE: if (chan->type == IIO_LIGHT) { *val = 0; *val2 = 1; return IIO_VAL_INT_PLUS_NANO; } ret = bu27008_get_scale(data, chan->scan_index == BU27008_IR, val, val2); if (ret) return ret; return IIO_VAL_INT_PLUS_NANO; case IIO_CHAN_INFO_INT_TIME: ret = bu27008_get_int_time_us(data); if (ret < 0) return ret; *val = 0; *val2 = ret; return IIO_VAL_INT_PLUS_MICRO; default: return -EINVAL; } } /* Called if the new scale could not be supported with existing int-time */ static int bu27008_try_find_new_time_gain(struct bu27008_data *data, int val, int val2, int *gain_sel) { int i, ret, new_time_sel; for (i = 0; i < data->gts.num_itime; i++) { new_time_sel = data->gts.itime_table[i].sel; ret = iio_gts_find_gain_sel_for_scale_using_time(&data->gts, new_time_sel, val, val2, gain_sel); if (!ret) break; } if (i == data->gts.num_itime) { dev_err(data->dev, "Can't support scale %u %u\n", val, val2); return -EINVAL; } return bu27008_set_int_time_sel(data, new_time_sel); } static int bu27008_set_scale(struct bu27008_data *data, struct iio_chan_spec const *chan, int val, int val2) { int ret, gain_sel, time_sel; if (chan->scan_index == BU27008_IR) return -EINVAL; mutex_lock(&data->mutex); ret = bu27008_get_int_time_sel(data, &time_sel); if (ret < 0) goto unlock_out; ret = iio_gts_find_gain_sel_for_scale_using_time(&data->gts, time_sel, val, val2, &gain_sel); if (ret) { ret = bu27008_try_find_new_time_gain(data, val, val2, &gain_sel); if (ret) goto unlock_out; } ret = data->cd->write_gain_sel(data, gain_sel); unlock_out: mutex_unlock(&data->mutex); return ret; } static int bu27008_write_raw_get_fmt(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, long mask) { switch (mask) { case IIO_CHAN_INFO_SCALE: return IIO_VAL_INT_PLUS_NANO; case IIO_CHAN_INFO_INT_TIME: return IIO_VAL_INT_PLUS_MICRO; default: return -EINVAL; } } static int bu27008_write_raw(struct iio_dev *idev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct bu27008_data *data = iio_priv(idev); int ret; /* * Do not allow changing scale when measurement is ongoing as doing so * could make values in the buffer inconsistent. */ ret = iio_device_claim_direct_mode(idev); if (ret) return ret; switch (mask) { case IIO_CHAN_INFO_SCALE: ret = bu27008_set_scale(data, chan, val, val2); break; case IIO_CHAN_INFO_INT_TIME: if (val) { ret = -EINVAL; break; } ret = bu27008_try_set_int_time(data, val2); break; default: ret = -EINVAL; break; } iio_device_release_direct_mode(idev); return ret; } static int bu27008_read_avail(struct iio_dev *idev, struct iio_chan_spec const *chan, const int **vals, int *type, int *length, long mask) { struct bu27008_data *data = iio_priv(idev); switch (mask) { case IIO_CHAN_INFO_INT_TIME: return iio_gts_avail_times(&data->gts, vals, type, length); case IIO_CHAN_INFO_SCALE: if (chan->channel2 == IIO_MOD_LIGHT_IR) return iio_gts_all_avail_scales(&data->gts_ir, vals, type, length); return iio_gts_all_avail_scales(&data->gts, vals, type, length); default: return -EINVAL; } } static int bu27008_update_scan_mode(struct iio_dev *idev, const unsigned long *scan_mask) { struct bu27008_data *data = iio_priv(idev); int chan_sel; /* Configure channel selection */ if (test_bit(BU27008_BLUE, idev->active_scan_mask)) { if (test_bit(BU27008_CLEAR, idev->active_scan_mask)) chan_sel = BU27008_BLUE2_CLEAR3; else chan_sel = BU27008_BLUE2_IR3; } else { chan_sel = BU27008_CLEAR2_IR3; } chan_sel <<= ffs(data->cd->chan_sel_mask) - 1; return regmap_update_bits(data->regmap, data->cd->chan_sel_reg, data->cd->chan_sel_mask, chan_sel); } static const struct iio_info bu27008_info = { .read_raw = &bu27008_read_raw, .write_raw = &bu27008_write_raw, .write_raw_get_fmt = &bu27008_write_raw_get_fmt, .read_avail = &bu27008_read_avail, .update_scan_mode = bu27008_update_scan_mode, .validate_trigger = iio_validate_own_trigger, }; static int bu27008_trigger_set_state(struct iio_trigger *trig, bool state) { struct bu27008_data *data = iio_trigger_get_drvdata(trig); int ret; if (state) ret = regmap_set_bits(data->regmap, data->cd->drdy_en_reg, data->cd->drdy_en_mask); else ret = regmap_clear_bits(data->regmap, data->cd->drdy_en_reg, data->cd->drdy_en_mask); if (ret) dev_err(data->dev, "Failed to set trigger state\n"); return ret; } static void bu27008_trigger_reenable(struct iio_trigger *trig) { struct bu27008_data *data = iio_trigger_get_drvdata(trig); enable_irq(data->irq); } static const struct iio_trigger_ops bu27008_trigger_ops = { .set_trigger_state = bu27008_trigger_set_state, .reenable = bu27008_trigger_reenable, }; static irqreturn_t bu27008_trigger_handler(int irq, void *p) { struct iio_poll_func *pf = p; struct iio_dev *idev = pf->indio_dev; struct bu27008_data *data = iio_priv(idev); struct bu27008_buf raw; int ret, dummy; memset(&raw, 0, sizeof(raw)); /* * After some measurements, it seems reading the * BU27008_REG_MODE_CONTROL3 debounces the IRQ line */ ret = regmap_read(data->regmap, data->cd->valid_reg, &dummy); if (ret < 0) goto err_read; ret = regmap_bulk_read(data->regmap, BU27008_REG_DATA0_LO, &raw.chan, sizeof(raw.chan)); if (ret < 0) goto err_read; if (test_bit(BU27008_LUX, idev->active_scan_mask)) { ret = bu27008_buffer_fill_lux(data, &raw); if (ret) goto err_read; } iio_push_to_buffers_with_timestamp(idev, &raw, pf->timestamp); err_read: iio_trigger_notify_done(idev->trig); return IRQ_HANDLED; } static int bu27008_buffer_preenable(struct iio_dev *idev) { struct bu27008_data *data = iio_priv(idev); return bu27008_meas_set(data, true); } static int bu27008_buffer_postdisable(struct iio_dev *idev) { struct bu27008_data *data = iio_priv(idev); return bu27008_meas_set(data, false); } static const struct iio_buffer_setup_ops bu27008_buffer_ops = { .preenable = bu27008_buffer_preenable, .postdisable = bu27008_buffer_postdisable, }; static irqreturn_t bu27008_data_rdy_poll(int irq, void *private) { /* * The BU27008 keeps IRQ asserted until we read the VALID bit from * a register. We need to keep the IRQ disabled until then. */ disable_irq_nosync(irq); iio_trigger_poll(private); return IRQ_HANDLED; } static int bu27008_setup_trigger(struct bu27008_data *data, struct iio_dev *idev) { struct iio_trigger *itrig; char *name; int ret; ret = devm_iio_triggered_buffer_setup(data->dev, idev, &iio_pollfunc_store_time, bu27008_trigger_handler, &bu27008_buffer_ops); if (ret) return dev_err_probe(data->dev, ret, "iio_triggered_buffer_setup_ext