/* * Copyright (c) 2010 Christoph Mair * Copyright (c) 2012 Bosch Sensortec GmbH * Copyright (c) 2012 Unixphere AB * Copyright (c) 2014 Intel Corporation * Copyright (c) 2016 Linus Walleij * * Driver for Bosch Sensortec BMP180 and BMP280 digital pressure sensor. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * Datasheet: * https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP180-DS000-121.pdf * https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf * https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BME280_DS001-11.pdf */ #define pr_fmt(fmt) "bmp280: " fmt #include #include #include #include #include #include #include #include #include #include /* For irq_get_irq_data() */ #include #include #include #include "bmp280.h" /* * These enums are used for indexing into the array of calibration * coefficients for BMP180. */ enum { AC1, AC2, AC3, AC4, AC5, AC6, B1, B2, MB, MC, MD }; struct bmp180_calib { s16 AC1; s16 AC2; s16 AC3; u16 AC4; u16 AC5; u16 AC6; s16 B1; s16 B2; s16 MB; s16 MC; s16 MD; }; struct bmp280_data { struct device *dev; struct mutex lock; struct regmap *regmap; struct completion done; bool use_eoc; const struct bmp280_chip_info *chip_info; struct bmp180_calib calib; struct regulator *vddd; struct regulator *vdda; unsigned int start_up_time; /* in microseconds */ /* log of base 2 of oversampling rate */ u8 oversampling_press; u8 oversampling_temp; u8 oversampling_humid; /* * Carryover value from temperature conversion, used in pressure * calculation. */ s32 t_fine; }; struct bmp280_chip_info { const int *oversampling_temp_avail; int num_oversampling_temp_avail; const int *oversampling_press_avail; int num_oversampling_press_avail; const int *oversampling_humid_avail; int num_oversampling_humid_avail; int (*chip_config)(struct bmp280_data *); int (*read_temp)(struct bmp280_data *, int *); int (*read_press)(struct bmp280_data *, int *, int *); int (*read_humid)(struct bmp280_data *, int *, int *); }; /* * These enums are used for indexing into the array of compensation * parameters for BMP280. */ enum { T1, T2, T3 }; enum { P1, P2, P3, P4, P5, P6, P7, P8, P9 }; static const struct iio_chan_spec bmp280_channels[] = { { .type = IIO_PRESSURE, .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), }, { .type = IIO_TEMP, .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), }, { .type = IIO_HUMIDITYRELATIVE, .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), }, }; /* * Returns humidity in percent, resolution is 0.01 percent. Output value of * "47445" represents 47445/1024 = 46.333 %RH. * * Taken from BME280 datasheet, Section 4.2.3, "Compensation formula". */ static u32 bmp280_compensate_humidity(struct bmp280_data *data, s32 adc_humidity) { struct device *dev = data->dev; unsigned int H1, H3, tmp; int H2, H4, H5, H6, ret, var; ret = regmap_read(data->regmap, BMP280_REG_COMP_H1, &H1); if (ret < 0) { dev_err(dev, "failed to read H1 comp value\n"); return ret; } ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_H2, &tmp, 2); if (ret < 0) { dev_err(dev, "failed to read H2 comp value\n"); return ret; } H2 = sign_extend32(le16_to_cpu(tmp), 15); ret = regmap_read(data->regmap, BMP280_REG_COMP_H3, &H3); if (ret < 0) { dev_err(dev, "failed to read H3 comp value\n"); return ret; } ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_H4, &tmp, 2); if (ret < 0) { dev_err(dev, "failed to read H4 comp value\n"); return ret; } H4 = sign_extend32(((be16_to_cpu(tmp) >> 4) & 0xff0) | (be16_to_cpu(tmp) & 0xf), 11); ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_H5, &tmp, 2); if (ret < 0) { dev_err(dev, "failed to read H5 comp value\n"); return ret; } H5 = sign_extend32(((le16_to_cpu(tmp) >> 4) & 0xfff), 11); ret = regmap_read(data->regmap, BMP280_REG_COMP_H6, &tmp); if (ret < 0) { dev_err(dev, "failed to read H6 comp value\n"); return ret; } H6 = sign_extend32(tmp, 7); var = ((s32)data->t_fine) - 76800; var = ((((adc_humidity << 14) - (H4 << 20) - (H5 * var)) + 16384) >> 15) * (((((((var * H6) >> 10) * (((var * H3) >> 11) + 32768)) >> 10) + 2097152) * H2 + 8192) >> 14); var -= ((((var >> 15) * (var >> 15)) >> 7) * H1) >> 4; return var >> 12; }; /* * Returns temperature in DegC, resolution is 0.01 DegC. Output value of * "5123" equals 51.23 DegC. t_fine carries fine temperature as global * value. * * Taken from datasheet, Section 3.11.3, "Compensation formula". */ static s32 bmp280_compensate_temp(struct bmp280_data *data, s32 adc_temp) { int ret; s32 var1, var2; __le16 buf[BMP280_COMP_TEMP_REG_COUNT / 2]; ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_TEMP_START, buf, BMP280_COMP_TEMP_REG_COUNT); if (ret < 0) { dev_err(data->dev, "failed to read temperature calibration parameters\n"); return ret; } /* * The double casts are necessary because le16_to_cpu returns an * unsigned 16-bit value. Casting that value directly to a * signed 32-bit will not do proper sign extension. * * Conversely, T1 and P1 are unsigned values, so they can be * cast straight to the larger type. */ var1 = (((adc_temp >> 3) - ((s32)le16_to_cpu(buf[T1]) << 1)) * ((s32)(s16)le16_to_cpu(buf[T2]))) >> 11; var2 = (((((adc_temp >> 4) - ((s32)le16_to_cpu(buf[T1]))) * ((adc_temp >> 4) - ((s32)le16_to_cpu(buf[T1])))) >> 12) * ((s32)(s16)le16_to_cpu(buf[T3]))) >> 14; data->t_fine = var1 + var2; return (data->t_fine * 5 + 128) >> 8; } /* * Returns pressure in Pa as unsigned 32 bit integer in Q24.8 format (24 * integer bits and 8 fractional bits). Output value of "24674867" * represents 24674867/256 = 96386.2 Pa = 963.862 hPa * * Taken from datasheet, Section 3.11.3, "Compensation formula". */ static u32 bmp280_compensate_press(struct bmp280_data *data, s32 adc_press) { int ret; s64 var1, var2, p; __le16 buf[BMP280_COMP_PRESS_REG_COUNT / 2]; ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_PRESS_START, buf, BMP280_COMP_PRESS_REG_COUNT); if (ret < 0) { dev_err(data->dev, "failed to read pressure calibration parameters\n"); return ret; } var1 = ((s64)data->t_fine) - 128000; var2 = var1 * var1 * (s64)(s16)le16_to_cpu(buf[P6]); var2 += (var1 * (s64)(s16)le16_to_cpu(buf[P5])) << 17; var2 += ((s64)(s16)le16_to_cpu(buf[P4])) << 35; var1 = ((var1 * var1 * (s64)(s16)le16_to_cpu(buf[P3])) >> 8) + ((var1 * (s64)(s16)le16_to_cpu(buf[P2])) << 12); var1 = ((((s64)1) << 47) + var1) * ((s64)le16_to_cpu(buf[P1])) >> 33; if (var1 == 0) return 0; p = ((((s64)1048576 - adc_press) << 31) - var2) * 3125; p = div64_s64(p, var1); var1 = (((s64)(s16)le16_to_cpu(buf[P9])) * (p >> 