FAIL\n"); itrig = devm_iio_trigger_alloc(data->dev, "%sdata-rdy-dev%d", idev->name, iio_device_id(idev)); if (!itrig) return -ENOMEM; data->trig = itrig; itrig->ops = &bu27008_trigger_ops; iio_trigger_set_drvdata(itrig, data); name = devm_kasprintf(data->dev, GFP_KERNEL, "%s-bu27008", dev_name(data->dev)); ret = devm_request_irq(data->dev, data->irq, &bu27008_data_rdy_poll, 0, name, itrig); if (ret) return dev_err_probe(data->dev, ret, "Could not request IRQ\n"); ret = devm_iio_trigger_register(data->dev, itrig); if (ret) return dev_err_probe(data->dev, ret, "Trigger registration failed\n"); /* set default trigger */ idev->trig = iio_trigger_get(itrig); return 0; } static int bu27008_probe(struct i2c_client *i2c) { struct device *dev = &i2c->dev; struct bu27008_data *data; struct regmap *regmap; unsigned int part_id, reg; struct iio_dev *idev; int ret; idev = devm_iio_device_alloc(dev, sizeof(*data)); if (!idev) return -ENOMEM; ret = devm_regulator_get_enable(dev, "vdd"); if (ret) return dev_err_probe(dev, ret, "Failed to get regulator\n"); data = iio_priv(idev); data->cd = device_get_match_data(&i2c->dev); if (!data->cd) return -ENODEV; regmap = devm_regmap_init_i2c(i2c, data->cd->regmap_cfg); if (IS_ERR(regmap)) return dev_err_probe(dev, PTR_ERR(regmap), "Failed to initialize Regmap\n"); ret = regmap_read(regmap, BU27008_REG_SYSTEM_CONTROL, ®); if (ret) return dev_err_probe(dev, ret, "Failed to access sensor\n"); part_id = FIELD_GET(BU27008_MASK_PART_ID, reg); if (part_id != data->cd->part_id) dev_warn(dev, "unknown device 0x%x\n", part_id); ret = devm_iio_init_iio_gts(dev, data->cd->scale1x, 0, data->cd->gains, data->cd->num_gains, data->cd->itimes, data->cd->num_itimes, &data->gts); if (ret) return ret; ret = devm_iio_init_iio_gts(dev, data->cd->scale1x, 0, data->cd->gains_ir, data->cd->num_gains_ir, data->cd->itimes, data->cd->num_itimes, &data->gts_ir); if (ret) return ret; mutex_init(&data->mutex); data->regmap = regmap; data->dev = dev; data->irq = i2c->irq; idev->channels = bu27008_channels; idev->num_channels = ARRAY_SIZE(bu27008_channels); idev->name = data->cd->name; idev->info = &bu27008_info; idev->modes = INDIO_DIRECT_MODE; idev->available_scan_masks = bu27008_scan_masks; ret = data->cd->chip_init(data); if (ret) return ret; if (i2c->irq) { ret = bu27008_setup_trigger(data, idev); if (ret) return ret; } else { dev_info(dev, "No IRQ, buffered mode disabled\n"); } ret = devm_iio_device_register(dev, idev); if (ret) return dev_err_probe(dev, ret, "Unable to register iio device\n"); return 0; } static const struct of_device_id bu27008_of_match[] = { { .compatible = "rohm,bu27008", .data = &bu27008_chip }, { .compatible = "rohm,bu27010", .data = &bu27010_chip }, { } }; MODULE_DEVICE_TABLE(of, bu27008_of_match); static struct i2c_driver bu27008_i2c_driver = { .driver = { .name = "bu27008", .of_match_table = bu27008_of_match, .probe_type = PROBE_PREFER_ASYNCHRONOUS, }, .probe = bu27008_probe, }; module_i2c_driver(bu27008_i2c_driver); MODULE_DESCRIPTION("ROHM BU27008 and BU27010 colour sensor driver"); MODULE_AUTHOR("Matti Vaittinen "); MODULE_LICENSE("GPL"); MODULE_IMPORT_NS(IIO_GTS_HELPER);