13) * (p >> 13)) >> 25; var2 = (((s64)(s16)le16_to_cpu(buf[P8])) * p) >> 19; p = ((p + var1 + var2) >> 8) + (((s64)(s16)le16_to_cpu(buf[P7])) << 4); return (u32)p; } static int bmp280_read_temp(struct bmp280_data *data, int *val) { int ret; __be32 tmp = 0; s32 adc_temp, comp_temp; ret = regmap_bulk_read(data->regmap, BMP280_REG_TEMP_MSB, (u8 *) &tmp, 3); if (ret < 0) { dev_err(data->dev, "failed to read temperature\n"); return ret; } adc_temp = be32_to_cpu(tmp) >> 12; comp_temp = bmp280_compensate_temp(data, adc_temp); /* * val might be NULL if we're called by the read_press routine, * who only cares about the carry over t_fine value. */ if (val) { *val = comp_temp * 10; return IIO_VAL_INT; } return 0; } static int bmp280_read_press(struct bmp280_data *data, int *val, int *val2) { int ret; __be32 tmp = 0; s32 adc_press; u32 comp_press; /* Read and compensate temperature so we get a reading of t_fine. */ ret = bmp280_read_temp(data, NULL); if (ret < 0) return ret; ret = regmap_bulk_read(data->regmap, BMP280_REG_PRESS_MSB, (u8 *) &tmp, 3); if (ret < 0) { dev_err(data->dev, "failed to read pressure\n"); return ret; } adc_press = be32_to_cpu(tmp) >> 12; comp_press = bmp280_compensate_press(data, adc_press); *val = comp_press; *val2 = 256000; return IIO_VAL_FRACTIONAL; } static int bmp280_read_humid(struct bmp280_data *data, int *val, int *val2) { int ret; __be16 tmp = 0; s32 adc_humidity; u32 comp_humidity; /* Read and compensate temperature so we get a reading of t_fine. */ ret = bmp280_read_temp(data, NULL); if (ret < 0) return ret; ret = regmap_bulk_read(data->regmap, BMP280_REG_HUMIDITY_MSB, (u8 *) &tmp, 2); if (ret < 0) { dev_err(data->dev, "failed to read humidity\n"); return ret; } adc_humidity = be16_to_cpu(tmp); comp_humidity = bmp280_compensate_humidity(data, adc_humidity); *val = comp_humidity; *val2 = 1024; return IIO_VAL_FRACTIONAL; } static int bmp280_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { int ret; struct bmp280_data *data = iio_priv(indio_dev); pm_runtime_get_sync(data->dev); mutex_lock(&data->lock); switch (mask) { case IIO_CHAN_INFO_PROCESSED: switch (chan->type) { case IIO_HUMIDITYRELATIVE: ret = data->chip_info->read_humid(data, val, val2); break; case IIO_PRESSURE: ret = data->chip_info->read_press(data, val, val2); break; case IIO_TEMP: ret = data->chip_info->read_temp(data, val); break; default: ret = -EINVAL; break; } break; case IIO_CHAN_INFO_OVERSAMPLING_RATIO: switch (chan->type) { case IIO_HUMIDITYRELATIVE: *val = 1 << data->oversampling_humid; ret = IIO_VAL_INT; break; case IIO_PRESSURE: *val = 1 << data->oversampling_press; ret = IIO_VAL_INT; break; case IIO_TEMP: *val = 1 << data->oversampling_temp; ret = IIO_VAL_INT; break; default: ret = -EINVAL; break; } break; default: ret = -EINVAL; break; } mutex_unlock(&data->lock); pm_runtime_mark_last_busy(data->dev); pm_runtime_put_autosuspend(data->dev); return ret; } static int bmp280_write_oversampling_ratio_humid(struct bmp280_data *data, int val) { int i; const int *avail = data->chip_info->oversampling_humid_avail; const int n = data->chip_info->num_oversampling_humid_avail; for (i = 0; i < n; i++) { if (avail[i] == val) { data->oversampling_humid = ilog2(val); return data->chip_info->chip_config(data); } } return -EINVAL; } static int bmp280_write_oversampling_ratio_temp(struct bmp280_data *data, int val) { int i; const int *avail = data->chip_info->oversampling_temp_avail; const int n = data->chip_info->num_oversampling_temp_avail; for (i = 0; i < n; i++) { if (avail[i] == val) { data->oversampling_temp = ilog2(val); return data->chip_info->chip_config(data); } } return -EINVAL; } static int bmp280_write_oversampling_ratio_press(struct bmp280_data *data, int val) { int i; const int *avail = data->chip_info->oversampling_press_avail; const int n = data->chip_info->num_oversampling_press_avail; for (i = 0; i < n; i++) { if (avail[i] == val) { data->oversampling_press = ilog2(val); return data->chip_info->chip_config(data); } } return -EINVAL; } static int bmp280_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { int ret = 0; struct bmp280_data *data = iio_priv(indio_dev); switch (mask) { case IIO_CHAN_INFO_OVERSAMPLING_RATIO: pm_runtime_get_sync(data->dev); mutex_lock(&data->lock); switch (chan->type) { case IIO_HUMIDITYRELATIVE: ret = bmp280_write_oversampling_ratio_humid(data, val); break; case IIO_PRESSURE: ret = bmp280_write_oversampling_ratio_press(data, val); break; case IIO_TEMP: ret = bmp280_write_oversampling_ratio_temp(data, val); break; default: ret = -EINVAL; break; } mutex_unlock(&data->lock); pm_runtime_mark_last_busy(data->dev); pm_runtime_put_autosuspend(data->dev); break; default: return -EINVAL; } return ret; } static ssize_t bmp280_show_avail(char *buf, const int *vals, const int n) { size_t len = 0; int i; for (i = 0; i < n; i++) len += scnprintf(buf + len, PAGE_SIZE - len, "%d ", vals[i]); buf[len - 1] = '\n'; return len; } static ssize_t bmp280_show_temp_oversampling_avail(struct device *dev, struct device_attribute *attr, char *buf) { struct bmp280_data *data = iio_priv(dev_to_iio_dev(dev)); return bmp280_show_avail(buf, data->chip_info->oversampling_temp_avail, data->chip_info->num_oversampling_temp_avail); } static ssize_t bmp280_show_press_oversampling_avail(struct device *dev, struct device_attribute *attr, char *buf) { struct bmp280_data *data = iio_priv(dev_to_iio_dev(dev)); return bmp280_show_avail(buf, data->chip_info->oversampling_press_avail, data->chip_info->num_oversampling_press_avail); } static IIO_DEVICE_ATTR(in_temp_oversampling_ratio_available, S_IRUGO, bmp280_show_temp_oversampling_avail, NULL, 0); static IIO_DEVICE_ATTR(in_pressure_oversampling_ratio_available, S_IRUGO, bmp280_show_press_oversampling_avail, NULL, 0); static struct attribute *bmp280_attributes[] = { &iio_dev_attr_in_temp_oversampling_ratio_available.dev_attr.attr, &iio_dev_attr_in_pressure_oversampling_ratio_available.dev_attr.attr, NULL, }; static const struct attribute_group bmp280_attrs_group = { .attrs = bmp280_attributes, }; static const struct iio_info bmp280_info = { .driver_module = THIS_MODULE, .read_raw = &bmp280_read_raw, .write_raw = &bmp280_write_raw, .attrs = &bmp280_attrs_group, }; static int bmp280_chip_config(struct bmp280_data *data) { int ret; u8 osrs = BMP280_OSRS_TEMP_X(data->oversampling_temp + 1) | BMP280_OSRS_PRESS_X(data->oversampling_press + 1); ret = regmap_update_bits(data->regmap, BMP280_REG_CTRL_MEAS, BMP280_OSRS_TEMP_MASK | BMP280_OSRS_PRESS_MASK | BMP280_MODE_MASK, osrs | BMP280_MODE_NORMAL); if (ret < 0) { dev_err(data->dev, "failed to write ctrl_meas register\n"); return ret; } ret = regmap_update_bits(data->regmap, BMP280_REG_CONFIG, BMP280_FILTER_MASK, BMP280_FILTER_4X); if (ret < 0) { dev_err(data->dev, "failed to write config register\n"); return ret; } return ret; } static const int bmp280_oversampling_avail[] = { 1, 2, 4, 8, 16 }; static const struct bmp280_chip_info bmp280_chip_info = { .oversampling_temp_avail = bmp280_oversampling_avail, .num_oversampling_temp_avail = ARRAY_SIZE(bmp280_oversampling_avail), .oversampling_press_avail = bmp280_oversampling_avail, .num_oversampling_press_avail = ARRAY_SIZE(bmp280_oversampling_avail), .chip_config = bmp280_chip_config, .read_temp = bmp280_read_temp, .read_press = bmp280_read_press, }; static int bme280_chip_config(struct bmp280_data *data) { int ret = bmp280_chip_config(data); u8 osrs = BMP280_OSRS_HUMIDITIY_X(data->oversampling_humid + 1); if (ret < 0) return ret; return regmap_update_bits(data->regmap, BMP280_REG_CTRL_HUMIDITY, BMP280_OSRS_HUMIDITY_MASK, osrs); } static const struct bmp280_chip_info bme280_chip_info = { .oversampling_temp_avail = bmp280_oversampling_avail, .num_oversampling_temp_avail = ARRAY_SIZE(bmp280_oversampling_avail), .oversampling_press_avail = bmp280_oversampling_avail, .num_oversampling_press_avail = ARRAY_SIZE(bmp280_oversampling_avail), .oversampling_humid_avail = bmp280_oversampling_avail, .num_oversampling_humid_avail = ARRAY_SIZE(bmp280_oversampling_avail), .chip_config = bme280_chip_config, .read_temp = bmp280_read_temp, .read_press = bmp280_read_press, .read_humid = bmp280_read_humid, }; static int bmp180_measure(struct bmp280_data *data, u8 ctrl_meas) { int ret; const int conversion_time_max[] = { 4500, 7500, 13500, 25500 }; unsigned int delay_us; unsigned int ctrl; if (data->use_eoc) init_completion(&data->done); ret = regmap_write(data->regmap, BMP280_REG_CTRL_MEAS, ctrl_meas); if (ret) return ret; if (data->use_eoc) { /* * If we have a completion interrupt, use it, wait up to * 100ms. The longest conversion time listed is 76.5 ms for * advanced resolution mode. */ ret = wait_for_completion_timeout(&data->done, 1 + msecs_to_jiffies(100)); if (!ret) dev_err(data->dev, "timeout waiting for completion\n"); } else { if (ctrl_meas == BMP180_MEAS_TEMP) delay_us = 4500; else delay_us = conversion_time_max[data->oversampling_press]; usleep_range(delay_us, delay_us + 1000); } ret = regmap_read(data->regmap, BMP280_REG_CTRL_MEAS, &ctrl); if (ret) return ret; /* The value of this bit reset to "0" after conversion is complete */ if (ctrl & BMP180_MEAS_SCO) return -EIO; return 0; } static int bmp180_read_adc_temp(struct bmp280_data *data, int *val) { int ret; __be16 tmp = 0; ret = bmp180_measure(data, BMP180_MEAS_TEMP); if (ret) return ret; ret = regmap_bulk_read(data->regmap, BMP180_REG_OUT_MSB, (u8 *)&tmp, 2); if (ret) return ret; *val = be16_to_cpu(tmp); return 0; } static int bmp180_read_calib(struct bmp280_data *data, struct bmp180_calib *calib) { int ret; int i; __be16 buf[BMP180_REG_CALIB_COUNT / 2]; ret = regmap_bulk_read(data->regmap, BMP180_REG_CALIB_START, buf, sizeof(buf)); if (ret < 0) return ret; /* None of the words has the value 0 or 0xFFFF */ for (i = 0; i < ARRAY_SIZE(buf); i++) { if (buf[i] == cpu_to_be16(0) || buf[i] == cpu_to_be16(0xffff)) return -EIO; } /* Toss the calibration data into the entropy pool */ add_device_randomness(buf, sizeof(buf)); calib->AC1 = be16_to_cpu(buf[AC1]); calib->AC2 = be16_to_cpu(buf[AC2]); calib->AC3 = be16_to_cpu(buf[AC3]); calib->AC4 = be16_to_cpu(buf[AC4]); calib->AC5 = be16_to_cpu(buf[AC5]); calib->AC6 = be16_to_cpu(buf[AC6]); calib->B1 = be16_to_cpu(buf[B1]); calib->B2 = be16_to_cpu(buf[B2]); calib->MB = be16_to_cpu(buf[MB]); calib->MC = be16_to_cpu(buf[MC]); calib->MD = be16_to_cpu(buf[MD]); return 0; } /* * Returns temperature in DegC, resolution is 0.1 DegC. * t_fine carries fine temperature as global value. * * Taken from datasheet, Section 3.5, "Calculating pressure and temperature". */ static s32 bmp180_compensate_temp(struct bmp280_data *data, s32 adc_temp) { s32 x1, x2; struct bmp180_calib *calib = &data->calib; x1 = ((adc_temp - calib->AC6) * calib->AC5) >> 15; x2 = (calib->MC << 11) / (x1 + calib->MD); data->t_fine = x1 + x2; return (data->t_fine + 8) >> 4; } static int bmp180_read_temp(struct bmp280_data *data, int *val) { int ret; s32 adc_temp, comp_temp; ret = bmp180_read_adc_temp(data, &adc_temp); if (ret) return ret; comp_temp = bmp180_compensate_temp(data, adc_temp); /* * val might be NULL if we're called by the read_press routine, * who only cares about the carry over t_fine value. */ if (val) { *val = comp_temp * 100; return IIO_VAL_INT; } return 0; } static int bmp180_read_adc_press(struct bmp280_data *data, int *val) { int ret; __be32 tmp = 0; u8 oss = data->oversampling_press; ret = bmp180_measure(data, BMP180_MEAS_PRESS_X(oss)); if (ret) return ret; ret = regmap_bulk_read(data->regmap, BMP180_REG_OUT_MSB, (u8 *)&tmp, 3); if (ret) return ret; *val = (be32_to_cpu(tmp) >> 8) >> (8 - oss); return 0; } /* * Returns pressure in Pa, resolution is 1 Pa. * * Taken from datasheet, Section 3.5, "Calculating pressure and temperature". */ static u32 bmp180_compensate_press(struct bmp280_data *data, s32 adc_press) { s32 x1, x2, x3, p; s32 b3, b6; u32 b4, b7; s32 oss = data->oversampling_press; struct bmp180_calib *calib = &data->calib; b6 = data->t_fine - 4000; x1 = (calib->B2 * (b6 * b6 >> 12)) >> 11; x2 = calib->AC2 * b6 >> 11; x3 = x1 + x2; b3 = ((((s32)calib->AC1 * 4 + x3) << oss) + 2) / 4; x1 = calib->AC3 * b6 >> 13; x2 = (calib->B1 * ((b6 * b6) >> 12)) >> 16; x3 = (x1 + x2 + 2) >> 2; b4 = calib->AC4 * (u32)(x3 + 32768) >> 15; b7 = ((u32)adc_press - b3) * (50000 >> oss); if (b7 < 0x80000000) p = (b7 * 2) / b4; else p = (b7 / b4) * 2; x1 = (p >> 8) * (p >> 8); x1 = (x1 * 3038) >> 16; x2 = (-7357 * p) >> 16; return p + ((x1 + x2 + 3791) >> 4); } static int bmp180_read_press(struct bmp280_data *data, int *val, int *val2) { int ret; s32 adc_press; u32 comp_press; /* Read and compensate temperature so we get a reading of t_fine. */ ret = bmp180_read_temp(data, NULL); if (ret) return ret; ret = bmp180_read_adc_press(data, &adc_press); if (ret) return ret; comp_press = bmp180_compensate_press(data, adc_press); *val = comp_press; *val2 = 1000; return IIO_VAL_FRACTIONAL; } static int bmp180_chip_config(struct bmp280_data *data) { return 0; } static const int bmp180_oversampling_temp_avail[] = { 1 }; static const int bmp180_oversampling_press_avail[] = { 1, 2, 4, 8 }; static const struct bmp280_chip_info bmp180_chip_info = { .oversampling_temp_avail = bmp180_oversampling_temp_avail, .num_oversampling_temp_avail = ARRAY_SIZE(bmp180_oversampling_temp_avail), .oversampling_press_avail = bmp180_oversampling_press_avail, .num_oversampling_press_avail = ARRAY_SIZE(bmp180_oversampling_press_avail), .chip_config = bmp180_chip_config, .read_temp = bmp180_read_temp, .read_press = bmp180_read_press, }; static irqreturn_t bmp085_eoc_irq(int irq, void *d) { struct bmp280_data *data = d; complete(&data->done); return IRQ_HANDLED; } static int bmp085_fetch_eoc_irq(struct device *dev, const char *name, int irq, struct bmp280_data *data) { unsigned long irq_trig; int ret; irq_trig = irqd_get_trigger_type(irq_get_irq_data(irq)); if (irq_trig != IRQF_TRIGGER_RISING) { dev_err(dev, "non-rising trigger given for EOC interrupt, " "trying to enforce it\n"); irq_trig = IRQF_TRIGGER_RISING; } ret = devm_request_threaded_irq(dev, irq, bmp085_eoc_irq, NULL, irq_trig, name, data); if (ret) { /* Bail out without IRQ but keep the driver in place */ dev_err(dev, "unable to request DRDY IRQ\n"); return 0; } data->use_eoc = true; return 0; } int bmp280_common_probe(struct device *dev, struct regmap *regmap, unsigned int chip, const char *name, int irq) { int ret; struct iio_dev *indio_dev; struct bmp280_data *data; unsigned int chip_id; struct gpio_desc *gpiod; indio_dev = devm_iio_device_alloc(dev, sizeof(*data)); if (!indio_dev) return -ENOMEM; data = iio_priv(indio_dev); mutex_init(&data->lock); data->dev = dev; indio_dev->dev.parent = dev; indio_dev->name = name; indio_dev->channels = bmp280_channels; indio_dev->info = &bmp280_info; indio_dev->modes = INDIO_DIRECT_MODE; switch (chip) { case BMP180_CHIP_ID: indio_dev->num_channels = 2; data->chip_info = &bmp180_chip_info; data->oversampling_press = ilog2(8); data->oversampling_temp = ilog2(1); data->start_up_time = 10000; break; case BMP280_CHIP_ID: indio_dev->num_channels = 2; data->chip_info = &bmp280_chip_info; data->oversampling_press = ilog2(16); data->oversampling_temp = ilog2(2); data->start_up_time = 2000; break; case BME280_CHIP_ID: indio_dev->num_channels = 3; data->chip_info = &bme280_chip_info; data->oversampling_press = ilog2(16); data->oversampling_humid = ilog2(16); data->oversampling_temp = ilog2(2); data->start_up_time = 2000; break; default: return -EINVAL; } /* Bring up regulators */ data->vddd = devm_regulator_get(dev, "vddd"); if (IS_ERR(data->vddd)) { dev_err(dev, "failed to get VDDD regulator\n"); return PTR_ERR(data->vddd); } ret = regulator_enable(data->vddd); if (ret) { dev_err(dev, "failed to enable VDDD regulator\n"); return ret; } data->vdda = devm_regulator_get(dev, "vdda"); if (IS_ERR(data->vdda)) { dev_err(dev, "failed to get VDDA regulator\n"); ret = PTR_ERR(data->vdda); goto out_disable_vddd; } ret = regulator_enable(data->vdda); if (ret) { dev_err(dev, "failed to enable VDDA regulator\n"); goto out_disable_vddd; } /* Wait to make sure we started up properly */ usleep_range(data->start_up_time, data->start_up_time + 100); /* Bring chip out of reset if there is an assigned GPIO line */ gpiod = devm_gpiod_get(dev, "reset", GPIOD_OUT_HIGH); /* Deassert the signal */ if (!IS_ERR(gpiod)) { dev_info(dev, "release reset\n"); gpiod_set_value(gpiod, 0); } data->regmap = regmap; ret = regmap_read(regmap, BMP280_REG_ID, &chip_id); if (ret < 0) goto out_disable_vdda; if (chip_id != chip) { dev_err(dev, "bad chip id: expected %x got %x\n", chip, chip_id); ret = -EINVAL; goto out_disable_vdda; } ret = data->chip_info->chip_config(data); if (ret < 0) goto out_disable_vdda; dev_set_drvdata(dev, indio_dev); /* * The BMP085 and BMP180 has calibration in an E2PROM, read it out * at probe time. It will not change. */ if (chip_id == BMP180_CHIP_ID) { ret = bmp180_read_calib(data, &data->calib); if (ret < 0) { dev_err(data->dev, "failed to read calibration coefficients\n"); goto out_disable_vdda; } } /* * Attempt to grab an optional EOC IRQ - only the BMP085 has this * however as it happens, the BMP085 shares the chip ID of BMP180 * so we look for an IRQ if we have that. */ if (irq > 0 || (chip_id == BMP180_CHIP_ID)) { ret = bmp085_fetch_eoc_irq(dev, name, irq, data); if (ret) goto out_disable_vdda; } /* Enable runtime PM */ pm_runtime_get_noresume(dev); pm_runtime_set_active(dev); pm_runtime_enable(dev); /* * Set autosuspend to two orders of magnitude larger than the * start-up time. */ pm_runtime_set_autosuspend_delay(dev, data->start_up_time / 10); pm_runtime_use_autosuspend(dev); pm_runtime_put(dev); ret = iio_device_register(indio_dev); if (ret) goto out_runtime_pm_disable; return 0; out_runtime_pm_disable: pm_runtime_get_sync(data->dev); pm_runtime_put_noidle(data->dev); pm_runtime_disable(data->dev); out_disable_vdda: regulator_disable(data->vdda); out_disable_vddd: regulator_disable(data->vddd); return ret; } EXPORT_SYMBOL(bmp280_common_probe); int bmp280_common_remove(struct device *dev) { struct iio_dev *indio_dev = dev_get_drvdata(dev); struct bmp280_data *data = iio_priv(indio_dev); iio_device_unregister(indio_dev); pm_runtime_get_sync(data->dev); pm_runtime_put_noidle(data->dev); pm_runtime_disable(data->dev); regulator_disable(data->vdda); regulator_disable(data->vddd); return 0; } EXPORT_SYMBOL(bmp280_common_remove); #ifdef CONFIG_PM static int bmp280_runtime_suspend(struct device *dev) { struct iio_dev *indio_dev = dev_get_drvdata(dev); struct bmp280_data *data = iio_priv(indio_dev); int ret; ret = regulator_disable(data->vdda); if (ret) return ret; return regulator_disable(data->vddd); } static int bmp280_runtime_resume(struct device *dev) { struct iio_dev *indio_dev = dev_get_drvdata(dev); struct bmp280_data *data = iio_priv(indio_dev); int ret; ret = regulator_enable(data->vddd); if (ret) return ret; ret = regulator_enable(data->vdda); if (ret) return ret; usleep_range(data->start_up_time, data->start_up_time + 100); return data->chip_info->chip_config(data); } #endif /* CONFIG_PM */ const struct dev_pm_ops bmp280_dev_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, pm_runtime_force_resume) SET_RUNTIME_PM_OPS(bmp280_runtime_suspend, bmp280_runtime_resume, NULL) }; EXPORT_SYMBOL(bmp280_dev_pm_ops); MODULE_AUTHOR("Vlad Dogaru "); MODULE_DESCRIPTION("Driver for Bosch Sensortec BMP180/BMP280 pressure and temperature sensor"); MODULE_LICENSE("GPL v2");